from typing import Optional import torch from torch import Tensor import torch.nn.functional as F from torch.nn import Linear, ModuleList from torch_sparse import SparseTensor from torch_geometric.nn import GATConv from torch_geometric_autoscale.models import ScalableGNN class GAT(ScalableGNN): def __init__(self, num_nodes: int, in_channels, hidden_channels: int, hidden_heads: int, out_channels: int, out_heads: int, num_layers: int, residual: bool = False, dropout: float = 0.0, pool_size: Optional[int] = None, buffer_size: Optional[int] = None, device=None): super(GAT, self).__init__(num_nodes, hidden_channels * hidden_heads, num_layers, pool_size, buffer_size, device) self.in_channels = in_channels self.hidden_heads = hidden_heads self.out_channels = out_channels self.out_heads = out_heads self.residual = residual self.dropout = dropout self.convs = ModuleList() for i in range(num_layers - 1): in_dim = in_channels if i == 0 else hidden_channels * hidden_heads conv = GATConv(in_dim, hidden_channels, hidden_heads, concat=True, dropout=dropout, add_self_loops=False) self.convs.append(conv) conv = GATConv(hidden_channels * hidden_heads, out_channels, out_heads, concat=False, dropout=dropout, add_self_loops=False) self.convs.append(conv) self.lins = ModuleList() if residual: self.lins.append( Linear(in_channels, hidden_channels * hidden_heads)) self.lins.append( Linear(hidden_channels * hidden_heads, out_channels)) self.reg_modules = ModuleList([self.convs, self.lins]) self.nonreg_modules = ModuleList() def reset_parameters(self): super(GAT, self).reset_parameters() for conv in self.convs: conv.reset_parameters() for lin in self.lins: lin.reset_parameters() def forward(self, x: Tensor, adj_t: SparseTensor, batch_size: Optional[int] = None, n_id: Optional[Tensor] = None, offset: Optional[Tensor] = None, count: Optional[Tensor] = None) -> Tensor: for conv, history in zip(self.convs[:-1], self.histories): h = F.dropout(x, p=self.dropout, training=self.training) h = conv((h, h[:adj_t.size(0)]), adj_t) if self.residual: x = F.dropout(x, p=self.dropout, training=self.training) h += x if h.size(-1) == x.size(-1) else self.lins[0](x) x = F.elu(h) x = self.push_and_pull(history, x, batch_size, n_id, offset, count) h = F.dropout(x, p=self.dropout, training=self.training) h = self.convs[-1]((h, h[:adj_t.size(0)]), adj_t) if self.residual: x = F.dropout(x, p=self.dropout, training=self.training) h += self.lins[1](x) return h @torch.no_grad() def forward_layer(self, layer, x, adj_t, state): h = F.dropout(x, p=self.dropout, training=self.training) h = self.convs[layer]((h, h[:adj_t.size(0)]), adj_t) if layer == 0: x = F.dropout(x, p=self.dropout, training=self.training) x = self.lins[0](x) if layer == self.num_layers - 1: x = F.dropout(x, p=self.dropout, training=self.training) x = self.lins[1](x) if self.residual: x = F.dropout(x, p=self.dropout, training=self.training) h += x if layer < self.num_layers - 1: h = h.elu() return h