Unverified Commit 07f25381 authored by Hang Zhang's avatar Hang Zhang Committed by GitHub
Browse files
parents cebf1341 70fdeb79
#ifndef THC_GENERIC_FILE
#define THC_GENERIC_FILE "generic/THCDeviceTensorUtils.cu"
#else
/// Constructs a THCDeviceTensor initialized from a THCudaTensor. Will
/// error if the dimensionality does not match exactly.
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>
toDeviceTensor(THCState* state, THCTensor* t);
template <typename T, int Dim, typename IndexT>
THCDeviceTensor<T, Dim, IndexT, DefaultPtrTraits>
toDeviceTensor(THCState* state, THCTensor* t) {
return toDeviceTensor<T, Dim, IndexT, DefaultPtrTraits>(state, t);
}
template <typename T, int Dim>
THCDeviceTensor<T, Dim, int, DefaultPtrTraits>
toDeviceTensor(THCState* state, THCTensor* t) {
return toDeviceTensor<T, Dim, int, DefaultPtrTraits>(state, t);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>
toDeviceTensor(THCState* state, THCTensor* t) {
if (Dim != THCTensor_(nDimension)(state, t)) {
THError("THCudaTensor dimension mismatch");
}
// Determine the maximum offset into the tensor achievable; `IndexT`
// must be smaller than this type in order to use it.
ptrdiff_t maxOffset = 0;
IndexT sizes[Dim];
IndexT strides[Dim];
for (int i = 0; i < Dim; ++i) {
int64_t size = THCTensor_(size)(state, t, i);
int64_t stride = THCTensor_(stride)(state, t, i);
maxOffset += (size - 1) * stride;
sizes[i] = (IndexT) size;
strides[i] = (IndexT) stride;
}
if (maxOffset > std::numeric_limits<IndexT>::max()) {
THError("THCudaTensor sizes too large for THCDeviceTensor conversion");
}
return THCDeviceTensor<T, Dim, IndexT, PtrTraits>(
THCTensor_(data)(state, t), sizes, strides);
}
#endif
#ifndef THC_DEVICE_TENSOR_UTILS_INC
#define THC_DEVICE_TENSOR_UTILS_INC
#include "THCDeviceTensor.cuh"
#include "THCTensor.h"
#include <limits>
/// Constructs a DeviceTensor initialized from a THCudaTensor by
/// upcasting or downcasting the tensor to that of a different
/// dimension.
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>
toDeviceTensorCast(THCState* state, THCudaTensor* t);
template <typename T, int Dim, typename IndexT>
THCDeviceTensor<T, Dim, IndexT, DefaultPtrTraits>
toDeviceTensorCast(THCState* state, THCudaTensor* t) {
return toDeviceTensorCast<T, Dim, IndexT, DefaultPtrTraits>(state, t);
}
template <typename T, int Dim>
THCDeviceTensor<T, Dim, int, DefaultPtrTraits>
toDeviceTensorCast(THCState* state, THCudaTensor* t) {
return toDeviceTensorCast<T, Dim, int, DefaultPtrTraits>(state, t);
}
#include "generic/THCDeviceTensorUtils.cu"
#include "THCGenerateAllTypes.h"
#include "THCDeviceTensorUtils-inl.cuh"
#endif // THC_DEVICE_TENSOR_UTILS_INC
#ifndef THC_GENERIC_FILE
#define THC_GENERIC_FILE "generic/THCDeviceTensorUtils.cu"
#else
/// Constructs a THCDeviceTensor initialized from a THCudaTensor. Will
/// error if the dimensionality does not match exactly.
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>
toDeviceTensor(THCState* state, THCTensor* t);
template <typename T, int Dim, typename IndexT>
THCDeviceTensor<T, Dim, IndexT, DefaultPtrTraits>
toDeviceTensor(THCState* state, THCTensor* t) {
return toDeviceTensor<T, Dim, IndexT, DefaultPtrTraits>(state, t);
}
template <typename T, int Dim>
THCDeviceTensor<T, Dim, int, DefaultPtrTraits>
toDeviceTensor(THCState* state, THCTensor* t) {
return toDeviceTensor<T, Dim, int, DefaultPtrTraits>(state, t);
}
template <typename T, int Dim,
typename IndexT, template <typename U> class PtrTraits>
THCDeviceTensor<T, Dim, IndexT, PtrTraits>
toDeviceTensor(THCState* state, THCTensor* t) {
if (Dim != THCTensor_(nDimension)(state, t)) {
THError("THCudaTensor dimension mismatch");
}
// Determine the maximum offset into the tensor achievable; `IndexT`
// must be smaller than this type in order to use it.
ptrdiff_t maxOffset = 0;
IndexT sizes[Dim];
IndexT strides[Dim];
for (int i = 0; i < Dim; ++i) {
int64_t size = THCTensor_(size)(state, t, i);
int64_t stride = THCTensor_(stride)(state, t, i);
maxOffset += (size - 1) * stride;
sizes[i] = (IndexT) size;
strides[i] = (IndexT) stride;
}
if (maxOffset > std::numeric_limits<IndexT>::max()) {
THError("THCudaTensor sizes too large for THCDeviceTensor conversion");
}
return THCDeviceTensor<T, Dim, IndexT, PtrTraits>(
THCTensor_(data)(state, t), sizes, strides);
}
#endif
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* Created by: Hang Zhang
* ECE Department, Rutgers University
* Email: zhang.hang@rutgers.edu
* Copyright (c) 2017
*
* This source code is licensed under the MIT-style license found in the
* LICENSE file in the root directory of this source tree
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*/
#include "thc_encoding.h"
#include "common.h"
#include "generic/device_tensor.h"
#include "THC/THCGenerateFloatType.h"
#include "generic/device_tensor.h"
#include "THC/THCGenerateDoubleType.h"
#ifdef __cplusplus
extern "C" {
#endif
// float
#include "generic/encoding_utils.c"
#include "THC/THCGenerateFloatType.h"
#include "generic/encoding_kernel.c"
#include "THC/THCGenerateFloatType.h"
#include "generic/syncbn_kernel.c"
#include "THC/THCGenerateFloatType.h"
#include "generic/pooling_kernel.c"
#include "THC/THCGenerateFloatType.h"
// double
#include "generic/encoding_utils.c"
#include "THC/THCGenerateDoubleType.h"
#include "generic/encoding_kernel.c"
#include "THC/THCGenerateDoubleType.h"
#include "generic/syncbn_kernel.c"
#include "THC/THCGenerateDoubleType.h"
#include "generic/pooling_kernel.c"
#include "THC/THCGenerateDoubleType.h"
#ifdef __cplusplus
}
#endif
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* Created by: Hang Zhang
* ECE Department, Rutgers University
* Email: zhang.hang@rutgers.edu
* Copyright (c) 2017
*
* This source code is licensed under the MIT-style license found in the
* LICENSE file in the root directory of this source tree
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*/
#include <THC.h>
#include "THCDeviceTensor.cuh"
#include "THCDeviceTensorUtils.cuh"
// this symbol will be resolved automatically from PyTorch libs
extern THCState *state;
#define Encoding_(NAME) TH_CONCAT_4(Encoding_, Real, _, NAME)
#define THCTensor TH_CONCAT_3(TH,CReal,Tensor)
#define THCTensor_(NAME) TH_CONCAT_4(TH,CReal,Tensor_,NAME)
#ifdef __cplusplus
extern "C" {
#endif
// float
#include "generic/encoding_kernel.h"
#include "THC/THCGenerateFloatType.h"
#include "generic/syncbn_kernel.h"
#include "THC/THCGenerateFloatType.h"
#include "generic/pooling_kernel.h"
#include "THC/THCGenerateFloatType.h"
// double
#include "generic/encoding_kernel.h"
#include "THC/THCGenerateDoubleType.h"
#include "generic/syncbn_kernel.h"
#include "THC/THCGenerateDoubleType.h"
#include "generic/pooling_kernel.h"
#include "THC/THCGenerateDoubleType.h"
#ifdef __cplusplus
}
#endif
#!/usr/bin/env bash
mkdir -p encoding/lib && cd encoding/lib
# compile and install
cmake ..
make
from .model_zoo import get_model
from .base import *
from .fcn import *
from .encnet import *
def get_segmentation_model(name, **kwargs):
from .fcn import get_fcn
models = {
'fcn': get_fcn,
'encnet': get_encnet,
}
return models[name.lower()](**kwargs)
###########################################################################
# Created by: Hang Zhang
# Email: zhang.hang@rutgers.edu
# Copyright (c) 2017
###########################################################################
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.functional import upsample
from torch.nn.parallel.data_parallel import DataParallel
from torch.nn.parallel.parallel_apply import parallel_apply
from torch.nn.parallel.scatter_gather import scatter
from .. import dilated as resnet
from ..utils import batch_pix_accuracy, batch_intersection_union
up_kwargs = {'mode': 'bilinear', 'align_corners': True}
__all__ = ['BaseNet', 'EvalModule', 'MultiEvalModule']
class BaseNet(nn.Module):
def __init__(self, nclass, backbone, aux, se_loss, dilated=True, norm_layer=None,
mean=[.485, .456, .406], std=[.229, .224, .225]):
super(BaseNet, self).__init__()
self.nclass = nclass
self.aux = aux
self.se_loss = se_loss
self.mean = mean
self.std = std
# copying modules from pretrained models
if backbone == 'resnet50':
self.pretrained = resnet.resnet50(pretrained=True, dilated=dilated, norm_layer=norm_layer)
elif backbone == 'resnet101':
self.pretrained = resnet.resnet101(pretrained=True, dilated=dilated, norm_layer=norm_layer)
elif backbone == 'resnet152':
self.pretrained = resnet.resnet152(pretrained=True, dilated=dilated, norm_layer=norm_layer)
else:
raise RuntimeError('unknown backbone: {}'.format(backbone))
# bilinear upsample options
self._up_kwargs = up_kwargs
def base_forward(self, x):
x = self.pretrained.conv1(x)
x = self.pretrained.bn1(x)
x = self.pretrained.relu(x)
x = self.pretrained.maxpool(x)
c1 = self.pretrained.layer1(x)
c2 = self.pretrained.layer2(c1)
c3 = self.pretrained.layer3(c2)
c4 = self.pretrained.layer4(c3)
return c1, c2, c3, c4
def evaluate(self, x, target=None):
pred = self.forward(x)
if isinstance(pred, (tuple, list)):
pred = pred[0]
if target is None:
return pred
correct, labeled = batch_pix_accuracy(pred.data, target.data)
inter, union = batch_intersection_union(pred.data, target.data, self.nclass)
return correct, labeled, inter, union
class EvalModule(nn.Module):
"""Segmentation Eval Module"""
def __init__(self, module):
super(EvalModule, self).__init__()
self.module = module
def forward(self, *inputs, **kwargs):
return self.module.evaluate(*inputs, **kwargs)
class MultiEvalModule(DataParallel):
"""Multi-size Segmentation Eavluator"""
def __init__(self, module, nclass, device_ids=None,
base_size=520, crop_size=480, flip=True,
scales=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75]):
super(MultiEvalModule, self).__init__(module, device_ids)
self.nclass = nclass
self.base_size = base_size
self.crop_size = crop_size
self.scales = scales
self.flip = flip
def parallel_forward(self, inputs, **kwargs):
"""Multi-GPU Mult-size Evaluation
Args:
inputs: list of Tensors
"""
inputs = [(input.unsqueeze(0).cuda(device),) for input, device in zip(inputs, self.device_ids)]
replicas = self.replicate(self, self.device_ids[:len(inputs)])
kwargs = scatter(kwargs, target_gpus, dim) if kwargs else []
if len(inputs) < len(kwargs):
inputs.extend([() for _ in range(len(kwargs) - len(inputs))])
elif len(kwargs) < len(inputs):
kwargs.extend([{} for _ in range(len(inputs) - len(kwargs))])
outputs = self.parallel_apply(replicas, inputs, kwargs)
return outputs
def forward(self, image):
"""Mult-size Evaluation"""
# only single image is supported for evaluation
batch, _, h, w = image.size()
assert(batch == 1)
stride_rate = 2.0/3.0
crop_size = self.crop_size
stride = int(crop_size * stride_rate)
with torch.cuda.device_of(image):
scores = image.new().resize_(batch,self.nclass,h,w).zero_().cuda()
for scale in self.scales:
long_size = int(math.ceil(self.base_size * scale))
if h > w:
height = long_size
width = int(1.0 * w * long_size / h + 0.5)
short_size = width
else:
width = long_size
height = int(1.0 * h * long_size / w + 0.5)
short_size = height
# resize image to current size
cur_img = resize_image(image, height, width)
if scale <= 1.25 or long_size <= crop_size:# #
pad_img = pad_image(cur_img, self.module.mean,
self.module.std, crop_size)
outputs = self.module_inference(pad_img)
outputs = crop_image(outputs, 0, height, 0, width)
else:
if short_size < crop_size:
# pad if needed
pad_img = pad_image(cur_img, self.module.mean,
self.module.std, crop_size)
else:
pad_img = cur_img
_,_,ph,pw = pad_img.size()
assert(ph >= height and pw >= width)
# grid forward and normalize
h_grids = int(math.ceil(1.0*(ph-crop_size)/stride)) + 1
w_grids = int(math.ceil(1.0*(pw-crop_size)/stride)) + 1
with torch.cuda.device_of(image):
outputs = image.new().resize_(batch,self.nclass,ph,pw).zero_().cuda()
count_norm = image.new().resize_(batch,1,ph,pw).zero_().cuda()
# grid evaluation
for idh in range(h_grids):
for idw in range(w_grids):
h0 = idh * stride
w0 = idw * stride
h1 = min(h0 + crop_size, ph)
w1 = min(w0 + crop_size, pw)
crop_img = crop_image(pad_img, h0, h1, w0, w1)
# pad if needed
pad_crop_img = pad_image(crop_img, self.module.mean,
self.module.std, crop_size)
output = self.module_inference(pad_crop_img)
outputs[:,:,h0:h1,w0:w1] += crop_image(output,
0, h1-h0, 0, w1-w0)
count_norm[:,:,h0:h1,w0:w1] += 1
assert((count_norm==0).sum()==0)
outputs = outputs / count_norm
outputs = outputs[:,:,:height,:width]
score = resize_image(outputs, h, w)
scores += score
return scores
def module_inference(self, image):
output = self.module.evaluate(image)
if self.flip:
fimg = flip_image(image)
foutput = self.module.evaluate(fimg)
output += flip_image(foutput)
return output.exp()
def resize_image(img, h, w, mode='bilinear'):
return F.upsample(img, (h, w), **up_kwargs)
def pad_image(img, mean, std, crop_size):
b,c,h,w = img.size()
assert(c==3)
padh = crop_size - h if h < crop_size else 0
padw = crop_size - w if w < crop_size else 0
pad_values = -np.array(mean) / np.array(std)
img_pad = img.new().resize_(b,c,h+padh,w+padw)
#img_pad = F.pad(img, (0,padw,0,padh))
for i in range(c):
# note that pytorch pad params is in reversed orders
img_pad[:,i,:,:] = F.pad(img[:,i,:,:], (0, padw, 0, padh),
value=pad_values[i])
assert(img_pad.size(2)>=crop_size and img_pad.size(3)>=crop_size)
return img_pad
def crop_image(img, h0, h1, w0, w1):
return img[:,:,h0:h1,w0:w1]
def flip_image(img):
assert(img.dim()==4)
with torch.cuda.device_of(img):
idx = torch.arange(img.size(3)-1, -1, -1).type_as(img).long()
return img.index_select(3, idx)
###########################################################################
# Created by: Hang Zhang
# Email: zhang.hang@rutgers.edu
# Copyright (c) 2017
###########################################################################
import torch
from torch.autograd import Variable
import torch.nn as nn
from torch.nn.functional import upsample
import encoding
from .base import BaseNet
from .fcn import FCNHead
__all__ = ['EncNet', 'EncModule', 'get_encnet', 'get_encnet_resnet50_pcontext']
class EncNet(BaseNet):
def __init__(self, nclass, backbone, aux=True, se_loss=True,
norm_layer=nn.BatchNorm2d, **kwargs):
super(EncNet, self).__init__(nclass, backbone, aux, se_loss, norm_layer=norm_layer)
self.head = EncHead(self.nclass, in_channels=2048, se_loss=se_loss,
norm_layer=norm_layer, up_kwargs=self._up_kwargs)
if aux:
self.auxlayer = FCNHead(1024, nclass, norm_layer=norm_layer)
def forward(self, x):
imsize = x.size()[2:]
#features = self.base_forward(x)
_, _, c3, c4 = self.base_forward(x)
x = list(self.head(c4))
x[0] = upsample(x[0], imsize, **self._up_kwargs)
if self.aux:
auxout = self.auxlayer(c3)
auxout = upsample(auxout, imsize, **self._up_kwargs)
x.append(auxout)
return tuple(x)
class EncModule(nn.Module):
def __init__(self, in_channels, nclass, ncodes=32, se_loss=True, norm_layer=None):
super(EncModule, self).__init__()
if isinstance(norm_layer, encoding.nn.BatchNorm2d):
norm_layer = encoding.nn.BatchNorm1d
else:
norm_layer = nn.BatchNorm1d
self.se_loss = se_loss
self.encoding = nn.Sequential(
encoding.nn.Encoding(D=in_channels, K=ncodes),
norm_layer(ncodes),
nn.ReLU(inplace=True),
encoding.nn.Sum(dim=1))
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels),
nn.Sigmoid())
if self.se_loss:
self.selayer = nn.Linear(in_channels, nclass)
def forward(self, x):
en = self.encoding(x)
b, c, _, _ = x.size()
gamma = self.fc(en)
y = gamma.view(b, c, 1, 1)
# residual ?
outputs = [x + x * y]
if self.se_loss:
outputs.append(self.selayer(en))
return tuple(outputs)
class EncHead(nn.Module):
def __init__(self, out_channels, in_channels, se_loss=True,
norm_layer=None, up_kwargs=None):
super(EncHead, self).__init__()
self.conv5 = nn.Sequential(
nn.Conv2d(in_channels, 512, 3, padding=1, bias=False),
norm_layer(512),
nn.ReLU(True))
self.encmodule = EncModule(512, out_channels, ncodes=32,
se_loss=se_loss, norm_layer=norm_layer)
self.dropout = nn.Dropout2d(0.1, False)
self.conv6 = nn.Conv2d(512, out_channels, 1)
self.se_loss = se_loss
def forward(self, x):
x = self.conv5(x)
outs = list(self.encmodule(x))
outs[0] = self.conv6(self.dropout(outs[0]))
return tuple(outs)
def get_encnet(dataset='pascal_voc', backbone='resnet50', pretrained=False,
root='~/.encoding/models', **kwargs):
r"""EncNet model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
Parameters
----------
dataset : str, default pascal_voc
The dataset that model pretrained on. (pascal_voc, ade20k)
backbone : str, default resnet50
The backbone network. (resnet50, 101, 152)
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Examples
--------
>>> model = get_encnet(dataset='pascal_voc', backbone='resnet50', pretrained=False)
>>> print(model)
"""
acronyms = {
'pascal_voc': 'voc',
'ade20k': 'ade',
'pcontext': 'pcontext',
}
# infer number of classes
from ..datasets import datasets, VOCSegmentation, VOCAugSegmentation, ADE20KSegmentation
model = EncNet(datasets[dataset.lower()].NUM_CLASS, backbone=backbone, **kwargs)
if pretrained:
from .model_store import get_model_file
model.load_state_dict(torch.load(
get_model_file('encnet_%s_%s'%(backbone, acronyms[dataset]), root=root)))
return model
def get_encnet_resnet50_pcontext(pretrained=False, root='~/.encoding/models', **kwargs):
r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Examples
--------
>>> model = get_encnet_resnet50_pcontext(pretrained=True)
>>> print(model)
"""
return get_encnet('pcontext', 'resnet50', pretrained)
###########################################################################
# Created by: Hang Zhang
# Email: zhang.hang@rutgers.edu
# Copyright (c) 2017
###########################################################################
from __future__ import division
import os
import numpy as np
import torch
import torch.nn as nn
from torch.nn.functional import upsample
from .base import BaseNet
__all__ = ['FCN', 'get_fcn', 'get_fcn_resnet50_pcontext', 'get_fcn_resnet50_ade']
class FCN(BaseNet):
r"""Fully Convolutional Networks for Semantic Segmentation
Parameters
----------
nclass : int
Number of categories for the training dataset.
backbone : string
Pre-trained dilated backbone network type (default:'resnet50'; 'resnet50',
'resnet101' or 'resnet152').
norm_layer : object
Normalization layer used in backbone network (default: :class:`mxnet.gluon.nn.BatchNorm`;
Reference:
Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks
for semantic segmentation." *CVPR*, 2015
Examples
--------
>>> model = FCN(nclass=21, backbone='resnet50')
>>> print(model)
"""
def __init__(self, nclass, backbone, aux=True, se_loss=False, norm_layer=nn.BatchNorm2d, **kwargs):
super(FCN, self).__init__(nclass, backbone, aux, se_loss, norm_layer=norm_layer)
self.head = FCNHead(2048, nclass, norm_layer)
if aux:
self.auxlayer = FCNHead(1024, nclass, norm_layer)
def forward(self, x):
imsize = x.size()[2:]
_, _, c3, c4 = self.base_forward(x)
x = self.head(c4)
x = upsample(x, imsize, **self._up_kwargs)
outputs = [x]
if self.aux:
auxout = self.auxlayer(c3)
auxout = upsample(auxout, imsize, **self._up_kwargs)
outputs.append(auxout)
return tuple(outputs)
class FCNHead(nn.Module):
def __init__(self, in_channels, out_channels, norm_layer):
super(FCNHead, self).__init__()
inter_channels = in_channels // 4
self.conv5 = nn.Sequential(nn.Conv2d(in_channels, inter_channels, 3, padding=1),
norm_layer(inter_channels),
nn.ReLU(),
nn.Dropout2d(0.1, False),
nn.Conv2d(inter_channels, out_channels, 1))
def forward(self, x):
return self.conv5(x)
def get_fcn(dataset='pascal_voc', backbone='resnet50', pretrained=False,
root='~/.encoding/models', **kwargs):
r"""FCN model from the paper `"Fully Convolutional Network for semantic segmentation"
<https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn.pdf>`_
Parameters
----------
dataset : str, default pascal_voc
The dataset that model pretrained on. (pascal_voc, ade20k)
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Examples
--------
>>> model = get_fcn(dataset='pascal_voc', backbone='resnet50', pretrained=False)
>>> print(model)
"""
acronyms = {
'pascal_voc': 'voc',
'pascal_aug': 'voc',
'pcontext': 'pcontext',
'ade20k': 'ade',
}
# infer number of classes
from ..datasets import datasets, VOCSegmentation, VOCAugSegmentation, ADE20KSegmentation
model = FCN(datasets[dataset.lower()].NUM_CLASS, backbone=backbone, **kwargs)
if pretrained:
from .model_store import get_model_file
model.load_state_dict(torch.load(
get_model_file('fcn_%s_%s'%(backbone, acronyms[dataset]), root=root)),
strict= False)
return model
def get_fcn_resnet50_pcontext(pretrained=False, root='~/.encoding/models', **kwargs):
r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Examples
--------
>>> model = get_fcn_resnet50_pcontext(pretrained=True)
>>> print(model)
"""
return get_fcn('pcontext', 'resnet50', pretrained)
def get_fcn_resnet50_ade(pretrained=False, root='~/.encoding/models', **kwargs):
r"""EncNet-PSP model from the paper `"Context Encoding for Semantic Segmentation"
<https://arxiv.org/pdf/1803.08904.pdf>`_
Parameters
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Examples
--------
>>> model = get_fcn_resnet50_ade(pretrained=True)
>>> print(model)
"""
return get_fcn('ade20k', 'resnet50', pretrained)
"""Model store which provides pretrained models."""
from __future__ import print_function
__all__ = ['get_model_file', 'purge']
import os
import zipfile
from ..utils import download, check_sha1
_model_sha1 = {name: checksum for checksum, name in [
('eeed8e582f0fdccdba8579e7490570adc6d85c7c', 'fcn_resnet50_pcontext'),
('969062a5aad2d1d983bae2f9e412578b62610114', 'encnet_resnet50_pcontext'),
('fc8c0b795abf0133700c2d4265d2f9edab7eb6cc', 'fcn_resnet50_ade'),
]}
encoding_repo_url = 'https://hangzh.s3.amazonaws.com/'
_url_format = '{repo_url}encoding/models/{file_name}.zip'
def short_hash(name):
if name not in _model_sha1:
raise ValueError('Pretrained model for {name} is not available.'.format(name=name))
return _model_sha1[name][:8]
def get_model_file(name, root=os.path.join('~', '.encoding', 'models')):
r"""Return location for the pretrained on local file system.
This function will download from online model zoo when model cannot be found or has mismatch.
The root directory will be created if it doesn't exist.
Parameters
----------
name : str
Name of the model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Returns
-------
file_path
Path to the requested pretrained model file.
"""
file_name = '{name}-{short_hash}'.format(name=name, short_hash=short_hash(name))
root = os.path.expanduser(root)
file_path = os.path.join(root, file_name+'.pth')
sha1_hash = _model_sha1[name]
if os.path.exists(file_path):
if check_sha1(file_path, sha1_hash):
return file_path
else:
print('Mismatch in the content of model file detected. Downloading again.')
else:
print('Model file is not found. Downloading.')
if not os.path.exists(root):
os.makedirs(root)
zip_file_path = os.path.join(root, file_name+'.zip')
repo_url = os.environ.get('ENCODING_REPO', encoding_repo_url)
if repo_url[-1] != '/':
repo_url = repo_url + '/'
download(_url_format.format(repo_url=repo_url, file_name=file_name),
path=zip_file_path,
overwrite=True)
with zipfile.ZipFile(zip_file_path) as zf:
zf.extractall(root)
os.remove(zip_file_path)
if check_sha1(file_path, sha1_hash):
return file_path
else:
raise ValueError('Downloaded file has different hash. Please try again.')
def purge(root=os.path.join('~', '.encoding', 'models')):
r"""Purge all pretrained model files in local file store.
Parameters
----------
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
"""
root = os.path.expanduser(root)
files = os.listdir(root)
for f in files:
if f.endswith(".pth"):
os.remove(os.path.join(root, f))
def pretrained_model_list():
return list(_model_sha1.keys())
# pylint: disable=wildcard-import, unused-wildcard-import
from .fcn import *
from .encnet import *
__all__ = ['get_model']
def get_model(name, **kwargs):
"""Returns a pre-defined model by name
Parameters
----------
name : str
Name of the model.
pretrained : bool
Whether to load the pretrained weights for model.
root : str, default '~/.encoding/models'
Location for keeping the model parameters.
Returns
-------
Module:
The model.
"""
models = {
'fcn_resnet50_pcontext': get_fcn_resnet50_pcontext,
'encnet_resnet50_pcontext': get_encnet_resnet50_pcontext,
'fcn_resnet50_ade': get_fcn_resnet50_ade,
}
name = name.lower()
if name not in models:
raise ValueError('%s\n\t%s' % (str(e), '\n\t'.join(sorted(models.keys()))))
net = models[name](**kwargs)
return net
......@@ -11,13 +11,15 @@
"""Encoding Custermized NN Module"""
import torch
from torch.nn import Module, Sequential, Conv2d, ReLU, AdaptiveAvgPool2d, \
NLLLoss, BCELoss, CrossEntropyLoss
NLLLoss, BCELoss, CrossEntropyLoss, AvgPool2d, MaxPool2d, Parameter
from torch.nn import functional as F
from torch.autograd import Variable
from .syncbn import BatchNorm2d
torch_ver = torch.__version__[:3]
__all__ = ['GramMatrix', 'SegmentationLosses', 'View', 'Sum', 'Mean',
'Normalize', 'PyramidPooling']
'Normalize']
class GramMatrix(Module):
......@@ -39,39 +41,51 @@ def softmax_crossentropy(input, target, weight, size_average, ignore_index, redu
class SegmentationLosses(CrossEntropyLoss):
"""2D Cross Entropy Loss with Auxilary Loss"""
def __init__(self, aux, aux_weight=0.2, weight=None, size_average=True, ignore_index=-1):
def __init__(self, se_loss=False, se_weight=0.1, nclass=-1,
aux=False, aux_weight=0.2, weight=None,
size_average=True, ignore_index=-1):
super(SegmentationLosses, self).__init__(weight, size_average, ignore_index)
self.se_loss = se_loss
self.aux = aux
self.nclass = nclass
self.se_weight = se_weight
self.aux_weight = aux_weight
self.bceloss = BCELoss(weight, size_average)
def forward(self, *inputs):
if not self.aux:
if not self.se_loss and not self.aux:
return super(SegmentationLosses, self).forward(*inputs)
pred1, pred2, target = tuple(inputs)
loss1 = super(SegmentationLosses, self).forward(pred1, target)
loss2 = super(SegmentationLosses, self).forward(pred2, target)
return loss1 + self.aux_weight * loss2
"""
class SegmentationLosses(Module):
def __init__(self, aux, aux_weight=0.2, weight=None, size_average=True, ignore_index=-1):
super(SegmentationLosses, self).__init__()
self.aux = aux
self.aux_weight = aux_weight
# Somehow the size averge is not handled correctly on multi-gpu, so we average by ourself.
self.nll_loss = NLLLoss(weight, ignore_index=ignore_index, reduce=True)
def _forward_each(self, inputs, targets):
return self.nll_loss(F.log_softmax(inputs, dim=1), targets)
def forward(self, *inputs):
if not self.aux:
return self._forward_each(*inputs)
pred1, pred2, target = tuple(inputs)
loss1 = self._forward_each(pred1, target)
loss2 = self._forward_each(pred2, target)
return loss1 + self.aux_weight * loss2
"""
elif not self.se_loss:
pred1, pred2, target = tuple(inputs)
loss1 = super(SegmentationLosses, self).forward(pred1, target)
loss2 = super(SegmentationLosses, self).forward(pred2, target)
return loss1 + self.aux_weight * loss2
elif not self.aux:
pred, se_pred, target = tuple(inputs)
se_target = self._get_batch_label_vector(target, nclass=self.nclass).type_as(pred)
loss1 = super(SegmentationLosses, self).forward(pred, target)
loss2 = self.bceloss(F.sigmoid(se_pred), se_target)
return loss1 + self.se_weight * loss2
else:
pred1, se_pred, pred2, target = tuple(inputs)
se_target = self._get_batch_label_vector(target, nclass=self.nclass).type_as(pred1)
loss1 = super(SegmentationLosses, self).forward(pred1, target)
loss2 = super(SegmentationLosses, self).forward(pred2, target)
loss3 = self.bceloss(F.sigmoid(se_pred), se_target)
return loss1 + self.aux_weight * loss2 + self.se_weight * loss3
@staticmethod
def _get_batch_label_vector(target, nclass):
# target is a 3D Variable BxHxW, output is 2D BxnClass
batch = target.size(0)
tvect = Variable(torch.zeros(batch, nclass))
for i in range(batch):
hist = torch.histc(target[i].cpu().data.float(),
bins=nclass, min=0,
max=nclass-1)
vect = hist>0
tvect[i] = vect
return tvect
class View(Module):
......@@ -135,45 +149,3 @@ class Normalize(Module):
def forward(self, x):
return F.normalize(x, self.p, self.dim, eps=1e-10)
class PyramidPooling(Module):
"""
Reference:
Zhao, Hengshuang, et al. *"Pyramid scene parsing network."*
"""
def __init__(self, in_channels):
super(PyramidPooling, self).__init__()
self.pool1 = AdaptiveAvgPool2d(1)
self.pool2 = AdaptiveAvgPool2d(2)
self.pool3 = AdaptiveAvgPool2d(3)
self.pool4 = AdaptiveAvgPool2d(6)
out_channels = int(in_channels/4)
self.conv1 = Sequential(Conv2d(in_channels, out_channels, 1),
BatchNorm2d(out_channels),
ReLU(True))
self.conv2 = Sequential(Conv2d(in_channels, out_channels, 1),
BatchNorm2d(out_channels),
ReLU(True))
self.conv3 = Sequential(Conv2d(in_channels, out_channels, 1),
BatchNorm2d(out_channels),
ReLU(True))
self.conv4 = Sequential(Conv2d(in_channels, out_channels, 1),
BatchNorm2d(out_channels),
ReLU(True))
def _cat_each(self, x, feat1, feat2, feat3, feat4):
assert(len(x) == len(feat1))
z = []
for i in range(len(x)):
z.append(torch.cat((x[i], feat1[i], feat2[i], feat3[i], feat4[i]), 1))
return z
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.upsample(self.conv1(self.pool1(x)), (h, w), mode='bilinear')
feat2 = F.upsample(self.conv2(self.pool2(x)), (h, w), mode='bilinear')
feat3 = F.upsample(self.conv3(self.pool3(x)), (h, w), mode='bilinear')
feat4 = F.upsample(self.conv4(self.pool4(x)), (h, w), mode='bilinear')
return torch.cat((x, feat1, feat2, feat3, feat4), 1)
......@@ -15,9 +15,9 @@ import torch.nn.functional as F
from torch.autograd import Variable
from torch.nn.modules.utils import _pair
from ..functions import scaledL2, aggregate, dilatedavgpool2d
from ..functions import scaledL2, aggregate
__all__ = ['Encoding', 'EncodingDrop', 'Inspiration', 'DilatedAvgPool2d', 'UpsampleConv2d']
__all__ = ['Encoding', 'EncodingDrop', 'Inspiration', 'UpsampleConv2d']
class Encoding(Module):
r"""
......@@ -203,82 +203,6 @@ class Inspiration(Module):
+ 'N x ' + str(self.C) + ')'
class DilatedAvgPool2d(Module):
r"""We provide Dilated Average Pooling for the dilation of Densenet as
in :class:`encoding.dilated.DenseNet`.
Reference:
Hang Zhang, Kristin Dana, Jianping Shi, Zhongyue Zhang, Xiaogang Wang, Ambrish Tyagi,
Amit Agrawal. “Context Encoding for Semantic Segmentation.
*The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2018*
Applies a 2D average pooling over an input signal composed of several input planes.
In the simplest case, the output value of the layer with input size :math:`(N, C, H, W)`,
output :math:`(B, C, H_{out}, W_{out})`, :attr:`kernel_size` :math:`(k_H,k_W)`,
:attr:`stride` :math:`(s_H,s_W)` :attr:`dilation` :math:`(d_H,d_W)`
can be precisely described as:
.. math::
\begin{array}{ll}
out(b, c, h, w) = 1 / (k_H \cdot k_W) \cdot
\sum_{{m}=0}^{k_H-1} \sum_{{n}=0}^{k_W-1}
input(b, c, s_H \cdot h + d_H \cdot m, s_W \cdot w + d_W \cdot n)
\end{array}
| If :attr:`padding` is non-zero, then the input is implicitly zero-padded on both sides
for :attr:`padding` number of points
| The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`,
:attr:`dilation` can either be:
- a single ``int`` -- in which case the same value is used for the height
and width dimension
- a ``tuple`` of two ints -- in which case, the first `int` is used for
the height dimension, and the second `int` for the width dimension
Args:
kernel_size: the size of the window
stride: the stride of the window. Default value is :attr:`kernel_size`
padding: implicit zero padding to be added on both sides
dilation: the dilation parameter similar to Conv2d
Shape:
- Input: :math:`(B, C, H_{in}, W_{in})`
- Output: :math:`(B, C, H_{out}, W_{out})` where
:math:`H_{out} = floor((H_{in} + 2 * padding[0] - kernel\_size[0]) / stride[0] + 1)`
:math:`W_{out} = floor((W_{in} + 2 * padding[1] - kernel\_size[1]) / stride[1] + 1)`
For :attr:`stride=1`, the output featuremap preserves the same size as input.
Examples::
>>> # pool of square window of size=3, stride=2, dilation=2
>>> m = nn.DilatedAvgPool2d(3, stride=2, dilation=2)
>>> input = autograd.Variable(torch.randn(20, 16, 50, 32))
>>> output = m(input)
"""
def __init__(self, kernel_size, stride=None, padding=0, dilation=1):
super(DilatedAvgPool2d, self).__init__()
self.kernel_size = kernel_size
self.stride = stride or kernel_size
self.padding = padding
self.dilation = dilation
def forward(self, input):
return dilatedavgpool2d(input, self.kernel_size, self.stride,
self.padding, self.dilation)
def __repr__(self):
return self.__class__.__name__ + ' (' \
+ 'size=' + str(self.kernel_size) \
+ ', stride=' + str(self.stride) \
+ ', padding=' + str(self.padding) \
+ ', dilation=' + str(self.dilation) + ')'
class UpsampleConv2d(Module):
r"""
To avoid the checkerboard artifacts of standard Fractionally-strided Convolution,
......
......@@ -23,34 +23,28 @@ from ..functions import *
from ..parallel import allreduce
from .comm import SyncMaster
__all__ = ['BatchNorm1d', 'BatchNorm2d', 'BatchNorm3d', 'Module', 'Sequential', 'Conv1d',
'Conv2d', 'ConvTranspose2d', 'ReLU', 'Sigmoid', 'MaxPool2d', 'AvgPool2d',
'AdaptiveAvgPool2d', 'Dropout2d', 'Linear']
# Adapt from https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
_ChildMessage = collections.namedtuple('Message', ['sum', 'ssum', 'sum_size'])
_MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'inv_std'])
class _SyncBatchNorm(_BatchNorm):
def __init__(self, num_features, eps=1e-5, momentum=0.001, affine=True):
def __init__(self, num_features, eps=1e-5, momentum=0.1, affine=True):
super(_SyncBatchNorm, self).__init__(num_features, eps=eps, momentum=momentum, affine=affine)
self._sync_master = SyncMaster(self._data_parallel_master)
self._is_parallel = False
self._parallel_id = None
self._slave_pipe = None
def forward(self, input):
# If it is not parallel computation or is in evaluation mode, use PyTorch's implementation.
if not (self._is_parallel and self.training):
if not self.training:
return batch_norm(
input, self.running_mean, self.running_var, self.weight, self.bias,
self.training, self.momentum, self.eps)
# Resize the input to (B, C, -1).
input_shape = input.size()
input = input.view(input.size(0), self.num_features, -1)
input = input.view(input_shape[0], self.num_features, -1)
# sum(x) and sum(x^2)
N = input.size(0) * input.size(2)
......@@ -62,11 +56,9 @@ class _SyncBatchNorm(_BatchNorm):
else:
mean, inv_std = self._slave_pipe.run_slave(_ChildMessage(xsum, xsqsum, N))
# forward
return batchnormtrain(input, self.weight, self.bias, mean, 1.0/inv_std).view(input_shape)
return batchnormtrain(input, mean, 1.0/inv_std, self.weight, self.bias).view(input_shape)
def __data_parallel_replicate__(self, ctx, copy_id):
self._is_parallel = True
self._parallel_id = copy_id
# parallel_id == 0 means master device.
......@@ -110,7 +102,12 @@ class _SyncBatchNorm(_BatchNorm):
self.running_mean = (1 - self.momentum) * self.running_mean + self.momentum * mean.data
self.running_var = (1 - self.momentum) * self.running_var + self.momentum * unbias_var.data
return mean, bias_var.clamp(self.eps) ** -0.5
return mean, (bias_var + self.eps) ** -0.5
# API adapted from https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
_ChildMessage = collections.namedtuple('Message', ['sum', 'ssum', 'sum_size'])
_MasterMessage = collections.namedtuple('_MasterMessage', ['sum', 'inv_std'])
class BatchNorm1d(_SyncBatchNorm):
......@@ -193,12 +190,11 @@ class BatchNorm3d(_SyncBatchNorm):
class SharedTensor(object):
"""Shared Tensor for cross GPU all reduce operation"""
def __init__(self, nGPUs, op):
def __init__(self, nGPUs):
self.mutex = threading.Lock()
self.all_tasks_done = threading.Condition(self.mutex)
self.nGPUs = nGPUs
self._clear()
self.op = op
def _clear(self):
self.N = 0
......@@ -206,9 +202,7 @@ class SharedTensor(object):
self.push_tasks = self.nGPUs
self.reduce_tasks = self.nGPUs
def __call__(self, *inputs):
if self.nGPUs <= 1:
return tuple(inputs)
def push(self, *inputs):
# push from device
with self.mutex:
if self.push_tasks == 0:
......@@ -223,13 +217,15 @@ class SharedTensor(object):
self.all_tasks_done.notify_all()
while self.push_tasks:
self.all_tasks_done.wait()
def pull(self, igpu):
# pull from device
with self.mutex:
if igpu == 0:
assert(len(self.dict) == self.nGPUs)
# flatten the tensors
self.list = [t for i in range(len(self.dict)) for t in self.dict[i]]
self.outlist = self.op(2, *self.list)
self.outlist = allreduce(2, *self.list)
self.reduce_tasks -= 1
else:
self.reduce_tasks -= 1
......
......@@ -189,10 +189,11 @@ def _criterion_parallel_apply(modules, inputs, targets, kwargs_tup=None, devices
outputs.append(output)
return outputs
###########################################################################
# Adapted from Synchronized-BatchNorm-PyTorch.
# https://github.com/vacancy/Synchronized-BatchNorm-PyTorch
#
class CallbackContext(object):
pass
......
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* Created by: Hang Zhang
* ECE Department, Rutgers University
* Email: zhang.hang@rutgers.edu
* Copyright (c) 2017
*
* This source code is licensed under the MIT-style license found in the
* LICENSE file in the root directory of this source tree
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*/
#include <THC/THC.h>
#include <thc_encoding.h>
extern THCState *state;
#ifdef __cplusplus
extern "C" {
#endif
// float
#include "generic/encoding_generic.c"
#include "THC/THCGenerateFloatType.h"
#include "generic/syncbn_generic.c"
#include "THC/THCGenerateFloatType.h"
#include "generic/pooling_generic.c"
#include "THC/THCGenerateFloatType.h"
// double
#include "generic/encoding_generic.c"
#include "THC/THCGenerateDoubleType.h"
#include "generic/syncbn_generic.c"
#include "THC/THCGenerateDoubleType.h"
#include "generic/pooling_generic.c"
#include "THC/THCGenerateDoubleType.h"
#ifdef __cplusplus
}
#endif
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* Created by: Hang Zhang
* ECE Department, Rutgers University
* Email: zhang.hang@rutgers.edu
* Copyright (c) 2017
*
* This source code is licensed under the MIT-style license found in the
* LICENSE file in the root directory of this source tree
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*/
/*
#include <THC/THC.h>
#ifdef __cplusplus
extern "C" {
#endif
#define Encoding_(NAME) TH_CONCAT_4(Encoding_, Real, _, NAME)
#define THCTensor TH_CONCAT_3(TH,CReal,Tensor)
#define THCTensor_(NAME) TH_CONCAT_4(TH,CReal,Tensor_,NAME)
// float
#include "generic/encoding_generic.h"
#include "THC/THCGenerateFloatType.h"
#include "generic/syncbn_generic.h"
#include "THC/THCGenerateFloatType.h"
#ifdef __cplusplus
}
#endif
*/
int Encoding_Float_scaledl2_forward(THCudaTensor *SL,
THCudaTensor *X, THCudaTensor *C, THCudaTensor *S);
int Encoding_Float_scaledl2_backward(
THCudaTensor *GSL, THCudaTensor *GX, THCudaTensor *GC,
THCudaTensor *X, THCudaTensor *C, THCudaTensor *S);
int Encoding_Float_aggregate_forward(THCudaTensor *E, THCudaTensor *A,
THCudaTensor *X, THCudaTensor *C);
int Encoding_Float_aggregate_backward(THCudaTensor *GA, THCudaTensor *GE,
THCudaTensor *A, THCudaTensor *X, THCudaTensor *C);
int Encoding_Float_batchnorm_Forward(THCudaTensor *output_,
THCudaTensor *input_, THCudaTensor *mean_,
THCudaTensor *invstd_, THCudaTensor *gamma_, THCudaTensor *beta_);
int Encoding_Float_batchnorm_Backward(THCudaTensor *gradoutput_,
THCudaTensor *input_, THCudaTensor *gradinput_,
THCudaTensor *gradgamma_, THCudaTensor *gradbeta_,
THCudaTensor *mean_, THCudaTensor *invstd_,
THCudaTensor *gamma_,THCudaTensor *beta_,
THCudaTensor *gradMean_, THCudaTensor *gradStd_, int train);
int Encoding_Float_sum_square_Forward(THCudaTensor *input_,
THCudaTensor *sum_, THCudaTensor *square_);
int Encoding_Float_sum_square_Backward(
THCudaTensor *gradInput, THCudaTensor *input_,
THCudaTensor *gradSum_, THCudaTensor *gradSquare_);
int Encoding_Float_DilatedAvgPool2d_Forward(
THCudaTensor *X_, THCudaTensor *Y_,
int kH, int kW, int dH, int dW,
int padH, int padW,
int dilationH, int dilationW);
int Encoding_Float_DilatedAvgPool2d_Backward(
THCudaTensor *gradX_, THCudaTensor *gradY_,
int kH, int kW, int dH, int dW,
int padH, int padW,
int dilationH, int dilationW);
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
int Encoding_Double_scaledl2_forward(THCudaDoubleTensor *SL,
THCudaDoubleTensor *X, THCudaDoubleTensor *C, THCudaDoubleTensor *S);
int Encoding_Double_scaledl2_backward(
THCudaDoubleTensor *GSL, THCudaDoubleTensor *GX,
THCudaDoubleTensor *GC, THCudaDoubleTensor *X,
THCudaDoubleTensor *C, THCudaDoubleTensor *S);
int Encoding_Double_aggregate_forward(THCudaDoubleTensor *E,
THCudaDoubleTensor *A, THCudaDoubleTensor *X, THCudaDoubleTensor *C);
int Encoding_Double_aggregate_backward(THCudaDoubleTensor *GA,
THCudaDoubleTensor *GE, THCudaDoubleTensor *A, THCudaDoubleTensor *X,
THCudaDoubleTensor *C);
int Encoding_Double_batchnorm_Forward(THCudaDoubleTensor *output_,
THCudaDoubleTensor *input_, THCudaDoubleTensor *mean_,
THCudaDoubleTensor *invstd_, THCudaDoubleTensor *gamma_,
THCudaDoubleTensor *beta_);
int Encoding_Double_batchnorm_Backward(THCudaDoubleTensor *gradoutput_,
THCudaDoubleTensor *input_, THCudaDoubleTensor *gradinput_,
THCudaDoubleTensor *gradgamma_, THCudaDoubleTensor *gradbeta_,
THCudaDoubleTensor *mean_, THCudaDoubleTensor *invstd_,
THCudaDoubleTensor *gamma_, THCudaDoubleTensor *beta_,
THCudaDoubleTensor *gradMean_, THCudaDoubleTensor *gradStd_,
int train);
int Encoding_Double_sum_square_Forward(THCudaDoubleTensor *input_,
THCudaDoubleTensor *sum_, THCudaDoubleTensor *square_);
void Encoding_Double_sum_square_Backward(
THCudaDoubleTensor *gradInput, THCudaDoubleTensor *input_,
THCudaDoubleTensor *gradSum_, THCudaDoubleTensor *gradSquare_);
int Encoding_Double_DilatedAvgPool2d_Forward(
THCudaDoubleTensor *X_, THCudaDoubleTensor *Y_,
int kH, int kW, int dH, int dW,
int padH, int padW,
int dilationH, int dilationW);
int Encoding_Double_DilatedAvgPool2d_Backward(
THCudaDoubleTensor *gradX_, THCudaDoubleTensor *gradY_,
int kH, int kW, int dH, int dW,
int padH, int padW,
int dilationH, int dilationW);
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* Created by: Hang Zhang
* ECE Department, Rutgers University
* Email: zhang.hang@rutgers.edu
* Copyright (c) 2017
*
* This source code is licensed under the MIT-style license found in the
* LICENSE file in the root directory of this source tree
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*/
#ifndef THC_GENERIC_FILE
#define THC_GENERIC_FILE "generic/encoding_generic.c"
#else
int Encoding_(scaledl2_forward)(THCTensor *SL,
THCTensor *X, THCTensor *C, THCTensor *S)
/*
* ScaledL2 operation
*/
{
Encoding_(ScaledL2_Forward)(state, SL, X, C, S);
/* C function return number of the outputs */
return 0;
}
int Encoding_(scaledl2_backward)(
THCTensor *GSL, THCTensor *GX, THCTensor *GC,
THCTensor *X, THCTensor *C, THCTensor *S)
/*
* ScaledL2 operation
*/
{
Encoding_(ScaledL2_Backward)(state, GSL, GX, GC, X, C, S);
/* C function return number of the outputs */
return 0;
}
int Encoding_(aggregate_forward)(THCTensor *E, THCTensor *A,
THCTensor *X, THCTensor *C)
/*
* Aggregate operation
*/
{
Encoding_(Aggregate_Forward)(state, E, A, X, C);
/* C function return number of the outputs */
return 0;
}
int Encoding_(aggregate_backward)(THCTensor *GA, THCTensor *GE,
THCTensor *A, THCTensor *X, THCTensor *C)
/*
* Aggregate backward operation to A
* G (dl/dR), L (dl/dE), A (assignments)
*/
{
Encoding_(Aggregate_Backward)(state, GA, GE, A, X, C);
/* C function return number of the outputs */
return 0;
}
#endif
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
* Created by: Hang Zhang
* ECE Department, Rutgers University
* Email: zhang.hang@rutgers.edu
* Copyright (c) 2017
*
* This source code is licensed under the MIT-style license found in the
* LICENSE file in the root directory of this source tree
*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
*/
#ifndef THC_GENERIC_FILE
#define THC_GENERIC_FILE "generic/encoding_generic.h"
#else
int Encoding_(scaledl2_forward)(THCTensor *SL,
THCTensor *X, THCTensor *C, THCTensor *S);
int Encoding_(scaledl2_backward)(
THCTensor *GSL, THCTensor *GX, THCTensor *GC,
THCTensor *X, THCTensor *C, THCTensor *S);
int Encoding_(aggregate_forward)(THCTensor *E, THCTensor *A,
THCTensor *X, THCTensor *C);
int Encoding_(aggregate_backward)(THCTensor *GA, THCTensor *GE,
THCTensor *A, THCTensor *X, THCTensor *C);
int Encoding_(aggregateP_forward)(THCTensor *E, THCTensor *A,
THCTensor *R);
int Encoding_(aggregateP_backward)(THCTensor *GA, THCTensor *GR,
THCTensor *L, THCTensor *A, THCTensor *R);
int Encoding_(residual_forward)(THCTensor *R, THCTensor *X, THCTensor *D);
int Encoding_(residual_backward)(THCTensor *GR, THCTensor *GX,
THCTensor *GD);
int Encoding_(squaresqueeze_forward)(THCTensor *L, THCTensor *R);
int Encoding_(squaresqueeze_backward)(THCTensor *GL, THCTensor *GR,
THCTensor *R);
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment