Commit 4e1906be authored by lucasb-eyer's avatar lucasb-eyer
Browse files

Add language to code-blocks in README.md

parent dfb60dc5
...@@ -29,7 +29,7 @@ Usage ...@@ -29,7 +29,7 @@ Usage
For images, the easiest way to use this library is using the `DenseCRF2D` class: For images, the easiest way to use this library is using the `DenseCRF2D` class:
``` ```python
import numpy as np import numpy as np
import densecrf as dcrf import densecrf as dcrf
...@@ -41,7 +41,7 @@ Unary potential ...@@ -41,7 +41,7 @@ Unary potential
You can then set a fixed unary potential in the following way: You can then set a fixed unary potential in the following way:
``` ```python
U = np.array(...) # Get the unary in some way. U = np.array(...) # Get the unary in some way.
print(U.shape) # -> (640, 480, 3) print(U.shape) # -> (640, 480, 3)
print(U.dtype) # -> dtype('float32') print(U.dtype) # -> dtype('float32')
...@@ -62,7 +62,7 @@ Pairwise potentials ...@@ -62,7 +62,7 @@ Pairwise potentials
The two-dimensional case has two utility methods for adding the most-common pairwise potentials: The two-dimensional case has two utility methods for adding the most-common pairwise potentials:
``` ```python
# This adds the color-independent term, features are the locations only. # This adds the color-independent term, features are the locations only.
d.addPairwiseGaussian(sxy=(3,3), compat=3, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC) d.addPairwiseGaussian(sxy=(3,3), compat=3, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC)
...@@ -74,7 +74,7 @@ d.addPairwiseBilateral(sxy=(80,80), srgb=(13,13,13), rgbim=im, compat=10, kernel ...@@ -74,7 +74,7 @@ d.addPairwiseBilateral(sxy=(80,80), srgb=(13,13,13), rgbim=im, compat=10, kernel
Both of these methods have shortcuts and default-arguments such that the most Both of these methods have shortcuts and default-arguments such that the most
common use-case can be simplified to: common use-case can be simplified to:
``` ```python
d.addPairwiseGaussian(sxy=3, compat=3) d.addPairwiseGaussian(sxy=3, compat=3)
d.addPairwiseBilateral(sxy=80, srgb=13, rgbim=im, compat=10) d.addPairwiseBilateral(sxy=80, srgb=13, rgbim=im, compat=10)
``` ```
...@@ -109,13 +109,13 @@ Inference ...@@ -109,13 +109,13 @@ Inference
The easiest way to do inference is to simply call: The easiest way to do inference is to simply call:
``` ```python
Q = d.inference(n_iterations=5) Q = d.inference(n_iterations=5)
``` ```
And the MAP prediction is then: And the MAP prediction is then:
``` ```python
map = np.argmax(Q, axis=0).reshape((640,480)) map = np.argmax(Q, axis=0).reshape((640,480))
``` ```
...@@ -124,7 +124,7 @@ Step-by-step inference ...@@ -124,7 +124,7 @@ Step-by-step inference
If for some reason you want to run the inference loop manually, you can do so: If for some reason you want to run the inference loop manually, you can do so:
``` ```python
Q, tmp1, tmp2 = d.startInference() Q, tmp1, tmp2 = d.startInference()
for i in range(5): for i in range(5):
print("KL-divergence at {}: {}".format(i, d.klDivergence(Q))) print("KL-divergence at {}: {}".format(i, d.klDivergence(Q)))
...@@ -140,7 +140,7 @@ potentials `addPairwiseGaussian` and `addPairwiseBilateral` are missing. ...@@ -140,7 +140,7 @@ potentials `addPairwiseGaussian` and `addPairwiseBilateral` are missing.
Instead, you need to use the generic `addPairwiseEnergy` method like this: Instead, you need to use the generic `addPairwiseEnergy` method like this:
``` ```python
d = dcrf.DenseCRF(100, 3) # npoints, nlabels d = dcrf.DenseCRF(100, 3) # npoints, nlabels
feats = np.array(...) # Get the pairwise features from somewhere. feats = np.array(...) # Get the pairwise features from somewhere.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment