##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ## Created by: Hang Zhang ## Email: zhanghang0704@gmail.com ## Copyright (c) 2020 ## ## LICENSE file in the root directory of this source tree ##+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ """ResNeSt models""" import torch from .resnet import ResNet, Bottleneck from ..model_store import get_model_file __all__ = ['resnest50', 'resnest101', 'resnest200', 'resnest269'] _url_format = 'https://hangzh.s3.amazonaws.com/encoding/models/{}-{}.pth' def resnest50(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.load( get_model_file('resnest50', root=root)), strict=False) return model def resnest101(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 23, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.load( get_model_file('resnest101', root=root)), strict=False) return model def resnest200(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 24, 36, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.load( get_model_file('resnest200', root=root)), strict=False) return model def resnest269(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 30, 48, 8], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=False, **kwargs) if pretrained: model.load_state_dict(torch.load( get_model_file('resnest269', root=root)), strict=False) return model def resnest50_fast(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 6, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=32, avg_down=True, avd=True, avd_first=True, **kwargs) if pretrained: model.load_state_dict(torch.load( get_model_file('resnest50fast', root=root)), strict=False) return model def resnest101_fast(pretrained=False, root='~/.encoding/models', **kwargs): model = ResNet(Bottleneck, [3, 4, 23, 3], radix=2, groups=1, bottleneck_width=64, deep_stem=True, stem_width=64, avg_down=True, avd=True, avd_first=True, **kwargs) if pretrained: model.load_state_dict(torch.load( get_model_file('resnest101fast', root=root)), strict=False) return model