Unverified Commit 39ccc246 authored by Hang Zhang's avatar Hang Zhang Committed by GitHub
Browse files

rm cifar exp (#293)


Co-authored-by: default avatarhzaws <hzaws@u8bc4deae3e4a50.ant.amazon.com>
parent 2d5b5ef7
EncNet on CIFAR-10
==================
Test Pre-trained Model
----------------------
- Clone the GitHub repo::
git clone git@github.com:zhanghang1989/PyTorch-Encoding.git
- Install PyTorch Encoding (if not yet). Please follow the installation guide `Installing PyTorch Encoding <../notes/compile.html>`_.
- Download pre-trained EncNet-32k128d model::
cd PyTorch-Encoding/experiments/recognition
bash model/download_models.sh
.. _curve:
.. image:: ../_static/img/EncNet32k128d.svg
:width: 70%
- Test EncNet-32k128d pre-trained model (training `curve`_ of this model is shown above, with a final error rate of :math:`3.35\%`)::
>>> python main.py --dataset cifar10 --model encnetdrop --widen 8 --ncodes 32 --resume model/encnet_cifar.pth.tar --eval
# Teriminal Output:
#Loss: 0.129 | Err: 3.350% (335/10000): 100%|█████████████████████████████████████████████| 79/79 [00:49<00:00, 1.58it/s]
# Error rate is 3.350
Train Your Own Model
--------------------
- Example training command for training above model::
CUDA_VISIBLE_DEVICES=0,1 python main.py --dataset cifar10 --model encnetdrop --widen 8 --ncodes 32 --lr-scheduler cos --epochs 600 --checkname mycheckpoint
- Detail training options::
-h, --help show this help message and exit
--dataset DATASET training dataset (default: cifar10)
--model MODEL network model type (default: densenet)
--widen N widen factor of the network (default: 4)
--ncodes N number of codewords in Encoding Layer (default: 32)
--batch-size N batch size for training (default: 128)
--test-batch-size N batch size for testing (default: 1000)
--epochs N number of epochs to train (default: 300)
--start_epoch N the epoch number to start (default: 0)
--lr LR learning rate (default: 0.1)
--momentum M SGD momentum (default: 0.9)
--weight-decay M SGD weight decay (default: 1e-4)
--no-cuda disables CUDA training
--plot matplotlib
--seed S random seed (default: 1)
--resume RESUME put the path to resuming file if needed
--checkname set the checkpoint name
--eval evaluating
Citation
--------
.. note::
* Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi, Amit Agrawal. "Context Encoding for Semantic Segmentation" *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*::
@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment