########################################################################### # Created by: Hang Zhang # Email: zhang.hang@rutgers.edu # Copyright (c) 2017 ########################################################################### from __future__ import division import os import numpy as np import torch import torch.nn as nn from torch.nn.functional import upsample from .base import BaseNet __all__ = ['FCN', 'get_fcn', 'get_fcn_resnet50_pcontext', 'get_fcn_resnet50_ade'] class FCN(BaseNet): r"""Fully Convolutional Networks for Semantic Segmentation Parameters ---------- nclass : int Number of categories for the training dataset. backbone : string Pre-trained dilated backbone network type (default:'resnet50'; 'resnet50', 'resnet101' or 'resnet152'). norm_layer : object Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`; Reference: Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." *CVPR*, 2015 Examples -------- >>> model = FCN(nclass=21, backbone='resnet50') >>> print(model) """ def __init__(self, nclass, backbone, aux=True, se_loss=False, norm_layer=nn.BatchNorm2d, **kwargs): super(FCN, self).__init__(nclass, backbone, aux, se_loss, norm_layer=norm_layer, **kwargs) self.head = FCNHead(2048, nclass, norm_layer) if aux: self.auxlayer = FCNHead(1024, nclass, norm_layer) def forward(self, x): imsize = x.size()[2:] _, _, c3, c4 = self.base_forward(x) x = self.head(c4) x = upsample(x, imsize, **self._up_kwargs) outputs = [x] if self.aux: auxout = self.auxlayer(c3) auxout = upsample(auxout, imsize, **self._up_kwargs) outputs.append(auxout) return tuple(outputs) class FCNHead(nn.Module): def __init__(self, in_channels, out_channels, norm_layer): super(FCNHead, self).__init__() inter_channels = in_channels // 4 self.conv5 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1, bias=False), norm_layer(inter_channels), nn.ReLU(), nn.Dropout2d(0.1, False), nn.Conv2d(inter_channels, out_channels, 1)) def forward(self, x): return self.conv5(x) def get_fcn(dataset='pascal_voc', backbone='resnet50', pretrained=False, root='~/.encoding/models', **kwargs): r"""FCN model from the paper `"Fully Convolutional Network for semantic segmentation" `_ Parameters ---------- dataset : str, default pascal_voc The dataset that model pretrained on. (pascal_voc, ade20k) pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.encoding/models' Location for keeping the model parameters. Examples -------- >>> model = get_fcn(dataset='pascal_voc', backbone='resnet50', pretrained=False) >>> print(model) """ acronyms = { 'pascal_voc': 'voc', 'pascal_aug': 'voc', 'pcontext': 'pcontext', 'ade20k': 'ade', } # infer number of classes from ..datasets import datasets, VOCSegmentation, VOCAugSegmentation, ADE20KSegmentation model = FCN(datasets[dataset.lower()].NUM_CLASS, backbone=backbone, root=root, **kwargs) if pretrained: from .model_store import get_model_file model.load_state_dict(torch.load( get_model_file('fcn_%s_%s'%(backbone, acronyms[dataset]), root=root)), strict= False) return model def get_fcn_resnet50_pcontext(pretrained=False, root='~/.encoding/models', **kwargs): r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation" `_ Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.encoding/models' Location for keeping the model parameters. Examples -------- >>> model = get_fcn_resnet50_pcontext(pretrained=True) >>> print(model) """ return get_fcn('pcontext', 'resnet50', pretrained, root=root, aux=False, **kwargs) def get_fcn_resnet50_ade(pretrained=False, root='~/.encoding/models', **kwargs): r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation" `_ Parameters ---------- pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.encoding/models' Location for keeping the model parameters. Examples -------- >>> model = get_fcn_resnet50_ade(pretrained=True) >>> print(model) """ return get_fcn('ade20k', 'resnet50', pretrained, root=root, **kwargs)