#!/usr/bin/python """ Adapted from the original C++ example: densecrf/examples/dense_inference.cpp http://www.philkr.net/home/densecrf Version 2.2 """ import numpy as np import cv2 import pydensecrf.densecrf as dcrf from skimage.segmentation import relabel_sequential import sys if len(sys.argv) != 4: print("Usage: python {} IMAGE ANNO OUTPUT".format(sys.argv[0])) print("") print("IMAGE and ANNO are inputs and OUTPUT is where the result should be written.") sys.exit(1) img = cv2.imread(sys.argv[1], 1) labels = relabel_sequential(cv2.imread(sys.argv[2], 0))[0].flatten() output = sys.argv[3] M = labels.max() + 1 # number of labels # Setup the CRF model d = dcrf.DenseCRF2D(img.shape[1], img.shape[0], M) # Certainty that the ground truth is correct GT_PROB = 0.5 # Simple classifier that is 50% certain that the annotation is correct u_energy = -np.log(1.0 / M) n_energy = -np.log((1.0 - GT_PROB) / (M - 1)) p_energy = -np.log(GT_PROB) U = np.zeros((M, img.shape[0] * img.shape[1]), dtype='float32') U[:, labels > 0] = n_energy U[labels, np.arange(U.shape[1])] = p_energy U[:, labels == 0] = u_energy d.setUnaryEnergy(U) d.addPairwiseGaussian(sxy=3, compat=3) d.addPairwiseBilateral(sxy=80, srgb=13, rgbim=img, compat=10) # Do the inference res = np.argmax(d.inference(5), axis=0).astype('float32') res *= 255 / res.max() res = res.reshape(img.shape[:2]) cv2.imwrite(output, res.astype('uint8'))