Commit 13b115ab authored by Simon Tulling's avatar Simon Tulling
Browse files

Fix Windows MSVC install by updating Eigen Library

parent 4d5343c3
......@@ -19,19 +19,20 @@ namespace internal
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isApprox_selector
{
static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar prec)
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
using std::min;
typename internal::nested<Derived,2>::type nested(x);
typename internal::nested<OtherDerived,2>::type otherNested(y);
return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * (min)(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
typename internal::nested_eval<Derived,2>::type nested(x);
typename internal::nested_eval<OtherDerived,2>::type otherNested(y);
return (nested - otherNested).cwiseAbs2().sum() <= prec * prec * numext::mini(nested.cwiseAbs2().sum(), otherNested.cwiseAbs2().sum());
}
};
template<typename Derived, typename OtherDerived>
struct isApprox_selector<Derived, OtherDerived, true>
{
static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar)
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar&)
{
return x.matrix() == y.matrix();
}
......@@ -40,16 +41,18 @@ struct isApprox_selector<Derived, OtherDerived, true>
template<typename Derived, typename OtherDerived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_object_selector
{
static bool run(const Derived& x, const OtherDerived& y, typename Derived::RealScalar prec)
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived& y, const typename Derived::RealScalar& prec)
{
return x.cwiseAbs2().sum() <= abs2(prec) * y.cwiseAbs2().sum();
return x.cwiseAbs2().sum() <= numext::abs2(prec) * y.cwiseAbs2().sum();
}
};
template<typename Derived, typename OtherDerived>
struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
{
static bool run(const Derived& x, const OtherDerived&, typename Derived::RealScalar)
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const OtherDerived&, const typename Derived::RealScalar&)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
......@@ -58,16 +61,18 @@ struct isMuchSmallerThan_object_selector<Derived, OtherDerived, true>
template<typename Derived, bool is_integer = NumTraits<typename Derived::Scalar>::IsInteger>
struct isMuchSmallerThan_scalar_selector
{
static bool run(const Derived& x, const typename Derived::RealScalar& y, typename Derived::RealScalar prec)
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const typename Derived::RealScalar& y, const typename Derived::RealScalar& prec)
{
return x.cwiseAbs2().sum() <= abs2(prec * y);
return x.cwiseAbs2().sum() <= numext::abs2(prec * y);
}
};
template<typename Derived>
struct isMuchSmallerThan_scalar_selector<Derived, true>
{
static bool run(const Derived& x, const typename Derived::RealScalar&, typename Derived::RealScalar)
EIGEN_DEVICE_FUNC
static bool run(const Derived& x, const typename Derived::RealScalar&, const typename Derived::RealScalar&)
{
return x.matrix() == Derived::Zero(x.rows(), x.cols()).matrix();
}
......@@ -97,7 +102,7 @@ template<typename Derived>
template<typename OtherDerived>
bool DenseBase<Derived>::isApprox(
const DenseBase<OtherDerived>& other,
RealScalar prec
const RealScalar& prec
) const
{
return internal::isApprox_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
......@@ -119,7 +124,7 @@ bool DenseBase<Derived>::isApprox(
template<typename Derived>
bool DenseBase<Derived>::isMuchSmallerThan(
const typename NumTraits<Scalar>::Real& other,
RealScalar prec
const RealScalar& prec
) const
{
return internal::isMuchSmallerThan_scalar_selector<Derived>::run(derived(), other, prec);
......@@ -139,7 +144,7 @@ template<typename Derived>
template<typename OtherDerived>
bool DenseBase<Derived>::isMuchSmallerThan(
const DenseBase<OtherDerived>& other,
RealScalar prec
const RealScalar& prec
) const
{
return internal::isMuchSmallerThan_object_selector<Derived, OtherDerived>::run(derived(), other.derived(), prec);
......
......@@ -11,29 +11,7 @@
#ifndef EIGEN_GENERAL_PRODUCT_H
#define EIGEN_GENERAL_PRODUCT_H
namespace Eigen {
/** \class GeneralProduct
* \ingroup Core_Module
*
* \brief Expression of the product of two general matrices or vectors
*
* \param LhsNested the type used to store the left-hand side
* \param RhsNested the type used to store the right-hand side
* \param ProductMode the type of the product
*
* This class represents an expression of the product of two general matrices.
* We call a general matrix, a dense matrix with full storage. For instance,
* This excludes triangular, selfadjoint, and sparse matrices.
* It is the return type of the operator* between general matrices. Its template
* arguments are determined automatically by ProductReturnType. Therefore,
* GeneralProduct should never be used direclty. To determine the result type of a
* function which involves a matrix product, use ProductReturnType::Type.
*
* \sa ProductReturnType, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename Lhs, typename Rhs, int ProductType = internal::product_type<Lhs,Rhs>::value>
class GeneralProduct;
namespace Eigen {
enum {
Large = 2,
......@@ -46,11 +24,17 @@ template<int Rows, int Cols, int Depth> struct product_type_selector;
template<int Size, int MaxSize> struct product_size_category
{
enum { is_large = MaxSize == Dynamic ||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD,
value = is_large ? Large
: Size == 1 ? 1
: Small
enum {
#ifndef EIGEN_CUDA_ARCH
is_large = MaxSize == Dynamic ||
Size >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD ||
(Size==Dynamic && MaxSize>=EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD),
#else
is_large = 0,
#endif
value = is_large ? Large
: Size == 1 ? 1
: Small
};
};
......@@ -59,15 +43,14 @@ template<typename Lhs, typename Rhs> struct product_type
typedef typename remove_all<Lhs>::type _Lhs;
typedef typename remove_all<Rhs>::type _Rhs;
enum {
MaxRows = _Lhs::MaxRowsAtCompileTime,
Rows = _Lhs::RowsAtCompileTime,
MaxCols = _Rhs::MaxColsAtCompileTime,
Cols = _Rhs::ColsAtCompileTime,
MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::MaxColsAtCompileTime,
_Rhs::MaxRowsAtCompileTime),
Depth = EIGEN_SIZE_MIN_PREFER_FIXED(_Lhs::ColsAtCompileTime,
_Rhs::RowsAtCompileTime),
LargeThreshold = EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
MaxRows = traits<_Lhs>::MaxRowsAtCompileTime,
Rows = traits<_Lhs>::RowsAtCompileTime,
MaxCols = traits<_Rhs>::MaxColsAtCompileTime,
Cols = traits<_Rhs>::ColsAtCompileTime,
MaxDepth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::MaxColsAtCompileTime,
traits<_Rhs>::MaxRowsAtCompileTime),
Depth = EIGEN_SIZE_MIN_PREFER_FIXED(traits<_Lhs>::ColsAtCompileTime,
traits<_Rhs>::RowsAtCompileTime)
};
// the splitting into different lines of code here, introducing the _select enums and the typedef below,
......@@ -82,7 +65,8 @@ private:
public:
enum {
value = selector::ret
value = selector::ret,
ret = selector::ret
};
#ifdef EIGEN_DEBUG_PRODUCT
static void debug()
......@@ -98,12 +82,13 @@ public:
#endif
};
/* The following allows to select the kind of product at compile time
* based on the three dimensions of the product.
* This is a compile time mapping from {1,Small,Large}^3 -> {product types} */
// FIXME I'm not sure the current mapping is the ideal one.
template<int M, int N> struct product_type_selector<M,N,1> { enum { ret = OuterProduct }; };
template<int M> struct product_type_selector<M, 1, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<int N> struct product_type_selector<1, N, 1> { enum { ret = LazyCoeffBasedProductMode }; };
template<int Depth> struct product_type_selector<1, 1, Depth> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<1, 1, 1> { enum { ret = InnerProduct }; };
template<> struct product_type_selector<Small,1, Small> { enum { ret = CoeffBasedProductMode }; };
......@@ -122,60 +107,12 @@ template<> struct product_type_selector<Small,Small,Large> { enum
template<> struct product_type_selector<Large,Small,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Small,Large,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Large,Large> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Small,Small> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Small,Large,Small> { enum { ret = GemmProduct }; };
template<> struct product_type_selector<Large,Small,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Small,Large,Small> { enum { ret = CoeffBasedProductMode }; };
template<> struct product_type_selector<Large,Large,Small> { enum { ret = GemmProduct }; };
} // end namespace internal
/** \class ProductReturnType
* \ingroup Core_Module
*
* \brief Helper class to get the correct and optimized returned type of operator*
*
* \param Lhs the type of the left-hand side
* \param Rhs the type of the right-hand side
* \param ProductMode the type of the product (determined automatically by internal::product_mode)
*
* This class defines the typename Type representing the optimized product expression
* between two matrix expressions. In practice, using ProductReturnType<Lhs,Rhs>::Type
* is the recommended way to define the result type of a function returning an expression
* which involve a matrix product. The class Product should never be
* used directly.
*
* \sa class Product, MatrixBase::operator*(const MatrixBase<OtherDerived>&)
*/
template<typename Lhs, typename Rhs, int ProductType>
struct ProductReturnType
{
// TODO use the nested type to reduce instanciations ????
// typedef typename internal::nested<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
// typedef typename internal::nested<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
typedef GeneralProduct<Lhs/*Nested*/, Rhs/*Nested*/, ProductType> Type;
};
template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,CoeffBasedProductMode>
{
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
typedef CoeffBasedProduct<LhsNested, RhsNested, EvalBeforeAssigningBit | EvalBeforeNestingBit> Type;
};
template<typename Lhs, typename Rhs>
struct ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
{
typedef typename internal::nested<Lhs, Rhs::ColsAtCompileTime, typename internal::plain_matrix_type<Lhs>::type >::type LhsNested;
typedef typename internal::nested<Rhs, Lhs::RowsAtCompileTime, typename internal::plain_matrix_type<Rhs>::type >::type RhsNested;
typedef CoeffBasedProduct<LhsNested, RhsNested, NestByRefBit> Type;
};
// this is a workaround for sun CC
template<typename Lhs, typename Rhs>
struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedProductMode>
{};
/***********************************************************************
* Implementation of Inner Vector Vector Product
***********************************************************************/
......@@ -187,97 +124,10 @@ struct LazyProductReturnType : public ProductReturnType<Lhs,Rhs,LazyCoeffBasedPr
// product ends up to a row-vector times col-vector product... To tackle this use
// case, we could have a specialization for Block<MatrixType,1,1> with: operator=(Scalar x);
namespace internal {
template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,InnerProduct> >
: traits<Matrix<typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> >
{};
}
template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, InnerProduct>
: internal::no_assignment_operator,
public Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1>
{
typedef Matrix<typename internal::scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType,1,1> Base;
public:
GeneralProduct(const Lhs& lhs, const Rhs& rhs)
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
Base::coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
}
/** Convertion to scalar */
operator const typename Base::Scalar() const {
return Base::coeff(0,0);
}
};
/***********************************************************************
* Implementation of Outer Vector Vector Product
***********************************************************************/
namespace internal {
template<int StorageOrder> struct outer_product_selector;
template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,OuterProduct> >
: traits<ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs> >
{};
}
template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, OuterProduct>
: public ProductBase<GeneralProduct<Lhs,Rhs,OuterProduct>, Lhs, Rhs>
{
public:
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::RealScalar, typename Rhs::RealScalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
}
template<typename Dest> void scaleAndAddTo(Dest& dest, Scalar alpha) const
{
internal::outer_product_selector<(int(Dest::Flags)&RowMajorBit) ? RowMajor : ColMajor>::run(*this, dest, alpha);
}
};
namespace internal {
template<> struct outer_product_selector<ColMajor> {
template<typename ProductType, typename Dest>
static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
typedef typename Dest::Index Index;
// FIXME make sure lhs is sequentially stored
// FIXME not very good if rhs is real and lhs complex while alpha is real too
const Index cols = dest.cols();
for (Index j=0; j<cols; ++j)
dest.col(j) += (alpha * prod.rhs().coeff(j)) * prod.lhs();
}
};
template<> struct outer_product_selector<RowMajor> {
template<typename ProductType, typename Dest>
static EIGEN_DONT_INLINE void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha) {
typedef typename Dest::Index Index;
// FIXME make sure rhs is sequentially stored
// FIXME not very good if lhs is real and rhs complex while alpha is real too
const Index rows = dest.rows();
for (Index i=0; i<rows; ++i)
dest.row(i) += (alpha * prod.lhs().coeff(i)) * prod.rhs();
}
};
} // end namespace internal
/***********************************************************************
* Implementation of General Matrix Vector Product
***********************************************************************/
......@@ -291,60 +141,13 @@ template<> struct outer_product_selector<RowMajor> {
*/
namespace internal {
template<typename Lhs, typename Rhs>
struct traits<GeneralProduct<Lhs,Rhs,GemvProduct> >
: traits<ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs> >
{};
template<int Side, int StorageOrder, bool BlasCompatible>
struct gemv_selector;
struct gemv_dense_selector;
} // end namespace internal
template<typename Lhs, typename Rhs>
class GeneralProduct<Lhs, Rhs, GemvProduct>
: public ProductBase<GeneralProduct<Lhs,Rhs,GemvProduct>, Lhs, Rhs>
{
public:
EIGEN_PRODUCT_PUBLIC_INTERFACE(GeneralProduct)
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
GeneralProduct(const Lhs& lhs, const Rhs& rhs) : Base(lhs,rhs)
{
// EIGEN_STATIC_ASSERT((internal::is_same<typename Lhs::Scalar, typename Rhs::Scalar>::value),
// YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
}
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
typedef typename internal::conditional<int(Side)==OnTheRight,_LhsNested,_RhsNested>::type MatrixType;
template<typename Dest> void scaleAndAddTo(Dest& dst, Scalar alpha) const
{
eigen_assert(m_lhs.rows() == dst.rows() && m_rhs.cols() == dst.cols());
internal::gemv_selector<Side,(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)>::run(*this, dst, alpha);
}
};
namespace internal {
// The vector is on the left => transposition
template<int StorageOrder, bool BlasCompatible>
struct gemv_selector<OnTheLeft,StorageOrder,BlasCompatible>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
{
Transpose<Dest> destT(dest);
enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
gemv_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
::run(GeneralProduct<Transpose<const typename ProductType::_RhsNested>,Transpose<const typename ProductType::_LhsNested>, GemvProduct>
(prod.rhs().transpose(), prod.lhs().transpose()), destT, alpha);
}
};
template<typename Scalar,int Size,int MaxSize,bool Cond> struct gemv_static_vector_if;
template<typename Scalar,int Size,int MaxSize>
......@@ -362,126 +165,161 @@ struct gemv_static_vector_if<Scalar,Size,Dynamic,true>
template<typename Scalar,int Size,int MaxSize>
struct gemv_static_vector_if<Scalar,Size,MaxSize,true>
{
#if EIGEN_ALIGN_STATICALLY
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0> m_data;
EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
#else
// Some architectures cannot align on the stack,
// => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
enum {
ForceAlignment = internal::packet_traits<Scalar>::Vectorizable,
PacketSize = internal::packet_traits<Scalar>::size
};
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?PacketSize:0),0> m_data;
#if EIGEN_MAX_STATIC_ALIGN_BYTES!=0
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize),0,EIGEN_PLAIN_ENUM_MIN(AlignedMax,PacketSize)> m_data;
EIGEN_STRONG_INLINE Scalar* data() { return m_data.array; }
#else
// Some architectures cannot align on the stack,
// => let's manually enforce alignment by allocating more data and return the address of the first aligned element.
internal::plain_array<Scalar,EIGEN_SIZE_MIN_PREFER_FIXED(Size,MaxSize)+(ForceAlignment?EIGEN_MAX_ALIGN_BYTES:0),0> m_data;
EIGEN_STRONG_INLINE Scalar* data() {
return ForceAlignment
? reinterpret_cast<Scalar*>((reinterpret_cast<size_t>(m_data.array) & ~(size_t(15))) + 16)
? reinterpret_cast<Scalar*>((internal::UIntPtr(m_data.array) & ~(std::size_t(EIGEN_MAX_ALIGN_BYTES-1))) + EIGEN_MAX_ALIGN_BYTES)
: m_data.array;
}
#endif
};
template<> struct gemv_selector<OnTheRight,ColMajor,true>
// The vector is on the left => transposition
template<int StorageOrder, bool BlasCompatible>
struct gemv_dense_selector<OnTheLeft,StorageOrder,BlasCompatible>
{
template<typename ProductType, typename Dest>
static inline void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename ProductType::Index Index;
typedef typename ProductType::LhsScalar LhsScalar;
typedef typename ProductType::RhsScalar RhsScalar;
typedef typename ProductType::Scalar ResScalar;
typedef typename ProductType::RealScalar RealScalar;
typedef typename ProductType::ActualLhsType ActualLhsType;
typedef typename ProductType::ActualRhsType ActualRhsType;
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
typedef Map<Matrix<ResScalar,Dynamic,1>, Aligned> MappedDest;
ActualLhsType actualLhs = LhsBlasTraits::extract(prod.lhs());
ActualRhsType actualRhs = RhsBlasTraits::extract(prod.rhs());
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
* RhsBlasTraits::extractScalarFactor(prod.rhs());
Transpose<Dest> destT(dest);
enum { OtherStorageOrder = StorageOrder == RowMajor ? ColMajor : RowMajor };
gemv_dense_selector<OnTheRight,OtherStorageOrder,BlasCompatible>
::run(rhs.transpose(), lhs.transpose(), destT, alpha);
}
};
template<> struct gemv_dense_selector<OnTheRight,ColMajor,true>
{
template<typename Lhs, typename Rhs, typename Dest>
static inline void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef typename Dest::Scalar ResScalar;
typedef typename Dest::RealScalar RealScalar;
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef Map<Matrix<ResScalar,Dynamic,1>, EIGEN_PLAIN_ENUM_MIN(AlignedMax,internal::packet_traits<ResScalar>::size)> MappedDest;
ActualLhsType actualLhs = LhsBlasTraits::extract(lhs);
ActualRhsType actualRhs = RhsBlasTraits::extract(rhs);
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
* RhsBlasTraits::extractScalarFactor(rhs);
// make sure Dest is a compile-time vector type (bug 1166)
typedef typename conditional<Dest::IsVectorAtCompileTime, Dest, typename Dest::ColXpr>::type ActualDest;
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
EvalToDestAtCompileTime = Dest::InnerStrideAtCompileTime==1,
EvalToDestAtCompileTime = (ActualDest::InnerStrideAtCompileTime==1),
ComplexByReal = (NumTraits<LhsScalar>::IsComplex) && (!NumTraits<RhsScalar>::IsComplex),
MightCannotUseDest = (Dest::InnerStrideAtCompileTime!=1) || ComplexByReal
MightCannotUseDest = (!EvalToDestAtCompileTime) || ComplexByReal
};
gemv_static_vector_if<ResScalar,Dest::SizeAtCompileTime,Dest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
bool alphaIsCompatible = (!ComplexByReal) || (imag(actualAlpha)==RealScalar(0));
bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
typedef const_blas_data_mapper<LhsScalar,Index,ColMajor> LhsMapper;
typedef const_blas_data_mapper<RhsScalar,Index,RowMajor> RhsMapper;
RhsScalar compatibleAlpha = get_factor<ResScalar,RhsScalar>::run(actualAlpha);
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
evalToDest ? dest.data() : static_dest.data());
if(!evalToDest)
if(!MightCannotUseDest)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if(!alphaIsCompatible)
// shortcut if we are sure to be able to use dest directly,
// this ease the compiler to generate cleaner and more optimzized code for most common cases
general_matrix_vector_product
<Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
LhsMapper(actualLhs.data(), actualLhs.outerStride()),
RhsMapper(actualRhs.data(), actualRhs.innerStride()),
dest.data(), 1,
compatibleAlpha);
}
else
{
gemv_static_vector_if<ResScalar,ActualDest::SizeAtCompileTime,ActualDest::MaxSizeAtCompileTime,MightCannotUseDest> static_dest;
const bool alphaIsCompatible = (!ComplexByReal) || (numext::imag(actualAlpha)==RealScalar(0));
const bool evalToDest = EvalToDestAtCompileTime && alphaIsCompatible;
ei_declare_aligned_stack_constructed_variable(ResScalar,actualDestPtr,dest.size(),
evalToDest ? dest.data() : static_dest.data());
if(!evalToDest)
{
MappedDest(actualDestPtr, dest.size()).setZero();
compatibleAlpha = RhsScalar(1);
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
Index size = dest.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
if(!alphaIsCompatible)
{
MappedDest(actualDestPtr, dest.size()).setZero();
compatibleAlpha = RhsScalar(1);
}
else
MappedDest(actualDestPtr, dest.size()) = dest;
}
else
MappedDest(actualDestPtr, dest.size()) = dest;
}
general_matrix_vector_product
<Index,LhsScalar,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
actualLhs.data(), actualLhs.outerStride(),
actualRhs.data(), actualRhs.innerStride(),
actualDestPtr, 1,
compatibleAlpha);
general_matrix_vector_product
<Index,LhsScalar,LhsMapper,ColMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
LhsMapper(actualLhs.data(), actualLhs.outerStride()),
RhsMapper(actualRhs.data(), actualRhs.innerStride()),
actualDestPtr, 1,
compatibleAlpha);
if (!evalToDest)
{
if(!alphaIsCompatible)
dest += actualAlpha * MappedDest(actualDestPtr, dest.size());
else
dest = MappedDest(actualDestPtr, dest.size());
if (!evalToDest)
{
if(!alphaIsCompatible)
dest.matrix() += actualAlpha * MappedDest(actualDestPtr, dest.size());
else
dest = MappedDest(actualDestPtr, dest.size());
}
}
}
};
template<> struct gemv_selector<OnTheRight,RowMajor,true>
template<> struct gemv_dense_selector<OnTheRight,RowMajor,true>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename ProductType::LhsScalar LhsScalar;
typedef typename ProductType::RhsScalar RhsScalar;
typedef typename ProductType::Scalar ResScalar;
typedef typename ProductType::Index Index;
typedef typename ProductType::ActualLhsType ActualLhsType;
typedef typename ProductType::ActualRhsType ActualRhsType;
typedef typename ProductType::_ActualRhsType _ActualRhsType;
typedef typename ProductType::LhsBlasTraits LhsBlasTraits;
typedef typename ProductType::RhsBlasTraits RhsBlasTraits;
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(prod.lhs());
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(prod.rhs());
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(prod.lhs())
* RhsBlasTraits::extractScalarFactor(prod.rhs());
typedef typename Lhs::Scalar LhsScalar;
typedef typename Rhs::Scalar RhsScalar;
typedef typename Dest::Scalar ResScalar;
typedef internal::blas_traits<Lhs> LhsBlasTraits;
typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType;
typedef internal::blas_traits<Rhs> RhsBlasTraits;
typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType;
typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned;
typename add_const<ActualLhsType>::type actualLhs = LhsBlasTraits::extract(lhs);
typename add_const<ActualRhsType>::type actualRhs = RhsBlasTraits::extract(rhs);
ResScalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(lhs)
* RhsBlasTraits::extractScalarFactor(rhs);
enum {
// FIXME find a way to allow an inner stride on the result if packet_traits<Scalar>::size==1
// on, the other hand it is good for the cache to pack the vector anyways...
DirectlyUseRhs = _ActualRhsType::InnerStrideAtCompileTime==1
DirectlyUseRhs = ActualRhsTypeCleaned::InnerStrideAtCompileTime==1
};
gemv_static_vector_if<RhsScalar,_ActualRhsType::SizeAtCompileTime,_ActualRhsType::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
gemv_static_vector_if<RhsScalar,ActualRhsTypeCleaned::SizeAtCompileTime,ActualRhsTypeCleaned::MaxSizeAtCompileTime,!DirectlyUseRhs> static_rhs;
ei_declare_aligned_stack_constructed_variable(RhsScalar,actualRhsPtr,actualRhs.size(),
DirectlyUseRhs ? const_cast<RhsScalar*>(actualRhs.data()) : static_rhs.data());
......@@ -489,45 +327,48 @@ template<> struct gemv_selector<OnTheRight,RowMajor,true>
if(!DirectlyUseRhs)
{
#ifdef EIGEN_DENSE_STORAGE_CTOR_PLUGIN
int size = actualRhs.size();
Index size = actualRhs.size();
EIGEN_DENSE_STORAGE_CTOR_PLUGIN
#endif
Map<typename _ActualRhsType::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
Map<typename ActualRhsTypeCleaned::PlainObject>(actualRhsPtr, actualRhs.size()) = actualRhs;
}
typedef const_blas_data_mapper<LhsScalar,Index,RowMajor> LhsMapper;
typedef const_blas_data_mapper<RhsScalar,Index,ColMajor> RhsMapper;
general_matrix_vector_product
<Index,LhsScalar,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsBlasTraits::NeedToConjugate>::run(
<Index,LhsScalar,LhsMapper,RowMajor,LhsBlasTraits::NeedToConjugate,RhsScalar,RhsMapper,RhsBlasTraits::NeedToConjugate>::run(
actualLhs.rows(), actualLhs.cols(),
actualLhs.data(), actualLhs.outerStride(),
actualRhsPtr, 1,
dest.data(), dest.innerStride(),
LhsMapper(actualLhs.data(), actualLhs.outerStride()),
RhsMapper(actualRhsPtr, 1),
dest.data(), dest.col(0).innerStride(), //NOTE if dest is not a vector at compile-time, then dest.innerStride() might be wrong. (bug 1166)
actualAlpha);
}
};
template<> struct gemv_selector<OnTheRight,ColMajor,false>
template<> struct gemv_dense_selector<OnTheRight,ColMajor,false>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Dest::Index Index;
// TODO makes sure dest is sequentially stored in memory, otherwise use a temp
const Index size = prod.rhs().rows();
EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
// TODO if rhs is large enough it might be beneficial to make sure that dest is sequentially stored in memory, otherwise use a temp
typename nested_eval<Rhs,1>::type actual_rhs(rhs);
const Index size = rhs.rows();
for(Index k=0; k<size; ++k)
dest += (alpha*prod.rhs().coeff(k)) * prod.lhs().col(k);
dest += (alpha*actual_rhs.coeff(k)) * lhs.col(k);
}
};
template<> struct gemv_selector<OnTheRight,RowMajor,false>
template<> struct gemv_dense_selector<OnTheRight,RowMajor,false>
{
template<typename ProductType, typename Dest>
static void run(const ProductType& prod, Dest& dest, typename ProductType::Scalar alpha)
template<typename Lhs, typename Rhs, typename Dest>
static void run(const Lhs &lhs, const Rhs &rhs, Dest& dest, const typename Dest::Scalar& alpha)
{
typedef typename Dest::Index Index;
// TODO makes sure rhs is sequentially stored in memory, otherwise use a temp
const Index rows = prod.rows();
EIGEN_STATIC_ASSERT((!nested_eval<Lhs,1>::Evaluate),EIGEN_INTERNAL_COMPILATION_ERROR_OR_YOU_MADE_A_PROGRAMMING_MISTAKE);
typename nested_eval<Rhs,Lhs::RowsAtCompileTime>::type actual_rhs(rhs);
const Index rows = dest.rows();
for(Index i=0; i<rows; ++i)
dest.coeffRef(i) += alpha * (prod.lhs().row(i).cwiseProduct(prod.rhs().transpose())).sum();
dest.coeffRef(i) += alpha * (lhs.row(i).cwiseProduct(actual_rhs.transpose())).sum();
}
};
......@@ -545,7 +386,7 @@ template<> struct gemv_selector<OnTheRight,RowMajor,false>
*/
template<typename Derived>
template<typename OtherDerived>
inline const typename ProductReturnType<Derived, OtherDerived>::Type
inline const Product<Derived, OtherDerived>
MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
{
// A note regarding the function declaration: In MSVC, this function will sometimes
......@@ -570,7 +411,8 @@ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
#ifdef EIGEN_DEBUG_PRODUCT
internal::product_type<Derived,OtherDerived>::debug();
#endif
return typename ProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
return Product<Derived, OtherDerived>(derived(), other.derived());
}
/** \returns an expression of the matrix product of \c *this and \a other without implicit evaluation.
......@@ -586,7 +428,7 @@ MatrixBase<Derived>::operator*(const MatrixBase<OtherDerived> &other) const
*/
template<typename Derived>
template<typename OtherDerived>
const typename LazyProductReturnType<Derived,OtherDerived>::Type
const Product<Derived,OtherDerived,LazyProduct>
MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
{
enum {
......@@ -605,7 +447,7 @@ MatrixBase<Derived>::lazyProduct(const MatrixBase<OtherDerived> &other) const
INVALID_MATRIX_PRODUCT__IF_YOU_WANTED_A_COEFF_WISE_PRODUCT_YOU_MUST_USE_THE_EXPLICIT_FUNCTION)
EIGEN_STATIC_ASSERT(ProductIsValid || SameSizes, INVALID_MATRIX_PRODUCT)
return typename LazyProductReturnType<Derived,OtherDerived>::Type(derived(), other.derived());
return Product<Derived,OtherDerived,LazyProduct>(derived(), other.derived());
}
} // end namespace Eigen
......
......@@ -42,21 +42,28 @@ namespace internal {
struct default_packet_traits
{
enum {
HasHalfPacket = 0,
HasAdd = 1,
HasSub = 1,
HasMul = 1,
HasNegate = 1,
HasAbs = 1,
HasArg = 0,
HasAbs2 = 1,
HasMin = 1,
HasMax = 1,
HasConj = 1,
HasSetLinear = 1,
HasBlend = 0,
HasDiv = 0,
HasSqrt = 0,
HasRsqrt = 0,
HasExp = 0,
HasLog = 0,
HasLog1p = 0,
HasLog10 = 0,
HasPow = 0,
HasSin = 0,
......@@ -64,17 +71,37 @@ struct default_packet_traits
HasTan = 0,
HasASin = 0,
HasACos = 0,
HasATan = 0
HasATan = 0,
HasSinh = 0,
HasCosh = 0,
HasTanh = 0,
HasLGamma = 0,
HasDiGamma = 0,
HasZeta = 0,
HasPolygamma = 0,
HasErf = 0,
HasErfc = 0,
HasIGamma = 0,
HasIGammac = 0,
HasBetaInc = 0,
HasRound = 0,
HasFloor = 0,
HasCeil = 0,
HasSign = 0
};
};
template<typename T> struct packet_traits : default_packet_traits
{
typedef T type;
typedef T half;
enum {
Vectorizable = 0,
size = 1,
AlignedOnScalar = 0
AlignedOnScalar = 0,
HasHalfPacket = 0
};
enum {
HasAdd = 0,
......@@ -90,132 +117,242 @@ template<typename T> struct packet_traits : default_packet_traits
};
};
template<typename T> struct packet_traits<const T> : packet_traits<T> { };
template <typename Src, typename Tgt> struct type_casting_traits {
enum {
VectorizedCast = 0,
SrcCoeffRatio = 1,
TgtCoeffRatio = 1
};
};
/** \internal \returns static_cast<TgtType>(a) (coeff-wise) */
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a) {
return static_cast<TgtPacket>(a);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a, const SrcPacket& /*b*/) {
return static_cast<TgtPacket>(a);
}
template <typename SrcPacket, typename TgtPacket>
EIGEN_DEVICE_FUNC inline TgtPacket
pcast(const SrcPacket& a, const SrcPacket& /*b*/, const SrcPacket& /*c*/, const SrcPacket& /*d*/) {
return static_cast<TgtPacket>(a);
}
/** \internal \returns a + b (coeff-wise) */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
padd(const Packet& a,
const Packet& b) { return a+b; }
/** \internal \returns a - b (coeff-wise) */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
psub(const Packet& a,
const Packet& b) { return a-b; }
/** \internal \returns -a (coeff-wise) */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pnegate(const Packet& a) { return -a; }
/** \internal \returns conj(a) (coeff-wise) */
template<typename Packet> inline Packet
pconj(const Packet& a) { return conj(a); }
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pconj(const Packet& a) { return numext::conj(a); }
/** \internal \returns a * b (coeff-wise) */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmul(const Packet& a,
const Packet& b) { return a*b; }
/** \internal \returns a / b (coeff-wise) */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pdiv(const Packet& a,
const Packet& b) { return a/b; }
/** \internal \returns the min of \a a and \a b (coeff-wise) */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmin(const Packet& a,
const Packet& b) { using std::min; return (min)(a, b); }
const Packet& b) { return numext::mini(a, b); }
/** \internal \returns the max of \a a and \a b (coeff-wise) */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmax(const Packet& a,
const Packet& b) { using std::max; return (max)(a, b); }
const Packet& b) { return numext::maxi(a, b); }
/** \internal \returns the absolute value of \a a */
template<typename Packet> inline Packet
pabs(const Packet& a) { return abs(a); }
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pabs(const Packet& a) { using std::abs; return abs(a); }
/** \internal \returns the phase angle of \a a */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
parg(const Packet& a) { using numext::arg; return arg(a); }
/** \internal \returns the bitwise and of \a a and \a b */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pand(const Packet& a, const Packet& b) { return a & b; }
/** \internal \returns the bitwise or of \a a and \a b */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
por(const Packet& a, const Packet& b) { return a | b; }
/** \internal \returns the bitwise xor of \a a and \a b */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pxor(const Packet& a, const Packet& b) { return a ^ b; }
/** \internal \returns the bitwise andnot of \a a and \a b */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pandnot(const Packet& a, const Packet& b) { return a & (!b); }
/** \internal \returns a packet version of \a *from, from must be 16 bytes aligned */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet version of \a *from, (un-aligned load) */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploadu(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with elements of \a *from duplicated, e.g.: (from[0],from[0],from[1],from[1]) */
template<typename Packet> inline Packet
ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with constant coefficients \a a, e.g.: (a,a,a,a) */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pset1(const typename unpacket_traits<Packet>::type& a) { return a; }
/** \internal \returns a packet with constant coefficients \a a[0], e.g.: (a[0],a[0],a[0],a[0]) */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pload1(const typename unpacket_traits<Packet>::type *a) { return pset1<Packet>(*a); }
/** \internal \returns a packet with elements of \a *from duplicated.
* For instance, for a packet of 8 elements, 4 scalars will be read from \a *from and
* duplicated to form: {from[0],from[0],from[1],from[1],from[2],from[2],from[3],from[3]}
* Currently, this function is only used for scalar * complex products.
*/
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet
ploaddup(const typename unpacket_traits<Packet>::type* from) { return *from; }
/** \internal \returns a packet with elements of \a *from quadrupled.
* For instance, for a packet of 8 elements, 2 scalars will be read from \a *from and
* replicated to form: {from[0],from[0],from[0],from[0],from[1],from[1],from[1],from[1]}
* Currently, this function is only used in matrix products.
* For packet-size smaller or equal to 4, this function is equivalent to pload1
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
ploadquad(const typename unpacket_traits<Packet>::type* from)
{ return pload1<Packet>(from); }
/** \internal equivalent to
* \code
* a0 = pload1(a+0);
* a1 = pload1(a+1);
* a2 = pload1(a+2);
* a3 = pload1(a+3);
* \endcode
* \sa pset1, pload1, ploaddup, pbroadcast2
*/
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast4(const typename unpacket_traits<Packet>::type *a,
Packet& a0, Packet& a1, Packet& a2, Packet& a3)
{
a0 = pload1<Packet>(a+0);
a1 = pload1<Packet>(a+1);
a2 = pload1<Packet>(a+2);
a3 = pload1<Packet>(a+3);
}
/** \internal equivalent to
* \code
* a0 = pload1(a+0);
* a1 = pload1(a+1);
* \endcode
* \sa pset1, pload1, ploaddup, pbroadcast4
*/
template<typename Packet> EIGEN_DEVICE_FUNC
inline void pbroadcast2(const typename unpacket_traits<Packet>::type *a,
Packet& a0, Packet& a1)
{
a0 = pload1<Packet>(a+0);
a1 = pload1<Packet>(a+1);
}
/** \internal \brief Returns a packet with coefficients (a,a+1,...,a+packet_size-1). */
template<typename Scalar> inline typename packet_traits<Scalar>::type
plset(const Scalar& a) { return a; }
template<typename Packet> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Packet
plset(const typename unpacket_traits<Packet>::type& a) { return a; }
/** \internal copy the packet \a from to \a *to, \a to must be 16 bytes aligned */
template<typename Scalar, typename Packet> inline void pstore(Scalar* to, const Packet& from)
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstore(Scalar* to, const Packet& from)
{ (*to) = from; }
/** \internal copy the packet \a from to \a *to, (un-aligned store) */
template<typename Scalar, typename Packet> inline void pstoreu(Scalar* to, const Packet& from)
{ (*to) = from; }
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pstoreu(Scalar* to, const Packet& from)
{ (*to) = from; }
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline Packet pgather(const Scalar* from, Index /*stride*/)
{ return ploadu<Packet>(from); }
template<typename Scalar, typename Packet> EIGEN_DEVICE_FUNC inline void pscatter(Scalar* to, const Packet& from, Index /*stride*/)
{ pstore(to, from); }
/** \internal tries to do cache prefetching of \a addr */
template<typename Scalar> inline void prefetch(const Scalar* addr)
template<typename Scalar> EIGEN_DEVICE_FUNC inline void prefetch(const Scalar* addr)
{
#if !defined(_MSC_VER)
__builtin_prefetch(addr);
#ifdef __CUDA_ARCH__
#if defined(__LP64__)
// 64-bit pointer operand constraint for inlined asm
asm(" prefetch.L1 [ %1 ];" : "=l"(addr) : "l"(addr));
#else
// 32-bit pointer operand constraint for inlined asm
asm(" prefetch.L1 [ %1 ];" : "=r"(addr) : "r"(addr));
#endif
#elif (!EIGEN_COMP_MSVC) && (EIGEN_COMP_GNUC || EIGEN_COMP_CLANG || EIGEN_COMP_ICC)
__builtin_prefetch(addr);
#endif
}
/** \internal \returns the first element of a packet */
template<typename Packet> inline typename unpacket_traits<Packet>::type pfirst(const Packet& a)
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type pfirst(const Packet& a)
{ return a; }
/** \internal \returns a packet where the element i contains the sum of the packet of \a vec[i] */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
preduxp(const Packet* vecs) { return vecs[0]; }
/** \internal \returns the sum of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux(const Packet& a)
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux(const Packet& a)
{ return a; }
/** \internal \returns the sum of the elements of \a a by block of 4 elements.
* For a packet {a0, a1, a2, a3, a4, a5, a6, a7}, it returns a half packet {a0+a4, a1+a5, a2+a6, a3+a7}
* For packet-size smaller or equal to 4, this boils down to a noop.
*/
template<typename Packet> EIGEN_DEVICE_FUNC inline
typename conditional<(unpacket_traits<Packet>::size%8)==0,typename unpacket_traits<Packet>::half,Packet>::type
predux_downto4(const Packet& a)
{ return a; }
/** \internal \returns the product of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_mul(const Packet& a)
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_mul(const Packet& a)
{ return a; }
/** \internal \returns the min of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_min(const Packet& a)
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_min(const Packet& a)
{ return a; }
/** \internal \returns the max of the elements of \a a*/
template<typename Packet> inline typename unpacket_traits<Packet>::type predux_max(const Packet& a)
template<typename Packet> EIGEN_DEVICE_FUNC inline typename unpacket_traits<Packet>::type predux_max(const Packet& a)
{ return a; }
/** \internal \returns the reversed elements of \a a*/
template<typename Packet> inline Packet preverse(const Packet& a)
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet preverse(const Packet& a)
{ return a; }
/** \internal \returns \a a with real and imaginary part flipped (for complex type only) */
template<typename Packet> inline Packet pcplxflip(const Packet& a)
{ return Packet(imag(a),real(a)); }
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet pcplxflip(const Packet& a)
{
return Packet(a.imag(),a.real());
}
/**************************
* Special math functions
......@@ -223,35 +360,77 @@ template<typename Packet> inline Packet pcplxflip(const Packet& a)
/** \internal \returns the sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psin(const Packet& a) { return sin(a); }
Packet psin(const Packet& a) { using std::sin; return sin(a); }
/** \internal \returns the cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcos(const Packet& a) { return cos(a); }
Packet pcos(const Packet& a) { using std::cos; return cos(a); }
/** \internal \returns the tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptan(const Packet& a) { return tan(a); }
Packet ptan(const Packet& a) { using std::tan; return tan(a); }
/** \internal \returns the arc sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pasin(const Packet& a) { return asin(a); }
Packet pasin(const Packet& a) { using std::asin; return asin(a); }
/** \internal \returns the arc cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pacos(const Packet& a) { return acos(a); }
Packet pacos(const Packet& a) { using std::acos; return acos(a); }
/** \internal \returns the arc tangent of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet patan(const Packet& a) { using std::atan; return atan(a); }
/** \internal \returns the hyperbolic sine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psinh(const Packet& a) { using std::sinh; return sinh(a); }
/** \internal \returns the hyperbolic cosine of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pcosh(const Packet& a) { using std::cosh; return cosh(a); }
/** \internal \returns the hyperbolic tan of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet ptanh(const Packet& a) { using std::tanh; return tanh(a); }
/** \internal \returns the exp of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pexp(const Packet& a) { return exp(a); }
Packet pexp(const Packet& a) { using std::exp; return exp(a); }
/** \internal \returns the log of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog(const Packet& a) { return log(a); }
Packet plog(const Packet& a) { using std::log; return log(a); }
/** \internal \returns the log1p of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog1p(const Packet& a) { return numext::log1p(a); }
/** \internal \returns the log10 of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet plog10(const Packet& a) { using std::log10; return log10(a); }
/** \internal \returns the square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet psqrt(const Packet& a) { return sqrt(a); }
Packet psqrt(const Packet& a) { using std::sqrt; return sqrt(a); }
/** \internal \returns the reciprocal square-root of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet prsqrt(const Packet& a) {
return pdiv(pset1<Packet>(1), psqrt(a));
}
/** \internal \returns the rounded value of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pround(const Packet& a) { using numext::round; return round(a); }
/** \internal \returns the floor of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pfloor(const Packet& a) { using numext::floor; return floor(a); }
/** \internal \returns the ceil of \a a (coeff-wise) */
template<typename Packet> EIGEN_DECLARE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS
Packet pceil(const Packet& a) { using numext::ceil; return ceil(a); }
/***************************************************************************
* The following functions might not have to be overwritten for vectorized types
......@@ -266,34 +445,45 @@ inline void pstore1(typename unpacket_traits<Packet>::type* to, const typename u
}
/** \internal \returns a * b + c (coeff-wise) */
template<typename Packet> inline Packet
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pmadd(const Packet& a,
const Packet& b,
const Packet& c)
{ return padd(pmul(a, b),c); }
/** \internal \returns a packet version of \a *from.
* If LoadMode equals #Aligned, \a from must be 16 bytes aligned */
template<typename Packet, int LoadMode>
inline Packet ploadt(const typename unpacket_traits<Packet>::type* from)
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt(const typename unpacket_traits<Packet>::type* from)
{
if(LoadMode == Aligned)
if(Alignment >= unpacket_traits<Packet>::alignment)
return pload<Packet>(from);
else
return ploadu<Packet>(from);
}
/** \internal copy the packet \a from to \a *to.
* If StoreMode equals #Aligned, \a to must be 16 bytes aligned */
template<typename Scalar, typename Packet, int LoadMode>
inline void pstoret(Scalar* to, const Packet& from)
* The pointer \a from must be aligned on a \a Alignment bytes boundary. */
template<typename Scalar, typename Packet, int Alignment>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE void pstoret(Scalar* to, const Packet& from)
{
if(LoadMode == Aligned)
if(Alignment >= unpacket_traits<Packet>::alignment)
pstore(to, from);
else
pstoreu(to, from);
}
/** \internal \returns a packet version of \a *from.
* Unlike ploadt, ploadt_ro takes advantage of the read-only memory path on the
* hardware if available to speedup the loading of data that won't be modified
* by the current computation.
*/
template<typename Packet, int LoadMode>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE Packet ploadt_ro(const typename unpacket_traits<Packet>::type* from)
{
return ploadt<Packet, LoadMode>(from);
}
/** \internal default implementation of palign() allowing partial specialization */
template<int Offset,typename PacketType>
struct palign_impl
......@@ -302,8 +492,21 @@ struct palign_impl
static inline void run(PacketType&, const PacketType&) {}
};
/** \internal update \a first using the concatenation of the \a Offset last elements
* of \a first and packet_size minus \a Offset first elements of \a second */
/** \internal update \a first using the concatenation of the packet_size minus \a Offset last elements
* of \a first and \a Offset first elements of \a second.
*
* This function is currently only used to optimize matrix-vector products on unligned matrices.
* It takes 2 packets that represent a contiguous memory array, and returns a packet starting
* at the position \a Offset. For instance, for packets of 4 elements, we have:
* Input:
* - first = {f0,f1,f2,f3}
* - second = {s0,s1,s2,s3}
* Output:
* - if Offset==0 then {f0,f1,f2,f3}
* - if Offset==1 then {f1,f2,f3,s0}
* - if Offset==2 then {f2,f3,s0,s1}
* - if Offset==3 then {f3,s0,s1,s3}
*/
template<int Offset,typename PacketType>
inline void palign(PacketType& first, const PacketType& second)
{
......@@ -314,15 +517,74 @@ inline void palign(PacketType& first, const PacketType& second)
* Fast complex products (GCC generates a function call which is very slow)
***************************************************************************/
// Eigen+CUDA does not support complexes.
#ifndef __CUDACC__
template<> inline std::complex<float> pmul(const std::complex<float>& a, const std::complex<float>& b)
{ return std::complex<float>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
{ return std::complex<float>(a.real()*b.real() - a.imag()*b.imag(), a.imag()*b.real() + a.real()*b.imag()); }
template<> inline std::complex<double> pmul(const std::complex<double>& a, const std::complex<double>& b)
{ return std::complex<double>(real(a)*real(b) - imag(a)*imag(b), imag(a)*real(b) + real(a)*imag(b)); }
{ return std::complex<double>(a.real()*b.real() - a.imag()*b.imag(), a.imag()*b.real() + a.real()*b.imag()); }
#endif
/***************************************************************************
* PacketBlock, that is a collection of N packets where the number of words
* in the packet is a multiple of N.
***************************************************************************/
template <typename Packet,int N=unpacket_traits<Packet>::size> struct PacketBlock {
Packet packet[N];
};
template<typename Packet> EIGEN_DEVICE_FUNC inline void
ptranspose(PacketBlock<Packet,1>& /*kernel*/) {
// Nothing to do in the scalar case, i.e. a 1x1 matrix.
}
/***************************************************************************
* Selector, i.e. vector of N boolean values used to select (i.e. blend)
* words from 2 packets.
***************************************************************************/
template <size_t N> struct Selector {
bool select[N];
};
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pblend(const Selector<unpacket_traits<Packet>::size>& ifPacket, const Packet& thenPacket, const Packet& elsePacket) {
return ifPacket.select[0] ? thenPacket : elsePacket;
}
/** \internal \returns \a a with the first coefficient replaced by the scalar b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pinsertfirst(const Packet& a, typename unpacket_traits<Packet>::type b)
{
// Default implementation based on pblend.
// It must be specialized for higher performance.
Selector<unpacket_traits<Packet>::size> mask;
mask.select[0] = true;
// This for loop should be optimized away by the compiler.
for(Index i=1; i<unpacket_traits<Packet>::size; ++i)
mask.select[i] = false;
return pblend(mask, pset1<Packet>(b), a);
}
/** \internal \returns \a a with the last coefficient replaced by the scalar b */
template<typename Packet> EIGEN_DEVICE_FUNC inline Packet
pinsertlast(const Packet& a, typename unpacket_traits<Packet>::type b)
{
// Default implementation based on pblend.
// It must be specialized for higher performance.
Selector<unpacket_traits<Packet>::size> mask;
// This for loop should be optimized away by the compiler.
for(Index i=0; i<unpacket_traits<Packet>::size-1; ++i)
mask.select[i] = false;
mask.select[unpacket_traits<Packet>::size-1] = true;
return pblend(mask, pset1<Packet>(b), a);
}
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_GENERIC_PACKET_MATH_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
......@@ -11,13 +11,30 @@
#ifndef EIGEN_GLOBAL_FUNCTIONS_H
#define EIGEN_GLOBAL_FUNCTIONS_H
#define EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(NAME,FUNCTOR) \
#ifdef EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \
/** \returns an expression of the coefficient-wise DOC_OP of \a x
DOC_DETAILS
\sa <a href="group__CoeffwiseMathFunctions.html#cwisetable_##NAME">Math functions</a>, class CwiseUnaryOp
*/ \
template<typename Derived> \
inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
NAME(const Eigen::ArrayBase<Derived>& x) { \
return x.derived(); \
NAME(const Eigen::ArrayBase<Derived>& x);
#else
#define EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(NAME,FUNCTOR,DOC_OP,DOC_DETAILS) \
template<typename Derived> \
inline const Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived> \
(NAME)(const Eigen::ArrayBase<Derived>& x) { \
return Eigen::CwiseUnaryOp<Eigen::internal::FUNCTOR<typename Derived::Scalar>, const Derived>(x.derived()); \
}
#endif // EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(NAME,FUNCTOR) \
\
template<typename Derived> \
......@@ -30,74 +47,141 @@
{ \
static inline typename NAME##_retval<ArrayBase<Derived> >::type run(const Eigen::ArrayBase<Derived>& x) \
{ \
return x.derived(); \
return typename NAME##_retval<ArrayBase<Derived> >::type(x.derived()); \
} \
};
namespace std
namespace Eigen
{
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(real,scalar_real_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(imag,scalar_imag_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(sin,scalar_sin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(cos,scalar_cos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(asin,scalar_asin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(acos,scalar_acos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(tan,scalar_tan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(exp,scalar_exp_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(log,scalar_log_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(abs,scalar_abs_op)
EIGEN_ARRAY_DECLARE_GLOBAL_STD_UNARY(sqrt,scalar_sqrt_op)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(real,scalar_real_op,real part,\sa ArrayBase::real)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(imag,scalar_imag_op,imaginary part,\sa ArrayBase::imag)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(conj,scalar_conjugate_op,complex conjugate,\sa ArrayBase::conjugate)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(inverse,scalar_inverse_op,inverse,\sa ArrayBase::inverse)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sin,scalar_sin_op,sine,\sa ArrayBase::sin)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cos,scalar_cos_op,cosine,\sa ArrayBase::cos)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tan,scalar_tan_op,tangent,\sa ArrayBase::tan)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(atan,scalar_atan_op,arc-tangent,\sa ArrayBase::atan)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(asin,scalar_asin_op,arc-sine,\sa ArrayBase::asin)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(acos,scalar_acos_op,arc-consine,\sa ArrayBase::acos)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sinh,scalar_sinh_op,hyperbolic sine,\sa ArrayBase::sinh)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cosh,scalar_cosh_op,hyperbolic cosine,\sa ArrayBase::cosh)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(tanh,scalar_tanh_op,hyperbolic tangent,\sa ArrayBase::tanh)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(lgamma,scalar_lgamma_op,natural logarithm of the gamma function,\sa ArrayBase::lgamma)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(digamma,scalar_digamma_op,derivative of lgamma,\sa ArrayBase::digamma)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erf,scalar_erf_op,error function,\sa ArrayBase::erf)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(erfc,scalar_erfc_op,complement error function,\sa ArrayBase::erfc)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(exp,scalar_exp_op,exponential,\sa ArrayBase::exp)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log,scalar_log_op,natural logarithm,\sa Eigen::log10 DOXCOMMA ArrayBase::log)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log1p,scalar_log1p_op,natural logarithm of 1 plus the value,\sa ArrayBase::log1p)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(log10,scalar_log10_op,base 10 logarithm,\sa Eigen::log DOXCOMMA ArrayBase::log)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs,scalar_abs_op,absolute value,\sa ArrayBase::abs DOXCOMMA MatrixBase::cwiseAbs)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(abs2,scalar_abs2_op,squared absolute value,\sa ArrayBase::abs2 DOXCOMMA MatrixBase::cwiseAbs2)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(arg,scalar_arg_op,complex argument,\sa ArrayBase::arg)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sqrt,scalar_sqrt_op,square root,\sa ArrayBase::sqrt DOXCOMMA MatrixBase::cwiseSqrt)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(rsqrt,scalar_rsqrt_op,reciprocal square root,\sa ArrayBase::rsqrt)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(square,scalar_square_op,square (power 2),\sa Eigen::abs2 DOXCOMMA Eigen::pow DOXCOMMA ArrayBase::square)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(cube,scalar_cube_op,cube (power 3),\sa Eigen::pow DOXCOMMA ArrayBase::cube)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(round,scalar_round_op,nearest integer,\sa Eigen::floor DOXCOMMA Eigen::ceil DOXCOMMA ArrayBase::round)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(floor,scalar_floor_op,nearest integer not greater than the giben value,\sa Eigen::ceil DOXCOMMA ArrayBase::floor)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(ceil,scalar_ceil_op,nearest integer not less than the giben value,\sa Eigen::floor DOXCOMMA ArrayBase::ceil)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isnan,scalar_isnan_op,not-a-number test,\sa Eigen::isinf DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isnan)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isinf,scalar_isinf_op,infinite value test,\sa Eigen::isnan DOXCOMMA Eigen::isfinite DOXCOMMA ArrayBase::isinf)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(isfinite,scalar_isfinite_op,finite value test,\sa Eigen::isinf DOXCOMMA Eigen::isnan DOXCOMMA ArrayBase::isfinite)
EIGEN_ARRAY_DECLARE_GLOBAL_UNARY(sign,scalar_sign_op,sign (or 0),\sa ArrayBase::sign)
/** \returns an expression of the coefficient-wise power of \a x to the given constant \a exponent.
*
* \tparam ScalarExponent is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression (\c Derived::Scalar).
*
* \sa ArrayBase::pow()
*
* \relates ArrayBase
*/
#ifdef EIGEN_PARSED_BY_DOXYGEN
template<typename Derived,typename ScalarExponent>
inline const CwiseBinaryOp<internal::scalar_pow_op<Derived::Scalar,ScalarExponent>,Derived,Constant<ScalarExponent> >
pow(const Eigen::ArrayBase<Derived>& x, const ScalarExponent& exponent);
#else
template<typename Derived,typename ScalarExponent>
inline typename internal::enable_if< !(internal::is_same<typename Derived::Scalar,ScalarExponent>::value) && EIGEN_SCALAR_BINARY_SUPPORTED(pow,typename Derived::Scalar,ScalarExponent),
const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,ScalarExponent,pow) >::type
pow(const Eigen::ArrayBase<Derived>& x, const ScalarExponent& exponent) {
return x.derived().pow(exponent);
}
template<typename Derived>
inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar>, const Derived>
inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,typename Derived::Scalar,pow)
pow(const Eigen::ArrayBase<Derived>& x, const typename Derived::Scalar& exponent) {
return x.derived().pow(exponent);
}
#endif
template<typename Derived>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const Derived, const Derived>
pow(const Eigen::ArrayBase<Derived>& x, const Eigen::ArrayBase<Derived>& exponents)
/** \returns an expression of the coefficient-wise power of \a x to the given array of \a exponents.
*
* This function computes the coefficient-wise power.
*
* Example: \include Cwise_array_power_array.cpp
* Output: \verbinclude Cwise_array_power_array.out
*
* \sa ArrayBase::pow()
*
* \relates ArrayBase
*/
template<typename Derived,typename ExponentDerived>
inline const Eigen::CwiseBinaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar, typename ExponentDerived::Scalar>, const Derived, const ExponentDerived>
pow(const Eigen::ArrayBase<Derived>& x, const Eigen::ArrayBase<ExponentDerived>& exponents)
{
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_binary_pow_op<typename Derived::Scalar, typename Derived::Scalar>, const Derived, const Derived>(
return Eigen::CwiseBinaryOp<Eigen::internal::scalar_pow_op<typename Derived::Scalar, typename ExponentDerived::Scalar>, const Derived, const ExponentDerived>(
x.derived(),
exponents.derived()
);
}
}
/** \returns an expression of the coefficient-wise power of the scalar \a x to the given array of \a exponents.
*
* This function computes the coefficient-wise power between a scalar and an array of exponents.
*
* \tparam Scalar is the scalar type of \a x. It must be compatible with the scalar type of the given array expression (\c Derived::Scalar).
*
* Example: \include Cwise_scalar_power_array.cpp
* Output: \verbinclude Cwise_scalar_power_array.out
*
* \sa ArrayBase::pow()
*
* \relates ArrayBase
*/
#ifdef EIGEN_PARSED_BY_DOXYGEN
template<typename Scalar,typename Derived>
inline const CwiseBinaryOp<internal::scalar_pow_op<Scalar,Derived::Scalar>,Constant<Scalar>,Derived>
pow(const Scalar& x,const Eigen::ArrayBase<Derived>& x);
#else
template<typename Scalar, typename Derived>
inline typename internal::enable_if< !(internal::is_same<typename Derived::Scalar,Scalar>::value) && EIGEN_SCALAR_BINARY_SUPPORTED(pow,Scalar,typename Derived::Scalar),
const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,Derived,pow) >::type
pow(const Scalar& x, const Eigen::ArrayBase<Derived>& exponents)
{
return EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar,Derived,pow)(
typename internal::plain_constant_type<Derived,Scalar>::type(exponents.rows(), exponents.cols(), x), exponents.derived() );
}
namespace Eigen
{
/**
* \brief Component-wise division of a scalar by array elements.
**/
template <typename Derived>
inline const Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived>
operator/(typename Derived::Scalar s, const Eigen::ArrayBase<Derived>& a)
template<typename Derived>
inline const EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(typename Derived::Scalar,Derived,pow)
pow(const typename Derived::Scalar& x, const Eigen::ArrayBase<Derived>& exponents)
{
return Eigen::CwiseUnaryOp<Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>, const Derived>(
a.derived(),
Eigen::internal::scalar_inverse_mult_op<typename Derived::Scalar>(s)
);
return EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(typename Derived::Scalar,Derived,pow)(
typename internal::plain_constant_type<Derived,typename Derived::Scalar>::type(exponents.rows(), exponents.cols(), x), exponents.derived() );
}
#endif
namespace internal
{
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(real,scalar_real_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(imag,scalar_imag_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(sin,scalar_sin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(cos,scalar_cos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(asin,scalar_asin_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(acos,scalar_acos_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(tan,scalar_tan_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(exp,scalar_exp_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(log,scalar_log_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs,scalar_abs_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(abs2,scalar_abs2_op)
EIGEN_ARRAY_DECLARE_GLOBAL_EIGEN_UNARY(sqrt,scalar_sqrt_op)
}
}
// TODO: cleanly disable those functions that are not supported on Array (internal::real_ref, internal::random, internal::isApprox...)
// TODO: cleanly disable those functions that are not supported on Array (numext::real_ref, internal::random, internal::isApprox...)
#endif // EIGEN_GLOBAL_FUNCTIONS_H
......@@ -49,15 +49,18 @@ std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat&
*/
struct IOFormat
{
/** Default contructor, see class IOFormat for the meaning of the parameters */
/** Default constructor, see class IOFormat for the meaning of the parameters */
IOFormat(int _precision = StreamPrecision, int _flags = 0,
const std::string& _coeffSeparator = " ",
const std::string& _rowSeparator = "\n", const std::string& _rowPrefix="", const std::string& _rowSuffix="",
const std::string& _matPrefix="", const std::string& _matSuffix="")
: matPrefix(_matPrefix), matSuffix(_matSuffix), rowPrefix(_rowPrefix), rowSuffix(_rowSuffix), rowSeparator(_rowSeparator),
coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags)
rowSpacer(""), coeffSeparator(_coeffSeparator), precision(_precision), flags(_flags)
{
rowSpacer = "";
// TODO check if rowPrefix, rowSuffix or rowSeparator contains a newline
// don't add rowSpacer if columns are not to be aligned
if((flags & DontAlignCols))
return;
int i = int(matSuffix.length())-1;
while (i>=0 && matSuffix[i]!='\n')
{
......@@ -77,7 +80,7 @@ struct IOFormat
*
* \brief Pseudo expression providing matrix output with given format
*
* \param ExpressionType the type of the object on which IO stream operations are performed
* \tparam ExpressionType the type of the object on which IO stream operations are performed
*
* This class represents an expression with stream operators controlled by a given IOFormat.
* It is the return type of DenseBase::format()
......@@ -102,51 +105,24 @@ class WithFormat
}
protected:
const typename ExpressionType::Nested m_matrix;
typename ExpressionType::Nested m_matrix;
IOFormat m_format;
};
/** \returns a WithFormat proxy object allowing to print a matrix the with given
* format \a fmt.
*
* See class IOFormat for some examples.
*
* \sa class IOFormat, class WithFormat
*/
template<typename Derived>
inline const WithFormat<Derived>
DenseBase<Derived>::format(const IOFormat& fmt) const
{
return WithFormat<Derived>(derived(), fmt);
}
namespace internal {
template<typename Scalar, bool IsInteger>
struct significant_decimals_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline int run()
{
using std::ceil;
return cast<RealScalar,int>(ceil(-log(NumTraits<RealScalar>::epsilon())/log(RealScalar(10))));
}
};
// NOTE: This helper is kept for backward compatibility with previous code specializing
// this internal::significant_decimals_impl structure. In the future we should directly
// call digits10() which has been introduced in July 2016 in 3.3.
template<typename Scalar>
struct significant_decimals_default_impl<Scalar, true>
struct significant_decimals_impl
{
static inline int run()
{
return 0;
return NumTraits<Scalar>::digits10();
}
};
template<typename Scalar>
struct significant_decimals_impl
: significant_decimals_default_impl<Scalar, NumTraits<Scalar>::IsInteger>
{};
/** \internal
* print the matrix \a _m to the output stream \a s using the output format \a fmt */
template<typename Derived>
......@@ -160,7 +136,6 @@ std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat&
typename Derived::Nested m = _m;
typedef typename Derived::Scalar Scalar;
typedef typename Derived::Index Index;
Index width = 0;
......@@ -185,21 +160,22 @@ std::ostream & print_matrix(std::ostream & s, const Derived& _m, const IOFormat&
explicit_precision = fmt.precision;
}
std::streamsize old_precision = 0;
if(explicit_precision) old_precision = s.precision(explicit_precision);
bool align_cols = !(fmt.flags & DontAlignCols);
if(align_cols)
{
// compute the largest width
for(Index j = 1; j < m.cols(); ++j)
for(Index j = 0; j < m.cols(); ++j)
for(Index i = 0; i < m.rows(); ++i)
{
std::stringstream sstr;
if(explicit_precision) sstr.precision(explicit_precision);
sstr.copyfmt(s);
sstr << m.coeff(i,j);
width = std::max<Index>(width, Index(sstr.str().length()));
}
}
std::streamsize old_precision = 0;
if(explicit_precision) old_precision = s.precision(explicit_precision);
s << fmt.matPrefix;
for(Index i = 0; i < m.rows(); ++i)
{
......
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_INVERSE_H
#define EIGEN_INVERSE_H
namespace Eigen {
template<typename XprType,typename StorageKind> class InverseImpl;
namespace internal {
template<typename XprType>
struct traits<Inverse<XprType> >
: traits<typename XprType::PlainObject>
{
typedef typename XprType::PlainObject PlainObject;
typedef traits<PlainObject> BaseTraits;
enum {
Flags = BaseTraits::Flags & RowMajorBit
};
};
} // end namespace internal
/** \class Inverse
*
* \brief Expression of the inverse of another expression
*
* \tparam XprType the type of the expression we are taking the inverse
*
* This class represents an abstract expression of A.inverse()
* and most of the time this is the only way it is used.
*
*/
template<typename XprType>
class Inverse : public InverseImpl<XprType,typename internal::traits<XprType>::StorageKind>
{
public:
typedef typename XprType::StorageIndex StorageIndex;
typedef typename XprType::PlainObject PlainObject;
typedef typename XprType::Scalar Scalar;
typedef typename internal::ref_selector<XprType>::type XprTypeNested;
typedef typename internal::remove_all<XprTypeNested>::type XprTypeNestedCleaned;
typedef typename internal::ref_selector<Inverse>::type Nested;
typedef typename internal::remove_all<XprType>::type NestedExpression;
explicit EIGEN_DEVICE_FUNC Inverse(const XprType &xpr)
: m_xpr(xpr)
{}
EIGEN_DEVICE_FUNC Index rows() const { return m_xpr.rows(); }
EIGEN_DEVICE_FUNC Index cols() const { return m_xpr.cols(); }
EIGEN_DEVICE_FUNC const XprTypeNestedCleaned& nestedExpression() const { return m_xpr; }
protected:
XprTypeNested m_xpr;
};
// Generic API dispatcher
template<typename XprType, typename StorageKind>
class InverseImpl
: public internal::generic_xpr_base<Inverse<XprType> >::type
{
public:
typedef typename internal::generic_xpr_base<Inverse<XprType> >::type Base;
typedef typename XprType::Scalar Scalar;
private:
Scalar coeff(Index row, Index col) const;
Scalar coeff(Index i) const;
};
namespace internal {
/** \internal
* \brief Default evaluator for Inverse expression.
*
* This default evaluator for Inverse expression simply evaluate the inverse into a temporary
* by a call to internal::call_assignment_no_alias.
* Therefore, inverse implementers only have to specialize Assignment<Dst,Inverse<...>, ...> for
* there own nested expression.
*
* \sa class Inverse
*/
template<typename ArgType>
struct unary_evaluator<Inverse<ArgType> >
: public evaluator<typename Inverse<ArgType>::PlainObject>
{
typedef Inverse<ArgType> InverseType;
typedef typename InverseType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
enum { Flags = Base::Flags | EvalBeforeNestingBit };
unary_evaluator(const InverseType& inv_xpr)
: m_result(inv_xpr.rows(), inv_xpr.cols())
{
::new (static_cast<Base*>(this)) Base(m_result);
internal::call_assignment_no_alias(m_result, inv_xpr);
}
protected:
PlainObject m_result;
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_INVERSE_H
......@@ -13,13 +13,41 @@
namespace Eigen {
namespace internal {
template<typename PlainObjectType, int MapOptions, typename StrideType>
struct traits<Map<PlainObjectType, MapOptions, StrideType> >
: public traits<PlainObjectType>
{
typedef traits<PlainObjectType> TraitsBase;
enum {
PlainObjectTypeInnerSize = ((traits<PlainObjectType>::Flags&RowMajorBit)==RowMajorBit)
? PlainObjectType::ColsAtCompileTime
: PlainObjectType::RowsAtCompileTime,
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
? int(PlainObjectType::InnerStrideAtCompileTime)
: int(StrideType::InnerStrideAtCompileTime),
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
? (InnerStrideAtCompileTime==Dynamic || PlainObjectTypeInnerSize==Dynamic
? Dynamic
: int(InnerStrideAtCompileTime) * int(PlainObjectTypeInnerSize))
: int(StrideType::OuterStrideAtCompileTime),
Alignment = int(MapOptions)&int(AlignedMask),
Flags0 = TraitsBase::Flags & (~NestByRefBit),
Flags = is_lvalue<PlainObjectType>::value ? int(Flags0) : (int(Flags0) & ~LvalueBit)
};
private:
enum { Options }; // Expressions don't have Options
};
}
/** \class Map
* \ingroup Core_Module
*
* \brief A matrix or vector expression mapping an existing array of data.
*
* \tparam PlainObjectType the equivalent matrix type of the mapped data
* \tparam MapOptions specifies whether the pointer is \c #Aligned, or \c #Unaligned.
* \tparam MapOptions specifies the pointer alignment in bytes. It can be: \c #Aligned128, , \c #Aligned64, \c #Aligned32, \c #Aligned16, \c #Aligned8 or \c #Unaligned.
* The default is \c #Unaligned.
* \tparam StrideType optionally specifies strides. By default, Map assumes the memory layout
* of an ordinary, contiguous array. This can be overridden by specifying strides.
......@@ -63,44 +91,6 @@ namespace Eigen {
*
* \sa PlainObjectBase::Map(), \ref TopicStorageOrders
*/
namespace internal {
template<typename PlainObjectType, int MapOptions, typename StrideType>
struct traits<Map<PlainObjectType, MapOptions, StrideType> >
: public traits<PlainObjectType>
{
typedef traits<PlainObjectType> TraitsBase;
typedef typename PlainObjectType::Index Index;
typedef typename PlainObjectType::Scalar Scalar;
enum {
InnerStrideAtCompileTime = StrideType::InnerStrideAtCompileTime == 0
? int(PlainObjectType::InnerStrideAtCompileTime)
: int(StrideType::InnerStrideAtCompileTime),
OuterStrideAtCompileTime = StrideType::OuterStrideAtCompileTime == 0
? int(PlainObjectType::OuterStrideAtCompileTime)
: int(StrideType::OuterStrideAtCompileTime),
HasNoInnerStride = InnerStrideAtCompileTime == 1,
HasNoOuterStride = StrideType::OuterStrideAtCompileTime == 0,
HasNoStride = HasNoInnerStride && HasNoOuterStride,
IsAligned = bool(EIGEN_ALIGN) && ((int(MapOptions)&Aligned)==Aligned),
IsDynamicSize = PlainObjectType::SizeAtCompileTime==Dynamic,
KeepsPacketAccess = bool(HasNoInnerStride)
&& ( bool(IsDynamicSize)
|| HasNoOuterStride
|| ( OuterStrideAtCompileTime!=Dynamic
&& ((static_cast<int>(sizeof(Scalar))*OuterStrideAtCompileTime)%16)==0 ) ),
Flags0 = TraitsBase::Flags & (~NestByRefBit),
Flags1 = IsAligned ? (int(Flags0) | AlignedBit) : (int(Flags0) & ~AlignedBit),
Flags2 = (bool(HasNoStride) || bool(PlainObjectType::IsVectorAtCompileTime))
? int(Flags1) : int(Flags1 & ~LinearAccessBit),
Flags3 = is_lvalue<PlainObjectType>::value ? int(Flags2) : (int(Flags2) & ~LvalueBit),
Flags = KeepsPacketAccess ? int(Flags3) : (int(Flags3) & ~PacketAccessBit)
};
private:
enum { Options }; // Expressions don't have Options
};
}
template<typename PlainObjectType, int MapOptions, typename StrideType> class Map
: public MapBase<Map<PlainObjectType, MapOptions, StrideType> >
{
......@@ -110,59 +100,61 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
EIGEN_DENSE_PUBLIC_INTERFACE(Map)
typedef typename Base::PointerType PointerType;
#if EIGEN2_SUPPORT_STAGE <= STAGE30_FULL_EIGEN3_API
typedef const Scalar* PointerArgType;
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return const_cast<PointerType>(ptr); }
#else
typedef PointerType PointerArgType;
EIGEN_DEVICE_FUNC
inline PointerType cast_to_pointer_type(PointerArgType ptr) { return ptr; }
#endif
EIGEN_DEVICE_FUNC
inline Index innerStride() const
{
return StrideType::InnerStrideAtCompileTime != 0 ? m_stride.inner() : 1;
}
EIGEN_DEVICE_FUNC
inline Index outerStride() const
{
return StrideType::OuterStrideAtCompileTime != 0 ? m_stride.outer()
: IsVectorAtCompileTime ? this->size()
: int(Flags)&RowMajorBit ? this->cols()
: this->rows();
return int(StrideType::OuterStrideAtCompileTime) != 0 ? m_stride.outer()
: int(internal::traits<Map>::OuterStrideAtCompileTime) != Dynamic ? Index(internal::traits<Map>::OuterStrideAtCompileTime)
: IsVectorAtCompileTime ? (this->size() * innerStride())
: (int(Flags)&RowMajorBit) ? (this->cols() * innerStride())
: (this->rows() * innerStride());
}
/** Constructor in the fixed-size case.
*
* \param data pointer to the array to map
* \param dataPtr pointer to the array to map
* \param stride optional Stride object, passing the strides.
*/
inline Map(PointerArgType data, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(data)), m_stride(stride)
EIGEN_DEVICE_FUNC
explicit inline Map(PointerArgType dataPtr, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(dataPtr)), m_stride(stride)
{
PlainObjectType::Base::_check_template_params();
}
/** Constructor in the dynamic-size vector case.
*
* \param data pointer to the array to map
* \param dataPtr pointer to the array to map
* \param size the size of the vector expression
* \param stride optional Stride object, passing the strides.
*/
inline Map(PointerArgType data, Index size, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(data), size), m_stride(stride)
EIGEN_DEVICE_FUNC
inline Map(PointerArgType dataPtr, Index size, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(dataPtr), size), m_stride(stride)
{
PlainObjectType::Base::_check_template_params();
}
/** Constructor in the dynamic-size matrix case.
*
* \param data pointer to the array to map
* \param dataPtr pointer to the array to map
* \param rows the number of rows of the matrix expression
* \param cols the number of columns of the matrix expression
* \param stride optional Stride object, passing the strides.
*/
inline Map(PointerArgType data, Index rows, Index cols, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(data), rows, cols), m_stride(stride)
EIGEN_DEVICE_FUNC
inline Map(PointerArgType dataPtr, Index rows, Index cols, const StrideType& stride = StrideType())
: Base(cast_to_pointer_type(dataPtr), rows, cols), m_stride(stride)
{
PlainObjectType::Base::_check_template_params();
}
......@@ -173,19 +165,6 @@ template<typename PlainObjectType, int MapOptions, typename StrideType> class Ma
StrideType m_stride;
};
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
inline Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
::Array(const Scalar *data)
{
this->_set_noalias(Eigen::Map<const Array>(data));
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
inline Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>
::Matrix(const Scalar *data)
{
this->_set_noalias(Eigen::Map<const Matrix>(data));
}
} // end namespace Eigen
......
......@@ -12,15 +12,25 @@
#define EIGEN_MAPBASE_H
#define EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived) \
EIGEN_STATIC_ASSERT((int(internal::traits<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
EIGEN_STATIC_ASSERT((int(internal::evaluator<Derived>::Flags) & LinearAccessBit) || Derived::IsVectorAtCompileTime, \
YOU_ARE_TRYING_TO_USE_AN_INDEX_BASED_ACCESSOR_ON_AN_EXPRESSION_THAT_DOES_NOT_SUPPORT_THAT)
namespace Eigen {
/** \class MapBase
* \ingroup Core_Module
/** \ingroup Core_Module
*
* \brief Base class for Map and Block expression with direct access
* \brief Base class for dense Map and Block expression with direct access
*
* This base class provides the const low-level accessors (e.g. coeff, coeffRef) of dense
* Map and Block objects with direct access.
* Typical users do not have to directly deal with this class.
*
* This class can be extended by through the macro plugin \c EIGEN_MAPBASE_PLUGIN.
* See \link TopicCustomizing_Plugins customizing Eigen \endlink for details.
*
* The \c Derived class has to provide the following two methods describing the memory layout:
* \code Index innerStride() const; \endcode
* \code Index outerStride() const; \endcode
*
* \sa class Map, class Block
*/
......@@ -33,11 +43,11 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
enum {
RowsAtCompileTime = internal::traits<Derived>::RowsAtCompileTime,
ColsAtCompileTime = internal::traits<Derived>::ColsAtCompileTime,
InnerStrideAtCompileTime = internal::traits<Derived>::InnerStrideAtCompileTime,
SizeAtCompileTime = Base::SizeAtCompileTime
};
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
......@@ -76,8 +86,10 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
typedef typename Base::CoeffReturnType CoeffReturnType;
inline Index rows() const { return m_rows.value(); }
inline Index cols() const { return m_cols.value(); }
/** \copydoc DenseBase::rows() */
EIGEN_DEVICE_FUNC inline Index rows() const { return m_rows.value(); }
/** \copydoc DenseBase::cols() */
EIGEN_DEVICE_FUNC inline Index cols() const { return m_cols.value(); }
/** Returns a pointer to the first coefficient of the matrix or vector.
*
......@@ -85,37 +97,47 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
*
* \sa innerStride(), outerStride()
*/
inline const Scalar* data() const { return m_data; }
EIGEN_DEVICE_FUNC inline const Scalar* data() const { return m_data; }
inline const Scalar& coeff(Index row, Index col) const
/** \copydoc PlainObjectBase::coeff(Index,Index) const */
EIGEN_DEVICE_FUNC
inline const Scalar& coeff(Index rowId, Index colId) const
{
return m_data[col * colStride() + row * rowStride()];
return m_data[colId * colStride() + rowId * rowStride()];
}
/** \copydoc PlainObjectBase::coeff(Index) const */
EIGEN_DEVICE_FUNC
inline const Scalar& coeff(Index index) const
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return m_data[index * innerStride()];
}
inline const Scalar& coeffRef(Index row, Index col) const
/** \copydoc PlainObjectBase::coeffRef(Index,Index) const */
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index rowId, Index colId) const
{
return this->m_data[col * colStride() + row * rowStride()];
return this->m_data[colId * colStride() + rowId * rowStride()];
}
/** \copydoc PlainObjectBase::coeffRef(Index) const */
EIGEN_DEVICE_FUNC
inline const Scalar& coeffRef(Index index) const
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
return this->m_data[index * innerStride()];
}
/** \internal */
template<int LoadMode>
inline PacketScalar packet(Index row, Index col) const
inline PacketScalar packet(Index rowId, Index colId) const
{
return internal::ploadt<PacketScalar, LoadMode>
(m_data + (col * colStride() + row * rowStride()));
(m_data + (colId * colStride() + rowId * rowStride()));
}
/** \internal */
template<int LoadMode>
inline PacketScalar packet(Index index) const
{
......@@ -123,58 +145,90 @@ template<typename Derived> class MapBase<Derived, ReadOnlyAccessors>
return internal::ploadt<PacketScalar, LoadMode>(m_data + index * innerStride());
}
inline MapBase(PointerType data) : m_data(data), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
/** \internal Constructor for fixed size matrices or vectors */
EIGEN_DEVICE_FUNC
explicit inline MapBase(PointerType dataPtr) : m_data(dataPtr), m_rows(RowsAtCompileTime), m_cols(ColsAtCompileTime)
{
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived)
checkSanity();
checkSanity<Derived>();
}
inline MapBase(PointerType data, Index size)
: m_data(data),
m_rows(RowsAtCompileTime == Dynamic ? size : Index(RowsAtCompileTime)),
m_cols(ColsAtCompileTime == Dynamic ? size : Index(ColsAtCompileTime))
/** \internal Constructor for dynamically sized vectors */
EIGEN_DEVICE_FUNC
inline MapBase(PointerType dataPtr, Index vecSize)
: m_data(dataPtr),
m_rows(RowsAtCompileTime == Dynamic ? vecSize : Index(RowsAtCompileTime)),
m_cols(ColsAtCompileTime == Dynamic ? vecSize : Index(ColsAtCompileTime))
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
eigen_assert(size >= 0);
eigen_assert(data == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
checkSanity();
eigen_assert(vecSize >= 0);
eigen_assert(dataPtr == 0 || SizeAtCompileTime == Dynamic || SizeAtCompileTime == vecSize);
checkSanity<Derived>();
}
inline MapBase(PointerType data, Index rows, Index cols)
: m_data(data), m_rows(rows), m_cols(cols)
/** \internal Constructor for dynamically sized matrices */
EIGEN_DEVICE_FUNC
inline MapBase(PointerType dataPtr, Index rows, Index cols)
: m_data(dataPtr), m_rows(rows), m_cols(cols)
{
eigen_assert( (data == 0)
eigen_assert( (dataPtr == 0)
|| ( rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols)));
checkSanity();
checkSanity<Derived>();
}
#ifdef EIGEN_MAPBASE_PLUGIN
#include EIGEN_MAPBASE_PLUGIN
#endif
protected:
EIGEN_DEFAULT_COPY_CONSTRUCTOR(MapBase)
EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(MapBase)
void checkSanity() const
template<typename T>
EIGEN_DEVICE_FUNC
void checkSanity(typename internal::enable_if<(internal::traits<T>::Alignment>0),void*>::type = 0) const
{
EIGEN_STATIC_ASSERT(EIGEN_IMPLIES(internal::traits<Derived>::Flags&PacketAccessBit,
internal::inner_stride_at_compile_time<Derived>::ret==1),
PACKET_ACCESS_REQUIRES_TO_HAVE_INNER_STRIDE_FIXED_TO_1);
eigen_assert(EIGEN_IMPLIES(internal::traits<Derived>::Flags&AlignedBit, (size_t(m_data) % 16) == 0)
&& "data is not aligned");
#if EIGEN_MAX_ALIGN_BYTES>0
// innerStride() is not set yet when this function is called, so we optimistically assume the lowest plausible value:
const Index minInnerStride = InnerStrideAtCompileTime == Dynamic ? 1 : Index(InnerStrideAtCompileTime);
EIGEN_ONLY_USED_FOR_DEBUG(minInnerStride);
eigen_assert(( ((internal::UIntPtr(m_data) % internal::traits<Derived>::Alignment) == 0)
|| (cols() * rows() * minInnerStride * sizeof(Scalar)) < internal::traits<Derived>::Alignment ) && "data is not aligned");
#endif
}
template<typename T>
EIGEN_DEVICE_FUNC
void checkSanity(typename internal::enable_if<internal::traits<T>::Alignment==0,void*>::type = 0) const
{}
PointerType m_data;
const internal::variable_if_dynamic<Index, RowsAtCompileTime> m_rows;
const internal::variable_if_dynamic<Index, ColsAtCompileTime> m_cols;
};
/** \ingroup Core_Module
*
* \brief Base class for non-const dense Map and Block expression with direct access
*
* This base class provides the non-const low-level accessors (e.g. coeff and coeffRef) of
* dense Map and Block objects with direct access.
* It inherits MapBase<Derived, ReadOnlyAccessors> which defines the const variant for reading specific entries.
*
* \sa class Map, class Block
*/
template<typename Derived> class MapBase<Derived, WriteAccessors>
: public MapBase<Derived, ReadOnlyAccessors>
{
typedef MapBase<Derived, ReadOnlyAccessors> ReadOnlyMapBase;
public:
typedef MapBase<Derived, ReadOnlyAccessors> Base;
typedef typename Base::Scalar Scalar;
typedef typename Base::PacketScalar PacketScalar;
typedef typename Base::Index Index;
typedef typename Base::StorageIndex StorageIndex;
typedef typename Base::PointerType PointerType;
using Base::derived;
......@@ -195,14 +249,18 @@ template<typename Derived> class MapBase<Derived, WriteAccessors>
const Scalar
>::type ScalarWithConstIfNotLvalue;
EIGEN_DEVICE_FUNC
inline const Scalar* data() const { return this->m_data; }
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue* data() { return this->m_data; } // no const-cast here so non-const-correct code will give a compile error
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue& coeffRef(Index row, Index col)
{
return this->m_data[col * colStride() + row * rowStride()];
}
EIGEN_DEVICE_FUNC
inline ScalarWithConstIfNotLvalue& coeffRef(Index index)
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
......@@ -210,33 +268,41 @@ template<typename Derived> class MapBase<Derived, WriteAccessors>
}
template<int StoreMode>
inline void writePacket(Index row, Index col, const PacketScalar& x)
inline void writePacket(Index row, Index col, const PacketScalar& val)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>
(this->m_data + (col * colStride() + row * rowStride()), x);
(this->m_data + (col * colStride() + row * rowStride()), val);
}
template<int StoreMode>
inline void writePacket(Index index, const PacketScalar& x)
inline void writePacket(Index index, const PacketScalar& val)
{
EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS(Derived)
internal::pstoret<Scalar, PacketScalar, StoreMode>
(this->m_data + index * innerStride(), x);
(this->m_data + index * innerStride(), val);
}
explicit inline MapBase(PointerType data) : Base(data) {}
inline MapBase(PointerType data, Index size) : Base(data, size) {}
inline MapBase(PointerType data, Index rows, Index cols) : Base(data, rows, cols) {}
EIGEN_DEVICE_FUNC explicit inline MapBase(PointerType dataPtr) : Base(dataPtr) {}
EIGEN_DEVICE_FUNC inline MapBase(PointerType dataPtr, Index vecSize) : Base(dataPtr, vecSize) {}
EIGEN_DEVICE_FUNC inline MapBase(PointerType dataPtr, Index rows, Index cols) : Base(dataPtr, rows, cols) {}
EIGEN_DEVICE_FUNC
Derived& operator=(const MapBase& other)
{
Base::Base::operator=(other);
ReadOnlyMapBase::Base::operator=(other);
return derived();
}
using Base::Base::operator=;
// In theory we could simply refer to Base:Base::operator=, but MSVC does not like Base::Base,
// see bugs 821 and 920.
using ReadOnlyMapBase::Base::operator=;
protected:
EIGEN_DEFAULT_COPY_CONSTRUCTOR(MapBase)
EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(MapBase)
};
#undef EIGEN_STATIC_ASSERT_INDEX_BASED_ACCESS
} // end namespace Eigen
#endif // EIGEN_MAPBASE_H
......@@ -10,11 +10,25 @@
#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H
// source: http://www.geom.uiuc.edu/~huberty/math5337/groupe/digits.html
// TODO this should better be moved to NumTraits
#define EIGEN_PI 3.141592653589793238462643383279502884197169399375105820974944592307816406L
namespace Eigen {
// On WINCE, std::abs is defined for int only, so let's defined our own overloads:
// This issue has been confirmed with MSVC 2008 only, but the issue might exist for more recent versions too.
#if EIGEN_OS_WINCE && EIGEN_COMP_MSVC && EIGEN_COMP_MSVC<=1500
long abs(long x) { return (labs(x)); }
double abs(double x) { return (fabs(x)); }
float abs(float x) { return (fabsf(x)); }
long double abs(long double x) { return (fabsl(x)); }
#endif
namespace internal {
/** \internal \struct global_math_functions_filtering_base
/** \internal \class global_math_functions_filtering_base
*
* What it does:
* Defines a typedef 'type' as follows:
......@@ -51,81 +65,104 @@ struct global_math_functions_filtering_base
typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
};
#define EIGEN_MATHFUNC_IMPL(func, scalar) func##_impl<typename global_math_functions_filtering_base<scalar>::type>
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename func##_retval<typename global_math_functions_filtering_base<scalar>::type>::type
#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type
/****************************************************************************
* Implementation of real *
****************************************************************************/
template<typename Scalar>
struct real_impl
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct real_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return x;
}
};
template<typename RealScalar>
struct real_impl<std::complex<RealScalar> >
template<typename Scalar>
struct real_default_impl<Scalar,true>
{
static inline RealScalar run(const std::complex<RealScalar>& x)
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
using std::real;
return real(x);
}
};
template<typename Scalar>
struct real_retval
template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};
#ifdef __CUDA_ARCH__
template<typename T>
struct real_impl<std::complex<T> >
{
typedef typename NumTraits<Scalar>::Real type;
typedef T RealScalar;
EIGEN_DEVICE_FUNC
static inline T run(const std::complex<T>& x)
{
return x.real();
}
};
#endif
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
struct real_retval
{
return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
}
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of imag *
****************************************************************************/
template<typename Scalar>
struct imag_impl
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct imag_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar&)
{
return RealScalar(0);
}
};
template<typename RealScalar>
struct imag_impl<std::complex<RealScalar> >
template<typename Scalar>
struct imag_default_impl<Scalar,true>
{
static inline RealScalar run(const std::complex<RealScalar>& x)
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
using std::imag;
return imag(x);
}
};
template<typename Scalar>
struct imag_retval
template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};
#ifdef __CUDA_ARCH__
template<typename T>
struct imag_impl<std::complex<T> >
{
typedef typename NumTraits<Scalar>::Real type;
typedef T RealScalar;
EIGEN_DEVICE_FUNC
static inline T run(const std::complex<T>& x)
{
return x.imag();
}
};
#endif
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
struct imag_retval
{
return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
}
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of real_ref *
......@@ -135,10 +172,12 @@ template<typename Scalar>
struct real_ref_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar& run(Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[0];
}
EIGEN_DEVICE_FUNC
static inline const RealScalar& run(const Scalar& x)
{
return reinterpret_cast<const RealScalar*>(&x)[0];
......@@ -151,18 +190,6 @@ struct real_ref_retval
typedef typename NumTraits<Scalar>::Real & type;
};
template<typename Scalar>
inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
{
return real_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
}
/****************************************************************************
* Implementation of imag_ref *
****************************************************************************/
......@@ -171,10 +198,12 @@ template<typename Scalar, bool IsComplex>
struct imag_ref_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar& run(Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[1];
}
EIGEN_DEVICE_FUNC
static inline const RealScalar& run(const Scalar& x)
{
return reinterpret_cast<RealScalar*>(&x)[1];
......@@ -184,10 +213,12 @@ struct imag_ref_default_impl
template<typename Scalar>
struct imag_ref_default_impl<Scalar, false>
{
EIGEN_DEVICE_FUNC
static inline Scalar run(Scalar&)
{
return Scalar(0);
}
EIGEN_DEVICE_FUNC
static inline const Scalar run(const Scalar&)
{
return Scalar(0);
......@@ -203,35 +234,25 @@ struct imag_ref_retval
typedef typename NumTraits<Scalar>::Real & type;
};
template<typename Scalar>
inline typename add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
{
return imag_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
}
/****************************************************************************
* Implementation of conj *
****************************************************************************/
template<typename Scalar>
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct conj_impl
{
EIGEN_DEVICE_FUNC
static inline Scalar run(const Scalar& x)
{
return x;
}
};
template<typename RealScalar>
struct conj_impl<std::complex<RealScalar> >
template<typename Scalar>
struct conj_impl<Scalar,true>
{
static inline std::complex<RealScalar> run(const std::complex<RealScalar>& x)
EIGEN_DEVICE_FUNC
static inline Scalar run(const Scalar& x)
{
using std::conj;
return conj(x);
......@@ -244,59 +265,40 @@ struct conj_retval
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
}
/****************************************************************************
* Implementation of abs *
* Implementation of abs2 *
****************************************************************************/
template<typename Scalar>
struct abs_impl
template<typename Scalar,bool IsComplex>
struct abs2_impl_default
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
using std::abs;
return abs(x);
return x*x;
}
};
template<typename Scalar>
struct abs_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(abs, Scalar) abs(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(abs, Scalar)::run(x);
}
/****************************************************************************
* Implementation of abs2 *
****************************************************************************/
template<typename Scalar>
struct abs2_impl
struct abs2_impl_default<Scalar, true> // IsComplex
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return x*x;
return x.real()*x.real() + x.imag()*x.imag();
}
};
template<typename RealScalar>
struct abs2_impl<std::complex<RealScalar> >
template<typename Scalar>
struct abs2_impl
{
static inline RealScalar run(const std::complex<RealScalar>& x)
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return real(x)*real(x) + imag(x)*imag(x);
return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x);
}
};
......@@ -306,31 +308,32 @@ struct abs2_retval
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
}
/****************************************************************************
* Implementation of norm1 *
****************************************************************************/
template<typename Scalar, bool IsComplex>
struct norm1_default_impl
struct norm1_default_impl;
template<typename Scalar>
struct norm1_default_impl<Scalar,true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return abs(real(x)) + abs(imag(x));
EIGEN_USING_STD_MATH(abs);
return abs(x.real()) + abs(x.imag());
}
};
template<typename Scalar>
struct norm1_default_impl<Scalar, false>
{
EIGEN_DEVICE_FUNC
static inline Scalar run(const Scalar& x)
{
EIGEN_USING_STD_MATH(abs);
return abs(x);
}
};
......@@ -344,32 +347,11 @@ struct norm1_retval
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
}
/****************************************************************************
* Implementation of hypot *
****************************************************************************/
template<typename Scalar>
struct hypot_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x, const Scalar& y)
{
using std::max;
using std::min;
RealScalar _x = abs(x);
RealScalar _y = abs(y);
RealScalar p = (max)(_x, _y);
RealScalar q = (min)(_x, _y);
RealScalar qp = q/p;
return p * sqrt(RealScalar(1) + qp*qp);
}
};
template<typename Scalar> struct hypot_impl;
template<typename Scalar>
struct hypot_retval
......@@ -377,12 +359,6 @@ struct hypot_retval
typedef typename NumTraits<Scalar>::Real type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
}
/****************************************************************************
* Implementation of cast *
****************************************************************************/
......@@ -390,6 +366,7 @@ inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar&
template<typename OldType, typename NewType>
struct cast_impl
{
EIGEN_DEVICE_FUNC
static inline NewType run(const OldType& x)
{
return static_cast<NewType>(x);
......@@ -399,148 +376,152 @@ struct cast_impl
// here, for once, we're plainly returning NewType: we don't want cast to do weird things.
template<typename OldType, typename NewType>
EIGEN_DEVICE_FUNC
inline NewType cast(const OldType& x)
{
return cast_impl<OldType, NewType>::run(x);
}
/****************************************************************************
* Implementation of sqrt *
* Implementation of round *
****************************************************************************/
template<typename Scalar, bool IsInteger>
struct sqrt_default_impl
{
static inline Scalar run(const Scalar& x)
{
using std::sqrt;
return sqrt(x);
}
};
template<typename Scalar>
struct sqrt_default_impl<Scalar, true>
{
static inline Scalar run(const Scalar&)
{
#ifdef EIGEN2_SUPPORT
eigen_assert(!NumTraits<Scalar>::IsInteger);
#if EIGEN_HAS_CXX11_MATH
template<typename Scalar>
struct round_impl {
static inline Scalar run(const Scalar& x)
{
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
using std::round;
return round(x);
}
};
#else
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
template<typename Scalar>
struct round_impl
{
static inline Scalar run(const Scalar& x)
{
EIGEN_STATIC_ASSERT((!NumTraits<Scalar>::IsComplex), NUMERIC_TYPE_MUST_BE_REAL)
EIGEN_USING_STD_MATH(floor);
EIGEN_USING_STD_MATH(ceil);
return (x > Scalar(0)) ? floor(x + Scalar(0.5)) : ceil(x - Scalar(0.5));
}
};
#endif
return Scalar(0);
}
};
template<typename Scalar>
struct sqrt_impl : sqrt_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
struct sqrt_retval
struct round_retval
{
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(sqrt, Scalar) sqrt(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(sqrt, Scalar)::run(x);
}
/****************************************************************************
* Implementation of standard unary real functions (exp, log, sin, cos, ... *
* Implementation of arg *
****************************************************************************/
// This macro instanciate all the necessary template mechanism which is common to all unary real functions.
#define EIGEN_MATHFUNC_STANDARD_REAL_UNARY(NAME) \
template<typename Scalar, bool IsInteger> struct NAME##_default_impl { \
static inline Scalar run(const Scalar& x) { using std::NAME; return NAME(x); } \
}; \
template<typename Scalar> struct NAME##_default_impl<Scalar, true> { \
static inline Scalar run(const Scalar&) { \
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar) \
return Scalar(0); \
} \
}; \
template<typename Scalar> struct NAME##_impl \
: NAME##_default_impl<Scalar, NumTraits<Scalar>::IsInteger> \
{}; \
template<typename Scalar> struct NAME##_retval { typedef Scalar type; }; \
template<typename Scalar> \
inline EIGEN_MATHFUNC_RETVAL(NAME, Scalar) NAME(const Scalar& x) { \
return EIGEN_MATHFUNC_IMPL(NAME, Scalar)::run(x); \
}
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(exp)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(log)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(sin)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(cos)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(tan)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(asin)
EIGEN_MATHFUNC_STANDARD_REAL_UNARY(acos)
#if EIGEN_HAS_CXX11_MATH
template<typename Scalar>
struct arg_impl {
static inline Scalar run(const Scalar& x)
{
EIGEN_USING_STD_MATH(arg);
return arg(x);
}
};
#else
template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct arg_default_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
return (x < Scalar(0)) ? Scalar(EIGEN_PI) : Scalar(0); }
};
template<typename Scalar>
struct arg_default_impl<Scalar,true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_DEVICE_FUNC
static inline RealScalar run(const Scalar& x)
{
EIGEN_USING_STD_MATH(arg);
return arg(x);
}
};
template<typename Scalar> struct arg_impl : arg_default_impl<Scalar> {};
#endif
template<typename Scalar>
struct arg_retval
{
typedef typename NumTraits<Scalar>::Real type;
};
/****************************************************************************
* Implementation of atan2 *
* Implementation of log1p *
****************************************************************************/
template<typename Scalar, bool IsInteger>
struct atan2_default_impl
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x, const Scalar& y)
{
using std::atan2;
return atan2(x, y);
namespace std_fallback {
// fallback log1p implementation in case there is no log1p(Scalar) function in namespace of Scalar,
// or that there is no suitable std::log1p function available
template<typename Scalar>
EIGEN_DEVICE_FUNC inline Scalar log1p(const Scalar& x) {
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
typedef typename NumTraits<Scalar>::Real RealScalar;
EIGEN_USING_STD_MATH(log);
Scalar x1p = RealScalar(1) + x;
return numext::equal_strict(x1p, Scalar(1)) ? x : x * ( log(x1p) / (x1p - RealScalar(1)) );
}
};
}
template<typename Scalar>
struct atan2_default_impl<Scalar, true>
{
static inline Scalar run(const Scalar&, const Scalar&)
struct log1p_impl {
static inline Scalar run(const Scalar& x)
{
EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
return Scalar(0);
#if EIGEN_HAS_CXX11_MATH
using std::log1p;
#endif
using std_fallback::log1p;
return log1p(x);
}
};
template<typename Scalar>
struct atan2_impl : atan2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
struct atan2_retval
struct log1p_retval
{
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(atan2, Scalar) atan2(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(atan2, Scalar)::run(x, y);
}
/****************************************************************************
* Implementation of pow *
****************************************************************************/
template<typename Scalar, bool IsInteger>
struct pow_default_impl
template<typename ScalarX,typename ScalarY, bool IsInteger = NumTraits<ScalarX>::IsInteger&&NumTraits<ScalarY>::IsInteger>
struct pow_impl
{
typedef Scalar retval;
static inline Scalar run(const Scalar& x, const Scalar& y)
//typedef Scalar retval;
typedef typename ScalarBinaryOpTraits<ScalarX,ScalarY,internal::scalar_pow_op<ScalarX,ScalarY> >::ReturnType result_type;
static EIGEN_DEVICE_FUNC inline result_type run(const ScalarX& x, const ScalarY& y)
{
using std::pow;
EIGEN_USING_STD_MATH(pow);
return pow(x, y);
}
};
template<typename Scalar>
struct pow_default_impl<Scalar, true>
template<typename ScalarX,typename ScalarY>
struct pow_impl<ScalarX,ScalarY, true>
{
static inline Scalar run(Scalar x, Scalar y)
typedef ScalarX result_type;
static EIGEN_DEVICE_FUNC inline ScalarX run(ScalarX x, ScalarY y)
{
Scalar res(1);
eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
ScalarX res(1);
eigen_assert(!NumTraits<ScalarY>::IsSigned || y >= 0);
if(y & 1) res *= x;
y >>= 1;
while(y)
......@@ -553,21 +534,6 @@ struct pow_default_impl<Scalar, true>
}
};
template<typename Scalar>
struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar>
struct pow_retval
{
typedef Scalar type;
};
template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
}
/****************************************************************************
* Implementation of random *
****************************************************************************/
......@@ -603,48 +569,48 @@ struct random_default_impl<Scalar, false, false>
};
enum {
floor_log2_terminate,
floor_log2_move_up,
floor_log2_move_down,
floor_log2_bogus
meta_floor_log2_terminate,
meta_floor_log2_move_up,
meta_floor_log2_move_down,
meta_floor_log2_bogus
};
template<unsigned int n, int lower, int upper> struct floor_log2_selector
template<unsigned int n, int lower, int upper> struct meta_floor_log2_selector
{
enum { middle = (lower + upper) / 2,
value = (upper <= lower + 1) ? int(floor_log2_terminate)
: (n < (1 << middle)) ? int(floor_log2_move_down)
: (n==0) ? int(floor_log2_bogus)
: int(floor_log2_move_up)
value = (upper <= lower + 1) ? int(meta_floor_log2_terminate)
: (n < (1 << middle)) ? int(meta_floor_log2_move_down)
: (n==0) ? int(meta_floor_log2_bogus)
: int(meta_floor_log2_move_up)
};
};
template<unsigned int n,
int lower = 0,
int upper = sizeof(unsigned int) * CHAR_BIT - 1,
int selector = floor_log2_selector<n, lower, upper>::value>
struct floor_log2 {};
int selector = meta_floor_log2_selector<n, lower, upper>::value>
struct meta_floor_log2 {};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_down>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_down>
{
enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value };
enum { value = meta_floor_log2<n, lower, meta_floor_log2_selector<n, lower, upper>::middle>::value };
};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_up>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_move_up>
{
enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value };
enum { value = meta_floor_log2<n, meta_floor_log2_selector<n, lower, upper>::middle, upper>::value };
};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_terminate>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_terminate>
{
enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
};
template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_bogus>
struct meta_floor_log2<n, lower, upper, meta_floor_log2_bogus>
{
// no value, error at compile time
};
......@@ -652,11 +618,31 @@ struct floor_log2<n, lower, upper, floor_log2_bogus>
template<typename Scalar>
struct random_default_impl<Scalar, false, true>
{
typedef typename NumTraits<Scalar>::NonInteger NonInteger;
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return x + Scalar((NonInteger(y)-x+1) * std::rand() / (RAND_MAX + NonInteger(1)));
if (y <= x)
return x;
// ScalarU is the unsigned counterpart of Scalar, possibly Scalar itself.
typedef typename make_unsigned<Scalar>::type ScalarU;
// ScalarX is the widest of ScalarU and unsigned int.
// We'll deal only with ScalarX and unsigned int below thus avoiding signed
// types and arithmetic and signed overflows (which are undefined behavior).
typedef typename conditional<(ScalarU(-1) > unsigned(-1)), ScalarU, unsigned>::type ScalarX;
// The following difference doesn't overflow, provided our integer types are two's
// complement and have the same number of padding bits in signed and unsigned variants.
// This is the case in most modern implementations of C++.
ScalarX range = ScalarX(y) - ScalarX(x);
ScalarX offset = 0;
ScalarX divisor = 1;
ScalarX multiplier = 1;
const unsigned rand_max = RAND_MAX;
if (range <= rand_max) divisor = (rand_max + 1) / (range + 1);
else multiplier = 1 + range / (rand_max + 1);
// Rejection sampling.
do {
offset = (unsigned(std::rand()) * multiplier) / divisor;
} while (offset > range);
return Scalar(ScalarX(x) + offset);
}
static inline Scalar run()
......@@ -664,13 +650,12 @@ struct random_default_impl<Scalar, false, true>
#ifdef EIGEN_MAKING_DOCS
return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
#else
enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value,
enum { rand_bits = meta_floor_log2<(unsigned int)(RAND_MAX)+1>::value,
scalar_bits = sizeof(Scalar) * CHAR_BIT,
shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits))
shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
};
Scalar x = Scalar(std::rand() >> shift);
Scalar offset = NumTraits<Scalar>::IsSigned ? Scalar(1 << (rand_bits-1)) : Scalar(0);
return x - offset;
return Scalar((std::rand() >> shift) - offset);
#endif
}
};
......@@ -680,8 +665,8 @@ struct random_default_impl<Scalar, true, false>
{
static inline Scalar run(const Scalar& x, const Scalar& y)
{
return Scalar(random(real(x), real(y)),
random(imag(x), imag(y)));
return Scalar(random(x.real(), y.real()),
random(x.imag(), y.imag()));
}
static inline Scalar run()
{
......@@ -702,6 +687,605 @@ inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
}
// Implementatin of is* functions
// std::is* do not work with fast-math and gcc, std::is* are available on MSVC 2013 and newer, as well as in clang.
#if (EIGEN_HAS_CXX11_MATH && !(EIGEN_COMP_GNUC_STRICT && __FINITE_MATH_ONLY__)) || (EIGEN_COMP_MSVC>=1800) || (EIGEN_COMP_CLANG)
#define EIGEN_USE_STD_FPCLASSIFY 1
#else
#define EIGEN_USE_STD_FPCLASSIFY 0
#endif
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
isnan_impl(const T&) { return false; }
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
isinf_impl(const T&) { return false; }
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<internal::is_integral<T>::value,bool>::type
isfinite_impl(const T&) { return true; }
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
isfinite_impl(const T& x)
{
#ifdef __CUDA_ARCH__
return (::isfinite)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
using std::isfinite;
return isfinite EIGEN_NOT_A_MACRO (x);
#else
return x<=NumTraits<T>::highest() && x>=NumTraits<T>::lowest();
#endif
}
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
isinf_impl(const T& x)
{
#ifdef __CUDA_ARCH__
return (::isinf)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
using std::isinf;
return isinf EIGEN_NOT_A_MACRO (x);
#else
return x>NumTraits<T>::highest() || x<NumTraits<T>::lowest();
#endif
}
template<typename T>
EIGEN_DEVICE_FUNC
typename internal::enable_if<(!internal::is_integral<T>::value)&&(!NumTraits<T>::IsComplex),bool>::type
isnan_impl(const T& x)
{
#ifdef __CUDA_ARCH__
return (::isnan)(x);
#elif EIGEN_USE_STD_FPCLASSIFY
using std::isnan;
return isnan EIGEN_NOT_A_MACRO (x);
#else
return x != x;
#endif
}
#if (!EIGEN_USE_STD_FPCLASSIFY)
#if EIGEN_COMP_MSVC
template<typename T> EIGEN_DEVICE_FUNC bool isinf_msvc_helper(T x)
{
return _fpclass(x)==_FPCLASS_NINF || _fpclass(x)==_FPCLASS_PINF;
}
//MSVC defines a _isnan builtin function, but for double only
EIGEN_DEVICE_FUNC inline bool isnan_impl(const long double& x) { return _isnan(x)!=0; }
EIGEN_DEVICE_FUNC inline bool isnan_impl(const double& x) { return _isnan(x)!=0; }
EIGEN_DEVICE_FUNC inline bool isnan_impl(const float& x) { return _isnan(x)!=0; }
EIGEN_DEVICE_FUNC inline bool isinf_impl(const long double& x) { return isinf_msvc_helper(x); }
EIGEN_DEVICE_FUNC inline bool isinf_impl(const double& x) { return isinf_msvc_helper(x); }
EIGEN_DEVICE_FUNC inline bool isinf_impl(const float& x) { return isinf_msvc_helper(x); }
#elif (defined __FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ && EIGEN_COMP_GNUC)
#if EIGEN_GNUC_AT_LEAST(5,0)
#define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((optimize("no-finite-math-only")))
#else
// NOTE the inline qualifier and noinline attribute are both needed: the former is to avoid linking issue (duplicate symbol),
// while the second prevent too aggressive optimizations in fast-math mode:
#define EIGEN_TMP_NOOPT_ATTRIB EIGEN_DEVICE_FUNC inline __attribute__((noinline,optimize("no-finite-math-only")))
#endif
template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const long double& x) { return __builtin_isnan(x); }
template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const double& x) { return __builtin_isnan(x); }
template<> EIGEN_TMP_NOOPT_ATTRIB bool isnan_impl(const float& x) { return __builtin_isnan(x); }
template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const double& x) { return __builtin_isinf(x); }
template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const float& x) { return __builtin_isinf(x); }
template<> EIGEN_TMP_NOOPT_ATTRIB bool isinf_impl(const long double& x) { return __builtin_isinf(x); }
#undef EIGEN_TMP_NOOPT_ATTRIB
#endif
#endif
// The following overload are defined at the end of this file
template<typename T> EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x);
template<typename T> EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x);
template<typename T> EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x);
template<typename T> T generic_fast_tanh_float(const T& a_x);
} // end namespace internal
/****************************************************************************
* Generic math functions *
****************************************************************************/
namespace numext {
#ifndef __CUDA_ARCH__
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
{
EIGEN_USING_STD_MATH(min);
return min EIGEN_NOT_A_MACRO (x,y);
}
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
{
EIGEN_USING_STD_MATH(max);
return max EIGEN_NOT_A_MACRO (x,y);
}
#else
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE T mini(const T& x, const T& y)
{
return y < x ? y : x;
}
template<>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE float mini(const float& x, const float& y)
{
return fminf(x, y);
}
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
{
return x < y ? y : x;
}
template<>
EIGEN_DEVICE_FUNC
EIGEN_ALWAYS_INLINE float maxi(const float& x, const float& y)
{
return fmaxf(x, y);
}
#endif
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
{
return internal::real_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(arg, Scalar) arg(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(arg, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
{
return internal::imag_ref_impl<Scalar>::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
}
EIGEN_DEVICE_FUNC
inline bool abs2(bool x) { return x; }
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
{
return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
}
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(log1p, Scalar) log1p(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(log1p, Scalar)::run(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float log1p(const float &x) { return ::log1pf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double log1p(const double &x) { return ::log1p(x); }
#endif
template<typename ScalarX,typename ScalarY>
EIGEN_DEVICE_FUNC
inline typename internal::pow_impl<ScalarX,ScalarY>::result_type pow(const ScalarX& x, const ScalarY& y)
{
return internal::pow_impl<ScalarX,ScalarY>::run(x, y);
}
template<typename T> EIGEN_DEVICE_FUNC bool (isnan) (const T &x) { return internal::isnan_impl(x); }
template<typename T> EIGEN_DEVICE_FUNC bool (isinf) (const T &x) { return internal::isinf_impl(x); }
template<typename T> EIGEN_DEVICE_FUNC bool (isfinite)(const T &x) { return internal::isfinite_impl(x); }
template<typename Scalar>
EIGEN_DEVICE_FUNC
inline EIGEN_MATHFUNC_RETVAL(round, Scalar) round(const Scalar& x)
{
return EIGEN_MATHFUNC_IMPL(round, Scalar)::run(x);
}
template<typename T>
EIGEN_DEVICE_FUNC
T (floor)(const T& x)
{
EIGEN_USING_STD_MATH(floor);
return floor(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float floor(const float &x) { return ::floorf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double floor(const double &x) { return ::floor(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC
T (ceil)(const T& x)
{
EIGEN_USING_STD_MATH(ceil);
return ceil(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float ceil(const float &x) { return ::ceilf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double ceil(const double &x) { return ::ceil(x); }
#endif
/** Log base 2 for 32 bits positive integers.
* Conveniently returns 0 for x==0. */
inline int log2(int x)
{
eigen_assert(x>=0);
unsigned int v(x);
static const int table[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return table[(v * 0x07C4ACDDU) >> 27];
}
/** \returns the square root of \a x.
*
* It is essentially equivalent to
* \code using std::sqrt; return sqrt(x); \endcode
* but slightly faster for float/double and some compilers (e.g., gcc), thanks to
* specializations when SSE is enabled.
*
* It's usage is justified in performance critical functions, like norm/normalize.
*/
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T sqrt(const T &x)
{
EIGEN_USING_STD_MATH(sqrt);
return sqrt(x);
}
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T log(const T &x) {
EIGEN_USING_STD_MATH(log);
return log(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float log(const float &x) { return ::logf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double log(const double &x) { return ::log(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
typename internal::enable_if<NumTraits<T>::IsSigned || NumTraits<T>::IsComplex,typename NumTraits<T>::Real>::type
abs(const T &x) {
EIGEN_USING_STD_MATH(abs);
return abs(x);
}
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
typename internal::enable_if<!(NumTraits<T>::IsSigned || NumTraits<T>::IsComplex),typename NumTraits<T>::Real>::type
abs(const T &x) {
return x;
}
#if defined(__SYCL_DEVICE_ONLY__)
EIGEN_ALWAYS_INLINE float abs(float x) { return cl::sycl::fabs(x); }
EIGEN_ALWAYS_INLINE double abs(double x) { return cl::sycl::fabs(x); }
#endif // defined(__SYCL_DEVICE_ONLY__)
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float abs(const float &x) { return ::fabsf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double abs(const double &x) { return ::fabs(x); }
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float abs(const std::complex<float>& x) {
return ::hypotf(x.real(), x.imag());
}
template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double abs(const std::complex<double>& x) {
return ::hypot(x.real(), x.imag());
}
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T exp(const T &x) {
EIGEN_USING_STD_MATH(exp);
return exp(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float exp(const float &x) { return ::expf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double exp(const double &x) { return ::exp(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T cos(const T &x) {
EIGEN_USING_STD_MATH(cos);
return cos(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float cos(const float &x) { return ::cosf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double cos(const double &x) { return ::cos(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T sin(const T &x) {
EIGEN_USING_STD_MATH(sin);
return sin(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float sin(const float &x) { return ::sinf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double sin(const double &x) { return ::sin(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T tan(const T &x) {
EIGEN_USING_STD_MATH(tan);
return tan(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float tan(const float &x) { return ::tanf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double tan(const double &x) { return ::tan(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T acos(const T &x) {
EIGEN_USING_STD_MATH(acos);
return acos(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float acos(const float &x) { return ::acosf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double acos(const double &x) { return ::acos(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T asin(const T &x) {
EIGEN_USING_STD_MATH(asin);
return asin(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float asin(const float &x) { return ::asinf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double asin(const double &x) { return ::asin(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T atan(const T &x) {
EIGEN_USING_STD_MATH(atan);
return atan(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float atan(const float &x) { return ::atanf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double atan(const double &x) { return ::atan(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T cosh(const T &x) {
EIGEN_USING_STD_MATH(cosh);
return cosh(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float cosh(const float &x) { return ::coshf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double cosh(const double &x) { return ::cosh(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T sinh(const T &x) {
EIGEN_USING_STD_MATH(sinh);
return sinh(x);
}
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float sinh(const float &x) { return ::sinhf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double sinh(const double &x) { return ::sinh(x); }
#endif
template<typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T tanh(const T &x) {
EIGEN_USING_STD_MATH(tanh);
return tanh(x);
}
#if (!defined(__CUDACC__)) && EIGEN_FAST_MATH
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float tanh(float x) { return internal::generic_fast_tanh_float(x); }
#endif
#ifdef __CUDACC__
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float tanh(const float &x) { return ::tanhf(x); }
template<> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double tanh(const double &x) { return ::tanh(x); }
#endif
template <typename T>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
T fmod(const T& a, const T& b) {
EIGEN_USING_STD_MATH(fmod);
return fmod(a, b);
}
#ifdef __CUDACC__
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
float fmod(const float& a, const float& b) {
return ::fmodf(a, b);
}
template <>
EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
double fmod(const double& a, const double& b) {
return ::fmod(a, b);
}
#endif
} // end namespace numext
namespace internal {
template<typename T>
EIGEN_DEVICE_FUNC bool isfinite_impl(const std::complex<T>& x)
{
return (numext::isfinite)(numext::real(x)) && (numext::isfinite)(numext::imag(x));
}
template<typename T>
EIGEN_DEVICE_FUNC bool isnan_impl(const std::complex<T>& x)
{
return (numext::isnan)(numext::real(x)) || (numext::isnan)(numext::imag(x));
}
template<typename T>
EIGEN_DEVICE_FUNC bool isinf_impl(const std::complex<T>& x)
{
return ((numext::isinf)(numext::real(x)) || (numext::isinf)(numext::imag(x))) && (!(numext::isnan)(x));
}
/****************************************************************************
* Implementation of fuzzy comparisons *
****************************************************************************/
......@@ -715,16 +1299,17 @@ template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, false>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar>
template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
{
return abs(x) <= abs(y) * prec;
return numext::abs(x) <= numext::abs(y) * prec;
}
EIGEN_DEVICE_FUNC
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
using std::min;
return abs(x - y) <= (min)(abs(x), abs(y)) * prec;
return numext::abs(x - y) <= numext::mini(numext::abs(x), numext::abs(y)) * prec;
}
EIGEN_DEVICE_FUNC
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
return x <= y || isApprox(x, y, prec);
......@@ -735,15 +1320,17 @@ template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, true>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar>
template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
{
return x == Scalar(0);
}
EIGEN_DEVICE_FUNC
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
{
return x == y;
}
EIGEN_DEVICE_FUNC
static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
{
return x <= y;
......@@ -754,38 +1341,38 @@ template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, true, false>
{
typedef typename NumTraits<Scalar>::Real RealScalar;
template<typename OtherScalar>
template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
{
return abs2(x) <= abs2(y) * prec * prec;
return numext::abs2(x) <= numext::abs2(y) * prec * prec;
}
EIGEN_DEVICE_FUNC
static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
{
using std::min;
return abs2(x - y) <= (min)(abs2(x), abs2(y)) * prec * prec;
return numext::abs2(x - y) <= numext::mini(numext::abs2(x), numext::abs2(y)) * prec * prec;
}
};
template<typename Scalar>
struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};
template<typename Scalar, typename OtherScalar>
template<typename Scalar, typename OtherScalar> EIGEN_DEVICE_FUNC
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
}
template<typename Scalar>
template<typename Scalar> EIGEN_DEVICE_FUNC
inline bool isApprox(const Scalar& x, const Scalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
}
template<typename Scalar>
template<typename Scalar> EIGEN_DEVICE_FUNC
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
typename NumTraits<Scalar>::Real precision = NumTraits<Scalar>::dummy_precision())
const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
}
......@@ -806,17 +1393,19 @@ template<> struct scalar_fuzzy_impl<bool>
{
typedef bool RealScalar;
template<typename OtherScalar>
template<typename OtherScalar> EIGEN_DEVICE_FUNC
static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
{
return !x;
}
EIGEN_DEVICE_FUNC
static inline bool isApprox(bool x, bool y, bool)
{
return x == y;
}
EIGEN_DEVICE_FUNC
static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
{
return (!x) || y;
......@@ -824,17 +1413,7 @@ template<> struct scalar_fuzzy_impl<bool>
};
/****************************************************************************
* Special functions *
****************************************************************************/
// std::isfinite is non standard, so let's define our own version,
// even though it is not very efficient.
template<typename T> bool (isfinite)(const T& x)
{
return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest();
}
} // end namespace internal
} // end namespace Eigen
......
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2014 Pedro Gonnet (pedro.gonnet@gmail.com)
// Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MATHFUNCTIONSIMPL_H
#define EIGEN_MATHFUNCTIONSIMPL_H
namespace Eigen {
namespace internal {
/** \internal \returns the hyperbolic tan of \a a (coeff-wise)
Doesn't do anything fancy, just a 13/6-degree rational interpolant which
is accurate up to a couple of ulp in the range [-9, 9], outside of which
the tanh(x) = +/-1.
This implementation works on both scalars and packets.
*/
template<typename T>
T generic_fast_tanh_float(const T& a_x)
{
// Clamp the inputs to the range [-9, 9] since anything outside
// this range is +/-1.0f in single-precision.
const T plus_9 = pset1<T>(9.f);
const T minus_9 = pset1<T>(-9.f);
// NOTE GCC prior to 6.3 might improperly optimize this max/min
// step such that if a_x is nan, x will be either 9 or -9,
// and tanh will return 1 or -1 instead of nan.
// This is supposed to be fixed in gcc6.3,
// see: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=72867
const T x = pmax(minus_9,pmin(plus_9,a_x));
// The monomial coefficients of the numerator polynomial (odd).
const T alpha_1 = pset1<T>(4.89352455891786e-03f);
const T alpha_3 = pset1<T>(6.37261928875436e-04f);
const T alpha_5 = pset1<T>(1.48572235717979e-05f);
const T alpha_7 = pset1<T>(5.12229709037114e-08f);
const T alpha_9 = pset1<T>(-8.60467152213735e-11f);
const T alpha_11 = pset1<T>(2.00018790482477e-13f);
const T alpha_13 = pset1<T>(-2.76076847742355e-16f);
// The monomial coefficients of the denominator polynomial (even).
const T beta_0 = pset1<T>(4.89352518554385e-03f);
const T beta_2 = pset1<T>(2.26843463243900e-03f);
const T beta_4 = pset1<T>(1.18534705686654e-04f);
const T beta_6 = pset1<T>(1.19825839466702e-06f);
// Since the polynomials are odd/even, we need x^2.
const T x2 = pmul(x, x);
// Evaluate the numerator polynomial p.
T p = pmadd(x2, alpha_13, alpha_11);
p = pmadd(x2, p, alpha_9);
p = pmadd(x2, p, alpha_7);
p = pmadd(x2, p, alpha_5);
p = pmadd(x2, p, alpha_3);
p = pmadd(x2, p, alpha_1);
p = pmul(x, p);
// Evaluate the denominator polynomial p.
T q = pmadd(x2, beta_6, beta_4);
q = pmadd(x2, q, beta_2);
q = pmadd(x2, q, beta_0);
// Divide the numerator by the denominator.
return pdiv(p, q);
}
template<typename RealScalar>
EIGEN_STRONG_INLINE
RealScalar positive_real_hypot(const RealScalar& x, const RealScalar& y)
{
EIGEN_USING_STD_MATH(sqrt);
RealScalar p, qp;
p = numext::maxi(x,y);
if(p==RealScalar(0)) return RealScalar(0);
qp = numext::mini(y,x) / p;
return p * sqrt(RealScalar(1) + qp*qp);
}
template<typename Scalar>
struct hypot_impl
{
typedef typename NumTraits<Scalar>::Real RealScalar;
static inline RealScalar run(const Scalar& x, const Scalar& y)
{
EIGEN_USING_STD_MATH(abs);
return positive_real_hypot<RealScalar>(abs(x), abs(y));
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_MATHFUNCTIONSIMPL_H
......@@ -13,6 +13,45 @@
namespace Eigen {
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
private:
enum { size = internal::size_at_compile_time<_Rows,_Cols>::ret };
typedef typename find_best_packet<_Scalar,size>::type PacketScalar;
enum {
row_major_bit = _Options&RowMajor ? RowMajorBit : 0,
is_dynamic_size_storage = _MaxRows==Dynamic || _MaxCols==Dynamic,
max_size = is_dynamic_size_storage ? Dynamic : _MaxRows*_MaxCols,
default_alignment = compute_default_alignment<_Scalar,max_size>::value,
actual_alignment = ((_Options&DontAlign)==0) ? default_alignment : 0,
required_alignment = unpacket_traits<PacketScalar>::alignment,
packet_access_bit = (packet_traits<_Scalar>::Vectorizable && (EIGEN_UNALIGNED_VECTORIZE || (actual_alignment>=required_alignment))) ? PacketAccessBit : 0
};
public:
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef Eigen::Index StorageIndex;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
Options = _Options,
InnerStrideAtCompileTime = 1,
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime,
// FIXME, the following flag in only used to define NeedsToAlign in PlainObjectBase
EvaluatorFlags = LinearAccessBit | DirectAccessBit | packet_access_bit | row_major_bit,
Alignment = actual_alignment
};
};
}
/** \class Matrix
* \ingroup Core_Module
*
......@@ -24,13 +63,13 @@ namespace Eigen {
* The %Matrix class encompasses \em both fixed-size and dynamic-size objects (\ref fixedsize "note").
*
* The first three template parameters are required:
* \tparam _Scalar \anchor matrix_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
* User defined sclar types are supported as well (see \ref user_defined_scalars "here").
* \tparam _Scalar Numeric type, e.g. float, double, int or std::complex<float>.
* User defined scalar types are supported as well (see \ref user_defined_scalars "here").
* \tparam _Rows Number of rows, or \b Dynamic
* \tparam _Cols Number of columns, or \b Dynamic
*
* The remaining template parameters are optional -- in most cases you don't have to worry about them.
* \tparam _Options \anchor matrix_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
* \tparam _Options A combination of either \b #RowMajor or \b #ColMajor, and of either
* \b #AutoAlign or \b #DontAlign.
* The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
* for vectorization. It defaults to aligning matrices except for fixed sizes that aren't a multiple of the packet size.
......@@ -67,7 +106,7 @@ namespace Eigen {
* \endcode
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN.
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIX_PLUGIN.
*
* <i><b>Some notes:</b></i>
*
......@@ -97,32 +136,44 @@ namespace Eigen {
* are the dimensions of the original matrix, while _Rows and _Cols are Dynamic.</dd>
* </dl>
*
* \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy,
* \ref TopicStorageOrders
* <i><b>ABI and storage layout</b></i>
*
* The table below summarizes the ABI of some possible Matrix instances which is fixed thorough the lifetime of Eigen 3.
* <table class="manual">
* <tr><th>Matrix type</th><th>Equivalent C structure</th></tr>
* <tr><td>\code Matrix<T,Dynamic,Dynamic> \endcode</td><td>\code
* struct {
* T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0
* Eigen::Index rows, cols;
* };
* \endcode</td></tr>
* <tr class="alt"><td>\code
* Matrix<T,Dynamic,1>
* Matrix<T,1,Dynamic> \endcode</td><td>\code
* struct {
* T *data; // with (size_t(data)%EIGEN_MAX_ALIGN_BYTES)==0
* Eigen::Index size;
* };
* \endcode</td></tr>
* <tr><td>\code Matrix<T,Rows,Cols> \endcode</td><td>\code
* struct {
* T data[Rows*Cols]; // with (size_t(data)%A(Rows*Cols*sizeof(T)))==0
* };
* \endcode</td></tr>
* <tr class="alt"><td>\code Matrix<T,Dynamic,Dynamic,0,MaxRows,MaxCols> \endcode</td><td>\code
* struct {
* T data[MaxRows*MaxCols]; // with (size_t(data)%A(MaxRows*MaxCols*sizeof(T)))==0
* Eigen::Index rows, cols;
* };
* \endcode</td></tr>
* </table>
* Note that in this table Rows, Cols, MaxRows and MaxCols are all positive integers. A(S) is defined to the largest possible power-of-two
* smaller to EIGEN_MAX_STATIC_ALIGN_BYTES.
*
* \see MatrixBase for the majority of the API methods for matrices, \ref TopicClassHierarchy,
* \ref TopicStorageOrders
*/
namespace internal {
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct traits<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
{
typedef _Scalar Scalar;
typedef Dense StorageKind;
typedef DenseIndex Index;
typedef MatrixXpr XprKind;
enum {
RowsAtCompileTime = _Rows,
ColsAtCompileTime = _Cols,
MaxRowsAtCompileTime = _MaxRows,
MaxColsAtCompileTime = _MaxCols,
Flags = compute_matrix_flags<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols>::ret,
CoeffReadCost = NumTraits<Scalar>::ReadCost,
Options = _Options,
InnerStrideAtCompileTime = 1,
OuterStrideAtCompileTime = (Options&RowMajor) ? ColsAtCompileTime : RowsAtCompileTime
};
};
}
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
class Matrix
: public PlainObjectBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
......@@ -151,6 +202,7 @@ class Matrix
*
* \callgraph
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix& operator=(const Matrix& other)
{
return Base::_set(other);
......@@ -167,7 +219,8 @@ class Matrix
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix& operator=(const MatrixBase<OtherDerived>& other)
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix& operator=(const DenseBase<OtherDerived>& other)
{
return Base::_set(other);
}
......@@ -179,12 +232,14 @@ class Matrix
* \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other)
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix& operator=(const EigenBase<OtherDerived> &other)
{
return Base::operator=(other);
}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix& operator=(const ReturnByValue<OtherDerived>& func)
{
return Base::operator=(func);
......@@ -200,52 +255,93 @@ class Matrix
*
* \sa resize(Index,Index)
*/
EIGEN_STRONG_INLINE explicit Matrix() : Base()
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix() : Base()
{
Base::_check_template_params();
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
// FIXME is it still needed
Matrix(internal::constructor_without_unaligned_array_assert)
EIGEN_DEVICE_FUNC
explicit Matrix(internal::constructor_without_unaligned_array_assert)
: Base(internal::constructor_without_unaligned_array_assert())
{ Base::_check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED }
{ Base::_check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED }
/** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* Note that this is only useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass the dimension here, so it makes more sense to use the default
* constructor Matrix() instead.
*/
EIGEN_STRONG_INLINE explicit Matrix(Index dim)
: Base(dim, RowsAtCompileTime == 1 ? 1 : dim, ColsAtCompileTime == 1 ? 1 : dim)
#if EIGEN_HAS_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
Matrix(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_constructible<Scalar>::value)
: Base(std::move(other))
{
Base::_check_template_params();
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Matrix)
eigen_assert(dim >= 0);
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == dim);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
}
EIGEN_DEVICE_FUNC
Matrix& operator=(Matrix&& other) EIGEN_NOEXCEPT_IF(std::is_nothrow_move_assignable<Scalar>::value)
{
other.swap(*this);
return *this;
}
#endif
#ifndef EIGEN_PARSED_BY_DOXYGEN
// This constructor is for both 1x1 matrices and dynamic vectors
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE explicit Matrix(const T& x)
{
Base::_check_template_params();
Base::template _init1<T>(x);
}
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix(const T0& x, const T1& y)
{
Base::_check_template_params();
Base::template _init2<T0,T1>(x, y);
}
#else
/** \brief Constructs a fixed-sized matrix initialized with coefficients starting at \a data */
EIGEN_DEVICE_FUNC
explicit Matrix(const Scalar *data);
/** \brief Constructs a vector or row-vector with given dimension. \only_for_vectors
*
* This is useful for dynamic-size vectors. For fixed-size vectors,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead.
*
* \warning This constructor is disabled for fixed-size \c 1x1 matrices. For instance,
* calling Matrix<double,1,1>(1) will call the initialization constructor: Matrix(const Scalar&).
* For fixed-size \c 1x1 matrices it is therefore recommended to use the default
* constructor Matrix() instead, especially when using one of the non standard
* \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
*/
EIGEN_STRONG_INLINE explicit Matrix(Index dim);
/** \brief Constructs an initialized 1x1 matrix with the given coefficient */
Matrix(const Scalar& x);
/** \brief Constructs an uninitialized matrix with \a rows rows and \a cols columns.
*
* This is useful for dynamic-size matrices. For fixed-size matrices,
* it is redundant to pass these parameters, so one should use the default constructor
* Matrix() instead. */
* Matrix() instead.
*
* \warning This constructor is disabled for fixed-size \c 1x2 and \c 2x1 vectors. For instance,
* calling Matrix2f(2,1) will call the initialization constructor: Matrix(const Scalar& x, const Scalar& y).
* For fixed-size \c 1x2 or \c 2x1 vectors it is therefore recommended to use the default
* constructor Matrix() instead, especially when using one of the non standard
* \c EIGEN_INITIALIZE_MATRICES_BY_{ZERO,\c NAN} macros (see \ref TopicPreprocessorDirectives).
*/
EIGEN_DEVICE_FUNC
Matrix(Index rows, Index cols);
/** \brief Constructs an initialized 2D vector with given coefficients */
Matrix(const Scalar& x, const Scalar& y);
#endif
/** \brief Constructs an initialized 3D vector with given coefficients */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z)
{
Base::_check_template_params();
......@@ -255,6 +351,7 @@ class Matrix
m_storage.data()[2] = z;
}
/** \brief Constructs an initialized 4D vector with given coefficients */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix(const Scalar& x, const Scalar& y, const Scalar& z, const Scalar& w)
{
Base::_check_template_params();
......@@ -265,76 +362,33 @@ class Matrix
m_storage.data()[3] = w;
}
explicit Matrix(const Scalar *data);
/** \brief Constructor copying the value of the expression \a other */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const MatrixBase<OtherDerived>& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
// This test resides here, to bring the error messages closer to the user. Normally, these checks
// are performed deeply within the library, thus causing long and scary error traces.
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
Base::_check_template_params();
Base::_set_noalias(other);
}
/** \brief Copy constructor */
EIGEN_STRONG_INLINE Matrix(const Matrix& other)
: Base(other.rows() * other.cols(), other.rows(), other.cols())
{
Base::_check_template_params();
Base::_set_noalias(other);
}
/** \brief Copy constructor with in-place evaluation */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Matrix(const ReturnByValue<OtherDerived>& other)
{
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
other.evalTo(*this);
}
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix(const Matrix& other) : Base(other)
{ }
/** \brief Copy constructor for generic expressions.
* \sa MatrixBase::operator=(const EigenBase<OtherDerived>&)
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Matrix(const EigenBase<OtherDerived> &other)
: Base(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
{
Base::_check_template_params();
Base::resize(other.rows(), other.cols());
// FIXME/CHECK: isn't *this = other.derived() more efficient. it allows to
// go for pure _set() implementations, right?
*this = other;
}
/** \internal
* \brief Override MatrixBase::swap() since for dynamic-sized matrices
* of same type it is enough to swap the data pointers.
*/
template<typename OtherDerived>
void swap(MatrixBase<OtherDerived> const & other)
{ this->_swap(other.derived()); }
: Base(other.derived())
{ }
inline Index innerStride() const { return 1; }
inline Index outerStride() const { return this->innerSize(); }
EIGEN_DEVICE_FUNC inline Index innerStride() const { return 1; }
EIGEN_DEVICE_FUNC inline Index outerStride() const { return this->innerSize(); }
/////////// Geometry module ///////////
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
explicit Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Matrix& operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r);
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
explicit Matrix(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
template<typename OtherDerived>
Matrix& operator=(const eigen2_RotationBase<OtherDerived,ColsAtCompileTime>& r);
#endif
// allow to extend Matrix outside Eigen
#ifdef EIGEN_MATRIX_PLUGIN
#include EIGEN_MATRIX_PLUGIN
......
......@@ -41,9 +41,9 @@ namespace Eigen {
* \endcode
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN.
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN.
*
* \sa \ref TopicClassHierarchy
* \sa \blank \ref TopicClassHierarchy
*/
template<typename Derived> class MatrixBase
: public DenseBase<Derived>
......@@ -52,7 +52,7 @@ template<typename Derived> class MatrixBase
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef MatrixBase StorageBaseType;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::StorageIndex StorageIndex;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
......@@ -66,7 +66,6 @@ template<typename Derived> class MatrixBase
using Base::MaxSizeAtCompileTime;
using Base::IsVectorAtCompileTime;
using Base::Flags;
using Base::CoeffReadCost;
using Base::derived;
using Base::const_cast_derived;
......@@ -98,25 +97,14 @@ template<typename Derived> class MatrixBase
/** \returns the size of the main diagonal, which is min(rows(),cols()).
* \sa rows(), cols(), SizeAtCompileTime. */
inline Index diagonalSize() const { return (std::min)(rows(),cols()); }
EIGEN_DEVICE_FUNC
inline Index diagonalSize() const { return (numext::mini)(rows(),cols()); }
/** \brief The plain matrix type corresponding to this expression.
*
* This is not necessarily exactly the return type of eval(). In the case of plain matrices,
* the return type of eval() is a const reference to a matrix, not a matrix! It is however guaranteed
* that the return type of eval() is either PlainObject or const PlainObject&.
*/
typedef Matrix<typename internal::traits<Derived>::Scalar,
internal::traits<Derived>::RowsAtCompileTime,
internal::traits<Derived>::ColsAtCompileTime,
AutoAlign | (internal::traits<Derived>::Flags&RowMajorBit ? RowMajor : ColMajor),
internal::traits<Derived>::MaxRowsAtCompileTime,
internal::traits<Derived>::MaxColsAtCompileTime
> PlainObject;
typedef typename Base::PlainObject PlainObject;
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal Represents a matrix with all coefficients equal to one another*/
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,Derived> ConstantReturnType;
typedef CwiseNullaryOp<internal::scalar_constant_op<Scalar>,PlainObject> ConstantReturnType;
/** \internal the return type of MatrixBase::adjoint() */
typedef typename internal::conditional<NumTraits<Scalar>::IsComplex,
CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, ConstTransposeReturnType>,
......@@ -125,7 +113,7 @@ template<typename Derived> class MatrixBase
/** \internal Return type of eigenvalues() */
typedef Matrix<std::complex<RealScalar>, internal::traits<Derived>::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType;
/** \internal the return type of identity */
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,Derived> IdentityReturnType;
typedef CwiseNullaryOp<internal::scalar_identity_op<Scalar>,PlainObject> IdentityReturnType;
/** \internal the return type of unit vectors */
typedef Block<const CwiseNullaryOp<internal::scalar_identity_op<Scalar>, SquareMatrixType>,
internal::traits<Derived>::RowsAtCompileTime,
......@@ -133,6 +121,7 @@ template<typename Derived> class MatrixBase
#endif // not EIGEN_PARSED_BY_DOXYGEN
#define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase
#define EIGEN_DOC_UNARY_ADDONS(X,Y)
# include "../plugins/CommonCwiseUnaryOps.h"
# include "../plugins/CommonCwiseBinaryOps.h"
# include "../plugins/MatrixCwiseUnaryOps.h"
......@@ -141,40 +130,44 @@ template<typename Derived> class MatrixBase
# include EIGEN_MATRIXBASE_PLUGIN
# endif
#undef EIGEN_CURRENT_STORAGE_BASE_CLASS
#undef EIGEN_DOC_UNARY_ADDONS
/** Special case of the template operator=, in order to prevent the compiler
* from generating a default operator= (issue hit with g++ 4.1)
*/
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator=(const MatrixBase& other);
// We cannot inherit here via Base::operator= since it is causing
// trouble with MSVC.
template <typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator=(const DenseBase<OtherDerived>& other);
template <typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator=(const EigenBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
Derived& operator=(const ReturnByValue<OtherDerived>& other);
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& lazyAssign(const ProductBase<ProductDerived, Lhs,Rhs>& other);
#endif // not EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator+=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
Derived& operator-=(const MatrixBase<OtherDerived>& other);
template<typename OtherDerived>
const typename ProductReturnType<Derived,OtherDerived>::Type
EIGEN_DEVICE_FUNC
const Product<Derived,OtherDerived>
operator*(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
const typename LazyProductReturnType<Derived,OtherDerived>::Type
EIGEN_DEVICE_FUNC
const Product<Derived,OtherDerived,LazyProduct>
lazyProduct(const MatrixBase<OtherDerived> &other) const;
template<typename OtherDerived>
......@@ -187,107 +180,112 @@ template<typename Derived> class MatrixBase
void applyOnTheRight(const EigenBase<OtherDerived>& other);
template<typename DiagonalDerived>
const DiagonalProduct<Derived, DiagonalDerived, OnTheRight>
EIGEN_DEVICE_FUNC
const Product<Derived, DiagonalDerived, LazyProduct>
operator*(const DiagonalBase<DiagonalDerived> &diagonal) const;
template<typename OtherDerived>
typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
EIGEN_DEVICE_FUNC
typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType
dot(const MatrixBase<OtherDerived>& other) const;
#ifdef EIGEN2_SUPPORT
template<typename OtherDerived>
Scalar eigen2_dot(const MatrixBase<OtherDerived>& other) const;
#endif
RealScalar squaredNorm() const;
RealScalar norm() const;
EIGEN_DEVICE_FUNC RealScalar squaredNorm() const;
EIGEN_DEVICE_FUNC RealScalar norm() const;
RealScalar stableNorm() const;
RealScalar blueNorm() const;
RealScalar hypotNorm() const;
const PlainObject normalized() const;
void normalize();
EIGEN_DEVICE_FUNC const PlainObject normalized() const;
EIGEN_DEVICE_FUNC const PlainObject stableNormalized() const;
EIGEN_DEVICE_FUNC void normalize();
EIGEN_DEVICE_FUNC void stableNormalize();
const AdjointReturnType adjoint() const;
void adjointInPlace();
EIGEN_DEVICE_FUNC const AdjointReturnType adjoint() const;
EIGEN_DEVICE_FUNC void adjointInPlace();
typedef Diagonal<Derived> DiagonalReturnType;
EIGEN_DEVICE_FUNC
DiagonalReturnType diagonal();
typedef const Diagonal<const Derived> ConstDiagonalReturnType;
const ConstDiagonalReturnType diagonal() const;
typedef typename internal::add_const<Diagonal<const Derived> >::type ConstDiagonalReturnType;
EIGEN_DEVICE_FUNC
ConstDiagonalReturnType diagonal() const;
template<int Index> struct DiagonalIndexReturnType { typedef Diagonal<Derived,Index> Type; };
template<int Index> struct ConstDiagonalIndexReturnType { typedef const Diagonal<const Derived,Index> Type; };
template<int Index> typename DiagonalIndexReturnType<Index>::Type diagonal();
template<int Index> typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const;
// Note: The "MatrixBase::" prefixes are added to help MSVC9 to match these declarations with the later implementations.
// On the other hand they confuse MSVC8...
#if (defined _MSC_VER) && (_MSC_VER >= 1500) // 2008 or later
typename MatrixBase::template DiagonalIndexReturnType<Dynamic>::Type diagonal(Index index);
typename MatrixBase::template ConstDiagonalIndexReturnType<Dynamic>::Type diagonal(Index index) const;
#else
typename DiagonalIndexReturnType<Dynamic>::Type diagonal(Index index);
typename ConstDiagonalIndexReturnType<Dynamic>::Type diagonal(Index index) const;
#endif
#ifdef EIGEN2_SUPPORT
template<unsigned int Mode> typename internal::eigen2_part_return_type<Derived, Mode>::type part();
template<unsigned int Mode> const typename internal::eigen2_part_return_type<Derived, Mode>::type part() const;
// huuuge hack. make Eigen2's matrix.part<Diagonal>() work in eigen3. Problem: Diagonal is now a class template instead
// of an integer constant. Solution: overload the part() method template wrt template parameters list.
template<template<typename T, int N> class U>
const DiagonalWrapper<ConstDiagonalReturnType> part() const
{ return diagonal().asDiagonal(); }
#endif // EIGEN2_SUPPORT
template<int Index>
EIGEN_DEVICE_FUNC
typename DiagonalIndexReturnType<Index>::Type diagonal();
template<int Index>
EIGEN_DEVICE_FUNC
typename ConstDiagonalIndexReturnType<Index>::Type diagonal() const;
typedef Diagonal<Derived,DynamicIndex> DiagonalDynamicIndexReturnType;
typedef typename internal::add_const<Diagonal<const Derived,DynamicIndex> >::type ConstDiagonalDynamicIndexReturnType;
EIGEN_DEVICE_FUNC
DiagonalDynamicIndexReturnType diagonal(Index index);
EIGEN_DEVICE_FUNC
ConstDiagonalDynamicIndexReturnType diagonal(Index index) const;
template<unsigned int Mode> struct TriangularViewReturnType { typedef TriangularView<Derived, Mode> Type; };
template<unsigned int Mode> struct ConstTriangularViewReturnType { typedef const TriangularView<const Derived, Mode> Type; };
template<unsigned int Mode> typename TriangularViewReturnType<Mode>::Type triangularView();
template<unsigned int Mode> typename ConstTriangularViewReturnType<Mode>::Type triangularView() const;
template<unsigned int Mode>
EIGEN_DEVICE_FUNC
typename TriangularViewReturnType<Mode>::Type triangularView();
template<unsigned int Mode>
EIGEN_DEVICE_FUNC
typename ConstTriangularViewReturnType<Mode>::Type triangularView() const;
template<unsigned int UpLo> struct SelfAdjointViewReturnType { typedef SelfAdjointView<Derived, UpLo> Type; };
template<unsigned int UpLo> struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView<const Derived, UpLo> Type; };
template<unsigned int UpLo> typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView();
template<unsigned int UpLo> typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const;
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC
typename SelfAdjointViewReturnType<UpLo>::Type selfadjointView();
template<unsigned int UpLo>
EIGEN_DEVICE_FUNC
typename ConstSelfAdjointViewReturnType<UpLo>::Type selfadjointView() const;
const SparseView<Derived> sparseView(const Scalar& m_reference = Scalar(0),
typename NumTraits<Scalar>::Real m_epsilon = NumTraits<Scalar>::dummy_precision()) const;
static const IdentityReturnType Identity();
static const IdentityReturnType Identity(Index rows, Index cols);
static const BasisReturnType Unit(Index size, Index i);
static const BasisReturnType Unit(Index i);
static const BasisReturnType UnitX();
static const BasisReturnType UnitY();
static const BasisReturnType UnitZ();
static const BasisReturnType UnitW();
const typename NumTraits<Scalar>::Real& m_epsilon = NumTraits<Scalar>::dummy_precision()) const;
EIGEN_DEVICE_FUNC static const IdentityReturnType Identity();
EIGEN_DEVICE_FUNC static const IdentityReturnType Identity(Index rows, Index cols);
EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index size, Index i);
EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index i);
EIGEN_DEVICE_FUNC static const BasisReturnType UnitX();
EIGEN_DEVICE_FUNC static const BasisReturnType UnitY();
EIGEN_DEVICE_FUNC static const BasisReturnType UnitZ();
EIGEN_DEVICE_FUNC static const BasisReturnType UnitW();
EIGEN_DEVICE_FUNC
const DiagonalWrapper<const Derived> asDiagonal() const;
const PermutationWrapper<const Derived> asPermutation() const;
EIGEN_DEVICE_FUNC
Derived& setIdentity();
EIGEN_DEVICE_FUNC
Derived& setIdentity(Index rows, Index cols);
bool isIdentity(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isDiagonal(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isIdentity(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isDiagonal(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUpperTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isLowerTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUpperTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isLowerTriangular(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
template<typename OtherDerived>
bool isOrthogonal(const MatrixBase<OtherDerived>& other,
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUnitary(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUnitary(const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const;
/** \returns true if each coefficients of \c *this and \a other are all exactly equal.
* \warning When using floating point scalar values you probably should rather use a
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator!= */
template<typename OtherDerived>
inline bool operator==(const MatrixBase<OtherDerived>& other) const
EIGEN_DEVICE_FUNC inline bool operator==(const MatrixBase<OtherDerived>& other) const
{ return cwiseEqual(other).all(); }
/** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other.
......@@ -295,64 +293,50 @@ template<typename Derived> class MatrixBase
* fuzzy comparison such as isApprox()
* \sa isApprox(), operator== */
template<typename OtherDerived>
inline bool operator!=(const MatrixBase<OtherDerived>& other) const
EIGEN_DEVICE_FUNC inline bool operator!=(const MatrixBase<OtherDerived>& other) const
{ return cwiseNotEqual(other).any(); }
NoAlias<Derived,Eigen::MatrixBase > noalias();
inline const ForceAlignedAccess<Derived> forceAlignedAccess() const;
inline ForceAlignedAccess<Derived> forceAlignedAccess();
template<bool Enable> inline typename internal::add_const_on_value_type<typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type>::type forceAlignedAccessIf() const;
template<bool Enable> inline typename internal::conditional<Enable,ForceAlignedAccess<Derived>,Derived&>::type forceAlignedAccessIf();
Scalar trace() const;
// TODO forceAlignedAccess is temporarily disabled
// Need to find a nicer workaround.
inline const Derived& forceAlignedAccess() const { return derived(); }
inline Derived& forceAlignedAccess() { return derived(); }
template<bool Enable> inline const Derived& forceAlignedAccessIf() const { return derived(); }
template<bool Enable> inline Derived& forceAlignedAccessIf() { return derived(); }
/////////// Array module ///////////
EIGEN_DEVICE_FUNC Scalar trace() const;
template<int p> RealScalar lpNorm() const;
template<int p> EIGEN_DEVICE_FUNC RealScalar lpNorm() const;
MatrixBase<Derived>& matrix() { return *this; }
const MatrixBase<Derived>& matrix() const { return *this; }
EIGEN_DEVICE_FUNC MatrixBase<Derived>& matrix() { return *this; }
EIGEN_DEVICE_FUNC const MatrixBase<Derived>& matrix() const { return *this; }
/** \returns an \link ArrayBase Array \endlink expression of this matrix
/** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix
* \sa ArrayBase::matrix() */
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper<Derived> array() { return ArrayWrapper<Derived>(derived()); }
/** \returns a const \link Eigen::ArrayBase Array \endlink expression of this matrix
* \sa ArrayBase::matrix() */
ArrayWrapper<Derived> array() { return derived(); }
const ArrayWrapper<const Derived> array() const { return derived(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper<const Derived> array() const { return ArrayWrapper<const Derived>(derived()); }
/////////// LU module ///////////
const FullPivLU<PlainObject> fullPivLu() const;
const PartialPivLU<PlainObject> partialPivLu() const;
inline const FullPivLU<PlainObject> fullPivLu() const;
inline const PartialPivLU<PlainObject> partialPivLu() const;
#if EIGEN2_SUPPORT_STAGE < STAGE20_RESOLVE_API_CONFLICTS
const LU<PlainObject> lu() const;
#endif
inline const PartialPivLU<PlainObject> lu() const;
#ifdef EIGEN2_SUPPORT
const LU<PlainObject> eigen2_lu() const;
#endif
inline const Inverse<Derived> inverse() const;
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
const PartialPivLU<PlainObject> lu() const;
#endif
#ifdef EIGEN2_SUPPORT
template<typename ResultType>
void computeInverse(MatrixBase<ResultType> *result) const {
*result = this->inverse();
}
#endif
const internal::inverse_impl<Derived> inverse() const;
template<typename ResultType>
void computeInverseAndDetWithCheck(
inline void computeInverseAndDetWithCheck(
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible,
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
) const;
template<typename ResultType>
void computeInverseWithCheck(
inline void computeInverseWithCheck(
ResultType& inverse,
bool& invertible,
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
......@@ -361,65 +345,70 @@ template<typename Derived> class MatrixBase
/////////// Cholesky module ///////////
const LLT<PlainObject> llt() const;
const LDLT<PlainObject> ldlt() const;
inline const LLT<PlainObject> llt() const;
inline const LDLT<PlainObject> ldlt() const;
/////////// QR module ///////////
const HouseholderQR<PlainObject> householderQr() const;
const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const;
const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const;
#ifdef EIGEN2_SUPPORT
const QR<PlainObject> qr() const;
#endif
inline const HouseholderQR<PlainObject> householderQr() const;
inline const ColPivHouseholderQR<PlainObject> colPivHouseholderQr() const;
inline const FullPivHouseholderQR<PlainObject> fullPivHouseholderQr() const;
inline const CompleteOrthogonalDecomposition<PlainObject> completeOrthogonalDecomposition() const;
EigenvaluesReturnType eigenvalues() const;
RealScalar operatorNorm() const;
/////////// Eigenvalues module ///////////
/////////// SVD module ///////////
inline EigenvaluesReturnType eigenvalues() const;
inline RealScalar operatorNorm() const;
JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
/////////// SVD module ///////////
#ifdef EIGEN2_SUPPORT
SVD<PlainObject> svd() const;
#endif
inline JacobiSVD<PlainObject> jacobiSvd(unsigned int computationOptions = 0) const;
inline BDCSVD<PlainObject> bdcSvd(unsigned int computationOptions = 0) const;
/////////// Geometry module ///////////
#ifndef EIGEN_PARSED_BY_DOXYGEN
/// \internal helper struct to form the return type of the cross product
template<typename OtherDerived> struct cross_product_return_type {
typedef typename internal::scalar_product_traits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar;
typedef typename ScalarBinaryOpTraits<typename internal::traits<Derived>::Scalar,typename internal::traits<OtherDerived>::Scalar>::ReturnType Scalar;
typedef Matrix<Scalar,MatrixBase::RowsAtCompileTime,MatrixBase::ColsAtCompileTime> type;
};
#endif // EIGEN_PARSED_BY_DOXYGEN
template<typename OtherDerived>
typename cross_product_return_type<OtherDerived>::type
EIGEN_DEVICE_FUNC
#ifndef EIGEN_PARSED_BY_DOXYGEN
inline typename cross_product_return_type<OtherDerived>::type
#else
inline PlainObject
#endif
cross(const MatrixBase<OtherDerived>& other) const;
template<typename OtherDerived>
PlainObject cross3(const MatrixBase<OtherDerived>& other) const;
PlainObject unitOrthogonal(void) const;
Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
#if EIGEN2_SUPPORT_STAGE > STAGE20_RESOLVE_API_CONFLICTS
ScalarMultipleReturnType operator*(const UniformScaling<Scalar>& s) const;
EIGEN_DEVICE_FUNC
inline PlainObject cross3(const MatrixBase<OtherDerived>& other) const;
EIGEN_DEVICE_FUNC
inline PlainObject unitOrthogonal(void) const;
EIGEN_DEVICE_FUNC
inline Matrix<Scalar,3,1> eulerAngles(Index a0, Index a1, Index a2) const;
// put this as separate enum value to work around possible GCC 4.3 bug (?)
enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1?Vertical:Horizontal };
enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1&&RowsAtCompileTime==1 ? ((internal::traits<Derived>::Flags&RowMajorBit)==RowMajorBit ? Horizontal : Vertical)
: ColsAtCompileTime==1 ? Vertical : Horizontal };
typedef Homogeneous<Derived, HomogeneousReturnTypeDirection> HomogeneousReturnType;
HomogeneousReturnType homogeneous() const;
#endif
EIGEN_DEVICE_FUNC
inline HomogeneousReturnType homogeneous() const;
enum {
SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1
};
typedef Block<const Derived,
internal::traits<Derived>::ColsAtCompileTime==1 ? SizeMinusOne : 1,
internal::traits<Derived>::ColsAtCompileTime==1 ? 1 : SizeMinusOne> ConstStartMinusOne;
typedef CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Derived>::Scalar>,
const ConstStartMinusOne > HNormalizedReturnType;
const HNormalizedReturnType hnormalized() const;
typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(ConstStartMinusOne,Scalar,quotient) HNormalizedReturnType;
EIGEN_DEVICE_FUNC
inline const HNormalizedReturnType hnormalized() const;
////////// Householder module ///////////
......@@ -443,60 +432,45 @@ template<typename Derived> class MatrixBase
template<typename OtherScalar>
void applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j);
///////// SparseCore module /////////
template<typename OtherDerived>
EIGEN_STRONG_INLINE const typename SparseMatrixBase<OtherDerived>::template CwiseProductDenseReturnType<Derived>::Type
cwiseProduct(const SparseMatrixBase<OtherDerived> &other) const
{
return other.cwiseProduct(derived());
}
///////// MatrixFunctions module /////////
typedef typename internal::stem_function<Scalar>::type StemFunction;
const MatrixExponentialReturnValue<Derived> exp() const;
#define EIGEN_MATRIX_FUNCTION(ReturnType, Name, Description) \
/** \returns an expression of the matrix Description of \c *this. \brief This function requires the <a href="unsupported/group__MatrixFunctions__Module.html"> unsupported MatrixFunctions module</a>. To compute the coefficient-wise Description use ArrayBase::##Name . */ \
const ReturnType<Derived> Name() const;
#define EIGEN_MATRIX_FUNCTION_1(ReturnType, Name, Description, Argument) \
/** \returns an expression of the matrix Description of \c *this. \brief This function requires the <a href="unsupported/group__MatrixFunctions__Module.html"> unsupported MatrixFunctions module</a>. To compute the coefficient-wise Description use ArrayBase::##Name . */ \
const ReturnType<Derived> Name(Argument) const;
EIGEN_MATRIX_FUNCTION(MatrixExponentialReturnValue, exp, exponential)
/** \brief Helper function for the <a href="unsupported/group__MatrixFunctions__Module.html"> unsupported MatrixFunctions module</a>.*/
const MatrixFunctionReturnValue<Derived> matrixFunction(StemFunction f) const;
const MatrixFunctionReturnValue<Derived> cosh() const;
const MatrixFunctionReturnValue<Derived> sinh() const;
const MatrixFunctionReturnValue<Derived> cos() const;
const MatrixFunctionReturnValue<Derived> sin() const;
const MatrixSquareRootReturnValue<Derived> sqrt() const;
const MatrixLogarithmReturnValue<Derived> log() const;
#ifdef EIGEN2_SUPPORT
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& operator+=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other);
template<typename ProductDerived, typename Lhs, typename Rhs>
Derived& operator-=(const Flagged<ProductBase<ProductDerived, Lhs,Rhs>, 0,
EvalBeforeAssigningBit>& other);
/** \deprecated because .lazy() is deprecated
* Overloaded for cache friendly product evaluation */
template<typename OtherDerived>
Derived& lazyAssign(const Flagged<OtherDerived, 0, EvalBeforeAssigningBit>& other)
{ return lazyAssign(other._expression()); }
template<unsigned int Added>
const Flagged<Derived, Added, 0> marked() const;
const Flagged<Derived, 0, EvalBeforeAssigningBit> lazy() const;
inline const Cwise<Derived> cwise() const;
inline Cwise<Derived> cwise();
VectorBlock<Derived> start(Index size);
const VectorBlock<const Derived> start(Index size) const;
VectorBlock<Derived> end(Index size);
const VectorBlock<const Derived> end(Index size) const;
template<int Size> VectorBlock<Derived,Size> start();
template<int Size> const VectorBlock<const Derived,Size> start() const;
template<int Size> VectorBlock<Derived,Size> end();
template<int Size> const VectorBlock<const Derived,Size> end() const;
Minor<Derived> minor(Index row, Index col);
const Minor<Derived> minor(Index row, Index col) const;
#endif
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cosh, hyperbolic cosine)
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sinh, hyperbolic sine)
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cos, cosine)
EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sin, sine)
EIGEN_MATRIX_FUNCTION(MatrixSquareRootReturnValue, sqrt, square root)
EIGEN_MATRIX_FUNCTION(MatrixLogarithmReturnValue, log, logarithm)
EIGEN_MATRIX_FUNCTION_1(MatrixPowerReturnValue, pow, power to \c p, const RealScalar& p)
EIGEN_MATRIX_FUNCTION_1(MatrixComplexPowerReturnValue, pow, power to \c p, const std::complex<RealScalar>& p)
protected:
MatrixBase() : Base() {}
EIGEN_DEFAULT_COPY_CONSTRUCTOR(MatrixBase)
EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(MatrixBase)
private:
explicit MatrixBase(int);
MatrixBase(int,int);
template<typename OtherDerived> explicit MatrixBase(const MatrixBase<OtherDerived>&);
EIGEN_DEVICE_FUNC explicit MatrixBase(int);
EIGEN_DEVICE_FUNC MatrixBase(int,int);
template<typename OtherDerived> EIGEN_DEVICE_FUNC explicit MatrixBase(const MatrixBase<OtherDerived>&);
protected:
// mixing arrays and matrices is not legal
template<typename OtherDerived> Derived& operator+=(const ArrayBase<OtherDerived>& )
......@@ -506,6 +480,51 @@ template<typename Derived> class MatrixBase
{EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;}
};
/***************************************************************************
* Implementation of matrix base methods
***************************************************************************/
/** replaces \c *this by \c *this * \a other.
*
* \returns a reference to \c *this
*
* Example: \include MatrixBase_applyOnTheRight.cpp
* Output: \verbinclude MatrixBase_applyOnTheRight.out
*/
template<typename Derived>
template<typename OtherDerived>
inline Derived&
MatrixBase<Derived>::operator*=(const EigenBase<OtherDerived> &other)
{
other.derived().applyThisOnTheRight(derived());
return derived();
}
/** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=().
*
* Example: \include MatrixBase_applyOnTheRight.cpp
* Output: \verbinclude MatrixBase_applyOnTheRight.out
*/
template<typename Derived>
template<typename OtherDerived>
inline void MatrixBase<Derived>::applyOnTheRight(const EigenBase<OtherDerived> &other)
{
other.derived().applyThisOnTheRight(derived());
}
/** replaces \c *this by \a other * \c *this.
*
* Example: \include MatrixBase_applyOnTheLeft.cpp
* Output: \verbinclude MatrixBase_applyOnTheLeft.out
*/
template<typename Derived>
template<typename OtherDerived>
inline void MatrixBase<Derived>::applyOnTheLeft(const EigenBase<OtherDerived> &other)
{
other.derived().applyThisOnTheLeft(derived());
}
} // end namespace Eigen
#endif // EIGEN_MATRIXBASE_H
......@@ -13,25 +13,24 @@
namespace Eigen {
namespace internal {
template<typename ExpressionType>
struct traits<NestByValue<ExpressionType> > : public traits<ExpressionType>
{};
}
/** \class NestByValue
* \ingroup Core_Module
*
* \brief Expression which must be nested by value
*
* \param ExpressionType the type of the object of which we are requiring nesting-by-value
* \tparam ExpressionType the type of the object of which we are requiring nesting-by-value
*
* This class is the return type of MatrixBase::nestByValue()
* and most of the time this is the only way it is used.
*
* \sa MatrixBase::nestByValue()
*/
namespace internal {
template<typename ExpressionType>
struct traits<NestByValue<ExpressionType> > : public traits<ExpressionType>
{};
}
template<typename ExpressionType> class NestByValue
: public internal::dense_xpr_base< NestByValue<ExpressionType> >::type
{
......@@ -40,29 +39,29 @@ template<typename ExpressionType> class NestByValue
typedef typename internal::dense_xpr_base<NestByValue>::type Base;
EIGEN_DENSE_PUBLIC_INTERFACE(NestByValue)
inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {}
EIGEN_DEVICE_FUNC explicit inline NestByValue(const ExpressionType& matrix) : m_expression(matrix) {}
inline Index rows() const { return m_expression.rows(); }
inline Index cols() const { return m_expression.cols(); }
inline Index outerStride() const { return m_expression.outerStride(); }
inline Index innerStride() const { return m_expression.innerStride(); }
EIGEN_DEVICE_FUNC inline Index rows() const { return m_expression.rows(); }
EIGEN_DEVICE_FUNC inline Index cols() const { return m_expression.cols(); }
EIGEN_DEVICE_FUNC inline Index outerStride() const { return m_expression.outerStride(); }
EIGEN_DEVICE_FUNC inline Index innerStride() const { return m_expression.innerStride(); }
inline const CoeffReturnType coeff(Index row, Index col) const
EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index row, Index col) const
{
return m_expression.coeff(row, col);
}
inline Scalar& coeffRef(Index row, Index col)
EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index row, Index col)
{
return m_expression.const_cast_derived().coeffRef(row, col);
}
inline const CoeffReturnType coeff(Index index) const
EIGEN_DEVICE_FUNC inline const CoeffReturnType coeff(Index index) const
{
return m_expression.coeff(index);
}
inline Scalar& coeffRef(Index index)
EIGEN_DEVICE_FUNC inline Scalar& coeffRef(Index index)
{
return m_expression.const_cast_derived().coeffRef(index);
}
......@@ -91,7 +90,7 @@ template<typename ExpressionType> class NestByValue
m_expression.const_cast_derived().template writePacket<LoadMode>(index, x);
}
operator const ExpressionType&() const { return m_expression; }
EIGEN_DEVICE_FUNC operator const ExpressionType&() const { return m_expression; }
protected:
const ExpressionType m_expression;
......
......@@ -17,7 +17,7 @@ namespace Eigen {
*
* \brief Pseudo expression providing an operator = assuming no aliasing
*
* \param ExpressionType the type of the object on which to do the lazy assignment
* \tparam ExpressionType the type of the object on which to do the lazy assignment
*
* This class represents an expression with special assignment operators
* assuming no aliasing between the target expression and the source expression.
......@@ -30,57 +30,40 @@ namespace Eigen {
template<typename ExpressionType, template <typename> class StorageBase>
class NoAlias
{
typedef typename ExpressionType::Scalar Scalar;
public:
NoAlias(ExpressionType& expression) : m_expression(expression) {}
/** Behaves like MatrixBase::lazyAssign(other)
* \sa MatrixBase::lazyAssign() */
typedef typename ExpressionType::Scalar Scalar;
explicit NoAlias(ExpressionType& expression) : m_expression(expression) {}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE ExpressionType& operator=(const StorageBase<OtherDerived>& other)
{ return internal::assign_selector<ExpressionType,OtherDerived,false>::run(m_expression,other.derived()); }
/** \sa MatrixBase::operator+= */
{
call_assignment_no_alias(m_expression, other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
return m_expression;
}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE ExpressionType& operator+=(const StorageBase<OtherDerived>& other)
{
typedef SelfCwiseBinaryOp<internal::scalar_sum_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
SelfAdder tmp(m_expression);
typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
call_assignment_no_alias(m_expression, other.derived(), internal::add_assign_op<Scalar,typename OtherDerived::Scalar>());
return m_expression;
}
/** \sa MatrixBase::operator-= */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE ExpressionType& operator-=(const StorageBase<OtherDerived>& other)
{
typedef SelfCwiseBinaryOp<internal::scalar_difference_op<Scalar>, ExpressionType, OtherDerived> SelfAdder;
SelfAdder tmp(m_expression);
typedef typename internal::nested<OtherDerived>::type OtherDerivedNested;
typedef typename internal::remove_all<OtherDerivedNested>::type _OtherDerivedNested;
internal::assign_selector<SelfAdder,_OtherDerivedNested,false>::run(tmp,OtherDerivedNested(other.derived()));
call_assignment_no_alias(m_expression, other.derived(), internal::sub_assign_op<Scalar,typename OtherDerived::Scalar>());
return m_expression;
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE ExpressionType& operator+=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{ other.derived().addTo(m_expression); return m_expression; }
template<typename ProductDerived, typename Lhs, typename Rhs>
EIGEN_STRONG_INLINE ExpressionType& operator-=(const ProductBase<ProductDerived, Lhs,Rhs>& other)
{ other.derived().subTo(m_expression); return m_expression; }
template<typename Lhs, typename Rhs, int NestingFlags>
EIGEN_STRONG_INLINE ExpressionType& operator+=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
{ return m_expression.derived() += CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
template<typename Lhs, typename Rhs, int NestingFlags>
EIGEN_STRONG_INLINE ExpressionType& operator-=(const CoeffBasedProduct<Lhs,Rhs,NestingFlags>& other)
{ return m_expression.derived() -= CoeffBasedProduct<Lhs,Rhs,NestByRefBit>(other.lhs(), other.rhs()); }
#endif
EIGEN_DEVICE_FUNC
ExpressionType& expression() const
{
return m_expression;
}
protected:
ExpressionType& m_expression;
......@@ -117,7 +100,7 @@ class NoAlias
template<typename Derived>
NoAlias<Derived,MatrixBase> MatrixBase<Derived>::noalias()
{
return derived();
return NoAlias<Derived, Eigen::MatrixBase >(derived());
}
} // end namespace Eigen
......
......@@ -12,24 +12,57 @@
namespace Eigen {
namespace internal {
// default implementation of digits10(), based on numeric_limits if specialized,
// 0 for integer types, and log10(epsilon()) otherwise.
template< typename T,
bool use_numeric_limits = std::numeric_limits<T>::is_specialized,
bool is_integer = NumTraits<T>::IsInteger>
struct default_digits10_impl
{
static int run() { return std::numeric_limits<T>::digits10; }
};
template<typename T>
struct default_digits10_impl<T,false,false> // Floating point
{
static int run() {
using std::log10;
using std::ceil;
typedef typename NumTraits<T>::Real Real;
return int(ceil(-log10(NumTraits<Real>::epsilon())));
}
};
template<typename T>
struct default_digits10_impl<T,false,true> // Integer
{
static int run() { return 0; }
};
} // end namespace internal
/** \class NumTraits
* \ingroup Core_Module
*
* \brief Holds information about the various numeric (i.e. scalar) types allowed by Eigen.
*
* \param T the numeric type at hand
* \tparam T the numeric type at hand
*
* This class stores enums, typedefs and static methods giving information about a numeric type.
*
* The provided data consists of:
* \li A typedef \a Real, giving the "real part" type of \a T. If \a T is already real,
* then \a Real is just a typedef to \a T. If \a T is \c std::complex<U> then \a Real
* \li A typedef \c Real, giving the "real part" type of \a T. If \a T is already real,
* then \c Real is just a typedef to \a T. If \a T is \c std::complex<U> then \c Real
* is a typedef to \a U.
* \li A typedef \a NonInteger, giving the type that should be used for operations producing non-integral values,
* \li A typedef \c NonInteger, giving the type that should be used for operations producing non-integral values,
* such as quotients, square roots, etc. If \a T is a floating-point type, then this typedef just gives
* \a T again. Note however that many Eigen functions such as internal::sqrt simply refuse to
* take integers. Outside of a few cases, Eigen doesn't do automatic type promotion. Thus, this typedef is
* only intended as a helper for code that needs to explicitly promote types.
* \li A typedef \c Literal giving the type to use for numeric literals such as "2" or "0.5". For instance, for \c std::complex<U>, Literal is defined as \c U.
* Of course, this type must be fully compatible with \a T. In doubt, just use \a T here.
* \li A typedef \a Nested giving the type to use to nest a value inside of the expression tree. If you don't know what
* this means, just use \a T here.
* \li An enum value \a IsComplex. It is equal to 1 if \a T is a \c std::complex
......@@ -42,10 +75,14 @@ namespace Eigen {
* \li An enum value \a IsSigned. It is equal to \c 1 if \a T is a signed type and to 0 if \a T is unsigned.
* \li An enum value \a RequireInitialization. It is equal to \c 1 if the constructor of the numeric type \a T must
* be called, and to 0 if it is safe not to call it. Default is 0 if \a T is an arithmetic type, and 1 otherwise.
* \li An epsilon() function which, unlike std::numeric_limits::epsilon(), returns a \a Real instead of a \a T.
* \li An epsilon() function which, unlike <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/epsilon">std::numeric_limits::epsilon()</a>,
* it returns a \a Real instead of a \a T.
* \li A dummy_precision() function returning a weak epsilon value. It is mainly used as a default
* value by the fuzzy comparison operators.
* \li highest() and lowest() functions returning the highest and lowest possible values respectively.
* \li digits10() function returning the number of decimal digits that can be represented without change. This is
* the analogue of <a href="http://en.cppreference.com/w/cpp/types/numeric_limits/digits10">std::numeric_limits<T>::digits10</a>
* which is used as the default implementation if specialized.
*/
template<typename T> struct GenericNumTraits
......@@ -67,22 +104,47 @@ template<typename T> struct GenericNumTraits
T
>::type NonInteger;
typedef T Nested;
typedef T Literal;
EIGEN_DEVICE_FUNC
static inline Real epsilon()
{
return numext::numeric_limits<T>::epsilon();
}
EIGEN_DEVICE_FUNC
static inline int digits10()
{
return internal::default_digits10_impl<T>::run();
}
static inline Real epsilon() { return std::numeric_limits<T>::epsilon(); }
EIGEN_DEVICE_FUNC
static inline Real dummy_precision()
{
// make sure to override this for floating-point types
return Real(0);
}
static inline T highest() { return (std::numeric_limits<T>::max)(); }
static inline T lowest() { return IsInteger ? (std::numeric_limits<T>::min)() : (-(std::numeric_limits<T>::max)()); }
#ifdef EIGEN2_SUPPORT
enum {
HasFloatingPoint = !IsInteger
};
typedef NonInteger FloatingPoint;
#endif
EIGEN_DEVICE_FUNC
static inline T highest() {
return (numext::numeric_limits<T>::max)();
}
EIGEN_DEVICE_FUNC
static inline T lowest() {
return IsInteger ? (numext::numeric_limits<T>::min)() : (-(numext::numeric_limits<T>::max)());
}
EIGEN_DEVICE_FUNC
static inline T infinity() {
return numext::numeric_limits<T>::infinity();
}
EIGEN_DEVICE_FUNC
static inline T quiet_NaN() {
return numext::numeric_limits<T>::quiet_NaN();
}
};
template<typename T> struct NumTraits : GenericNumTraits<T>
......@@ -91,11 +153,13 @@ template<typename T> struct NumTraits : GenericNumTraits<T>
template<> struct NumTraits<float>
: GenericNumTraits<float>
{
EIGEN_DEVICE_FUNC
static inline float dummy_precision() { return 1e-5f; }
};
template<> struct NumTraits<double> : GenericNumTraits<double>
{
EIGEN_DEVICE_FUNC
static inline double dummy_precision() { return 1e-12; }
};
......@@ -109,6 +173,7 @@ template<typename _Real> struct NumTraits<std::complex<_Real> >
: GenericNumTraits<std::complex<_Real> >
{
typedef _Real Real;
typedef typename NumTraits<_Real>::Literal Literal;
enum {
IsComplex = 1,
RequireInitialization = NumTraits<_Real>::RequireInitialization,
......@@ -117,8 +182,12 @@ template<typename _Real> struct NumTraits<std::complex<_Real> >
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
};
EIGEN_DEVICE_FUNC
static inline Real epsilon() { return NumTraits<Real>::epsilon(); }
EIGEN_DEVICE_FUNC
static inline Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
EIGEN_DEVICE_FUNC
static inline int digits10() { return NumTraits<Real>::digits10(); }
};
template<typename Scalar, int Rows, int Cols, int Options, int MaxRows, int MaxCols>
......@@ -130,18 +199,50 @@ struct NumTraits<Array<Scalar, Rows, Cols, Options, MaxRows, MaxCols> >
typedef typename NumTraits<Scalar>::NonInteger NonIntegerScalar;
typedef Array<NonIntegerScalar, Rows, Cols, Options, MaxRows, MaxCols> NonInteger;
typedef ArrayType & Nested;
typedef typename NumTraits<Scalar>::Literal Literal;
enum {
IsComplex = NumTraits<Scalar>::IsComplex,
IsInteger = NumTraits<Scalar>::IsInteger,
IsSigned = NumTraits<Scalar>::IsSigned,
RequireInitialization = 1,
ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost,
AddCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost,
MulCost = ArrayType::SizeAtCompileTime==Dynamic ? Dynamic : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost
ReadCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::ReadCost,
AddCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::AddCost,
MulCost = ArrayType::SizeAtCompileTime==Dynamic ? HugeCost : ArrayType::SizeAtCompileTime * NumTraits<Scalar>::MulCost
};
EIGEN_DEVICE_FUNC
static inline RealScalar epsilon() { return NumTraits<RealScalar>::epsilon(); }
EIGEN_DEVICE_FUNC
static inline RealScalar dummy_precision() { return NumTraits<RealScalar>::dummy_precision(); }
static inline int digits10() { return NumTraits<Scalar>::digits10(); }
};
template<> struct NumTraits<std::string>
: GenericNumTraits<std::string>
{
enum {
RequireInitialization = 1,
ReadCost = HugeCost,
AddCost = HugeCost,
MulCost = HugeCost
};
static inline int digits10() { return 0; }
private:
static inline std::string epsilon();
static inline std::string dummy_precision();
static inline std::string lowest();
static inline std::string highest();
static inline std::string infinity();
static inline std::string quiet_NaN();
};
// Empty specialization for void to allow template specialization based on NumTraits<T>::Real with T==void and SFINAE.
template<> struct NumTraits<void> {};
} // end namespace Eigen
#endif // EIGEN_NUMTRAITS_H
......@@ -2,7 +2,7 @@
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2009-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
......@@ -13,14 +13,18 @@
namespace Eigen {
template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKind> class PermutedImpl;
namespace internal {
enum PermPermProduct_t {PermPermProduct};
} // end namespace internal
/** \class PermutationBase
* \ingroup Core_Module
*
* \brief Base class for permutations
*
* \param Derived the derived class
* \tparam Derived the derived class
*
* This class is the base class for all expressions representing a permutation matrix,
* internally stored as a vector of integers.
......@@ -38,17 +42,6 @@ template<int RowCol,typename IndicesType,typename MatrixType, typename StorageKi
*
* \sa class PermutationMatrix, class PermutationWrapper
*/
namespace internal {
template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false>
struct permut_matrix_product_retval;
template<typename PermutationType, typename MatrixType, int Side, bool Transposed=false>
struct permut_sparsematrix_product_retval;
enum PermPermProduct_t {PermPermProduct};
} // end namespace internal
template<typename Derived>
class PermutationBase : public EigenBase<Derived>
{
......@@ -60,19 +53,20 @@ class PermutationBase : public EigenBase<Derived>
typedef typename Traits::IndicesType IndicesType;
enum {
Flags = Traits::Flags,
CoeffReadCost = Traits::CoeffReadCost,
RowsAtCompileTime = Traits::RowsAtCompileTime,
ColsAtCompileTime = Traits::ColsAtCompileTime,
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
};
typedef typename Traits::Scalar Scalar;
typedef typename Traits::Index Index;
typedef Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
typedef typename Traits::StorageIndex StorageIndex;
typedef Matrix<StorageIndex,RowsAtCompileTime,ColsAtCompileTime,0,MaxRowsAtCompileTime,MaxColsAtCompileTime>
DenseMatrixType;
typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,Index>
typedef PermutationMatrix<IndicesType::SizeAtCompileTime,IndicesType::MaxSizeAtCompileTime,StorageIndex>
PlainPermutationType;
typedef PlainPermutationType PlainObject;
using Base::derived;
typedef Inverse<Derived> InverseReturnType;
typedef void Scalar;
#endif
/** Copies the other permutation into *this */
......@@ -93,17 +87,6 @@ class PermutationBase : public EigenBase<Derived>
return derived();
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
Derived& operator=(const PermutationBase& other)
{
indices() = other.indices();
return derived();
}
#endif
/** \returns the number of rows */
inline Index rows() const { return Index(indices().size()); }
......@@ -118,7 +101,7 @@ class PermutationBase : public EigenBase<Derived>
void evalTo(MatrixBase<DenseDerived>& other) const
{
other.setZero();
for (int i=0; i<rows();++i)
for (Index i=0; i<rows(); ++i)
other.coeffRef(indices().coeff(i),i) = typename DenseDerived::Scalar(1);
}
#endif
......@@ -139,23 +122,24 @@ class PermutationBase : public EigenBase<Derived>
/** Resizes to given size.
*/
inline void resize(Index size)
inline void resize(Index newSize)
{
indices().resize(size);
indices().resize(newSize);
}
/** Sets *this to be the identity permutation matrix */
void setIdentity()
{
for(Index i = 0; i < size(); ++i)
StorageIndex n = StorageIndex(size());
for(StorageIndex i = 0; i < n; ++i)
indices().coeffRef(i) = i;
}
/** Sets *this to be the identity permutation matrix of given size.
*/
void setIdentity(Index size)
void setIdentity(Index newSize)
{
resize(size);
resize(newSize);
setIdentity();
}
......@@ -163,18 +147,18 @@ class PermutationBase : public EigenBase<Derived>
*
* \returns a reference to *this.
*
* \warning This is much slower than applyTranspositionOnTheRight(int,int):
* \warning This is much slower than applyTranspositionOnTheRight(Index,Index):
* this has linear complexity and requires a lot of branching.
*
* \sa applyTranspositionOnTheRight(int,int)
* \sa applyTranspositionOnTheRight(Index,Index)
*/
Derived& applyTranspositionOnTheLeft(Index i, Index j)
{
eigen_assert(i>=0 && j>=0 && i<size() && j<size());
for(Index k = 0; k < size(); ++k)
{
if(indices().coeff(k) == i) indices().coeffRef(k) = j;
else if(indices().coeff(k) == j) indices().coeffRef(k) = i;
if(indices().coeff(k) == i) indices().coeffRef(k) = StorageIndex(j);
else if(indices().coeff(k) == j) indices().coeffRef(k) = StorageIndex(i);
}
return derived();
}
......@@ -185,7 +169,7 @@ class PermutationBase : public EigenBase<Derived>
*
* This is a fast operation, it only consists in swapping two indices.
*
* \sa applyTranspositionOnTheLeft(int,int)
* \sa applyTranspositionOnTheLeft(Index,Index)
*/
Derived& applyTranspositionOnTheRight(Index i, Index j)
{
......@@ -196,16 +180,16 @@ class PermutationBase : public EigenBase<Derived>
/** \returns the inverse permutation matrix.
*
* \note \note_try_to_help_rvo
* \note \blank \note_try_to_help_rvo
*/
inline Transpose<PermutationBase> inverse() const
{ return derived(); }
inline InverseReturnType inverse() const
{ return InverseReturnType(derived()); }
/** \returns the tranpose permutation matrix.
*
* \note \note_try_to_help_rvo
* \note \blank \note_try_to_help_rvo
*/
inline Transpose<PermutationBase> transpose() const
{ return derived(); }
inline InverseReturnType transpose() const
{ return InverseReturnType(derived()); }
/**** multiplication helpers to hopefully get RVO ****/
......@@ -215,13 +199,13 @@ class PermutationBase : public EigenBase<Derived>
template<typename OtherDerived>
void assignTranspose(const PermutationBase<OtherDerived>& other)
{
for (int i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i;
for (Index i=0; i<rows();++i) indices().coeffRef(other.indices().coeff(i)) = i;
}
template<typename Lhs,typename Rhs>
void assignProduct(const Lhs& lhs, const Rhs& rhs)
{
eigen_assert(lhs.cols() == rhs.rows());
for (int i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
for (Index i=0; i<rows();++i) indices().coeffRef(i) = lhs.indices().coeff(rhs.indices().coeff(i));
}
#endif
......@@ -229,7 +213,7 @@ class PermutationBase : public EigenBase<Derived>
/** \returns the product permutation matrix.
*
* \note \note_try_to_help_rvo
* \note \blank \note_try_to_help_rvo
*/
template<typename Other>
inline PlainPermutationType operator*(const PermutationBase<Other>& other) const
......@@ -237,57 +221,90 @@ class PermutationBase : public EigenBase<Derived>
/** \returns the product of a permutation with another inverse permutation.
*
* \note \note_try_to_help_rvo
* \note \blank \note_try_to_help_rvo
*/
template<typename Other>
inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other) const
inline PlainPermutationType operator*(const InverseImpl<Other,PermutationStorage>& other) const
{ return PlainPermutationType(internal::PermPermProduct, *this, other.eval()); }
/** \returns the product of an inverse permutation with another permutation.
*
* \note \note_try_to_help_rvo
* \note \blank \note_try_to_help_rvo
*/
template<typename Other> friend
inline PlainPermutationType operator*(const Transpose<PermutationBase<Other> >& other, const PermutationBase& perm)
inline PlainPermutationType operator*(const InverseImpl<Other, PermutationStorage>& other, const PermutationBase& perm)
{ return PlainPermutationType(internal::PermPermProduct, other.eval(), perm); }
/** \returns the determinant of the permutation matrix, which is either 1 or -1 depending on the parity of the permutation.
*
* This function is O(\c n) procedure allocating a buffer of \c n booleans.
*/
Index determinant() const
{
Index res = 1;
Index n = size();
Matrix<bool,RowsAtCompileTime,1,0,MaxRowsAtCompileTime> mask(n);
mask.fill(false);
Index r = 0;
while(r < n)
{
// search for the next seed
while(r<n && mask[r]) r++;
if(r>=n)
break;
// we got one, let's follow it until we are back to the seed
Index k0 = r++;
mask.coeffRef(k0) = true;
for(Index k=indices().coeff(k0); k!=k0; k=indices().coeff(k))
{
mask.coeffRef(k) = true;
res = -res;
}
}
return res;
}
protected:
};
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
: traits<Matrix<_StorageIndex,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef PermutationStorage StorageKind;
typedef Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
typedef _StorageIndex StorageIndex;
typedef void Scalar;
};
}
/** \class PermutationMatrix
* \ingroup Core_Module
*
* \brief Permutation matrix
*
* \param SizeAtCompileTime the number of rows/cols, or Dynamic
* \param MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
* \param IndexType the interger type of the indices
* \tparam SizeAtCompileTime the number of rows/cols, or Dynamic
* \tparam MaxSizeAtCompileTime the maximum number of rows/cols, or Dynamic. This optional parameter defaults to SizeAtCompileTime. Most of the time, you should not have to specify it.
* \tparam _StorageIndex the integer type of the indices
*
* This class represents a permutation matrix, internally stored as a vector of integers.
*
* \sa class PermutationBase, class PermutationWrapper, class DiagonalMatrix
*/
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
struct traits<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
: traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef IndexType Index;
typedef Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1> IndicesType;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType>
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex>
class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex> >
{
typedef PermutationBase<PermutationMatrix> Base;
typedef internal::traits<PermutationMatrix> Traits;
public:
typedef const PermutationMatrix& Nested;
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
typedef typename Traits::StorageIndex StorageIndex;
#endif
inline PermutationMatrix()
......@@ -295,20 +312,16 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
/** Constructs an uninitialized permutation matrix of given size.
*/
inline PermutationMatrix(int size) : m_indices(size)
{}
explicit inline PermutationMatrix(Index size) : m_indices(size)
{
eigen_internal_assert(size <= NumTraits<StorageIndex>::highest());
}
/** Copy constructor. */
template<typename OtherDerived>
inline PermutationMatrix(const PermutationBase<OtherDerived>& other)
: m_indices(other.indices()) {}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** Standard copy constructor. Defined only to prevent a default copy constructor
* from hiding the other templated constructor */
inline PermutationMatrix(const PermutationMatrix& other) : m_indices(other.indices()) {}
#endif
/** Generic constructor from expression of the indices. The indices
* array has the meaning that the permutations sends each integer i to indices[i].
*
......@@ -343,17 +356,6 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
return Base::operator=(tr.derived());
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
PermutationMatrix& operator=(const PermutationMatrix& other)
{
m_indices = other.m_indices;
return *this;
}
#endif
/** const version of indices(). */
const IndicesType& indices() const { return m_indices; }
/** \returns a reference to the stored array representing the permutation. */
......@@ -364,10 +366,13 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename Other>
PermutationMatrix(const Transpose<PermutationBase<Other> >& other)
: m_indices(other.nestedPermutation().size())
PermutationMatrix(const InverseImpl<Other,PermutationStorage>& other)
: m_indices(other.derived().nestedExpression().size())
{
for (int i=0; i<m_indices.size();++i) m_indices.coeffRef(other.nestedPermutation().indices().coeff(i)) = i;
eigen_internal_assert(m_indices.size() <= NumTraits<StorageIndex>::highest());
StorageIndex end = StorageIndex(m_indices.size());
for (StorageIndex i=0; i<end;++i)
m_indices.coeffRef(other.derived().nestedExpression().indices().coeff(i)) = i;
}
template<typename Lhs,typename Rhs>
PermutationMatrix(internal::PermPermProduct_t, const Lhs& lhs, const Rhs& rhs)
......@@ -384,18 +389,20 @@ class PermutationMatrix : public PermutationBase<PermutationMatrix<SizeAtCompile
namespace internal {
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
: traits<Matrix<IndexType,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
struct traits<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess> >
: traits<Matrix<_StorageIndex,SizeAtCompileTime,SizeAtCompileTime,0,MaxSizeAtCompileTime,MaxSizeAtCompileTime> >
{
typedef IndexType Index;
typedef Map<const Matrix<IndexType, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
typedef PermutationStorage StorageKind;
typedef Map<const Matrix<_StorageIndex, SizeAtCompileTime, 1, 0, MaxSizeAtCompileTime, 1>, _PacketAccess> IndicesType;
typedef _StorageIndex StorageIndex;
typedef void Scalar;
};
}
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename IndexType, int _PacketAccess>
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess>
: public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,_PacketAccess> >
template<int SizeAtCompileTime, int MaxSizeAtCompileTime, typename _StorageIndex, int _PacketAccess>
class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess>
: public PermutationBase<Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, _StorageIndex>,_PacketAccess> >
{
typedef PermutationBase<Map> Base;
typedef internal::traits<Map> Traits;
......@@ -403,15 +410,15 @@ class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef typename Traits::IndicesType IndicesType;
typedef typename IndicesType::Scalar Index;
typedef typename IndicesType::Scalar StorageIndex;
#endif
inline Map(const Index* indices)
: m_indices(indices)
inline Map(const StorageIndex* indicesPtr)
: m_indices(indicesPtr)
{}
inline Map(const Index* indices, Index size)
: m_indices(indices,size)
inline Map(const StorageIndex* indicesPtr, Index size)
: m_indices(indicesPtr,size)
{}
/** Copies the other permutation into *this */
......@@ -445,40 +452,36 @@ class Map<PermutationMatrix<SizeAtCompileTime, MaxSizeAtCompileTime, IndexType>,
IndicesType m_indices;
};
/** \class PermutationWrapper
* \ingroup Core_Module
*
* \brief Class to view a vector of integers as a permutation matrix
*
* \param _IndicesType the type of the vector of integer (can be any compatible expression)
*
* This class allows to view any vector expression of integers as a permutation matrix.
*
* \sa class PermutationBase, class PermutationMatrix
*/
struct PermutationStorage {};
template<typename _IndicesType> class TranspositionsWrapper;
namespace internal {
template<typename _IndicesType>
struct traits<PermutationWrapper<_IndicesType> >
{
typedef PermutationStorage StorageKind;
typedef typename _IndicesType::Scalar Scalar;
typedef typename _IndicesType::Scalar Index;
typedef void Scalar;
typedef typename _IndicesType::Scalar StorageIndex;
typedef _IndicesType IndicesType;
enum {
RowsAtCompileTime = _IndicesType::SizeAtCompileTime,
ColsAtCompileTime = _IndicesType::SizeAtCompileTime,
MaxRowsAtCompileTime = IndicesType::MaxRowsAtCompileTime,
MaxColsAtCompileTime = IndicesType::MaxColsAtCompileTime,
Flags = 0,
CoeffReadCost = _IndicesType::CoeffReadCost
MaxRowsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
MaxColsAtCompileTime = IndicesType::MaxSizeAtCompileTime,
Flags = 0
};
};
}
/** \class PermutationWrapper
* \ingroup Core_Module
*
* \brief Class to view a vector of integers as a permutation matrix
*
* \tparam _IndicesType the type of the vector of integer (can be any compatible expression)
*
* This class allows to view any vector expression of integers as a permutation matrix.
*
* \sa class PermutationBase, class PermutationMatrix
*/
template<typename _IndicesType>
class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesType> >
{
......@@ -503,177 +506,86 @@ class PermutationWrapper : public PermutationBase<PermutationWrapper<_IndicesTyp
typename IndicesType::Nested m_indices;
};
/** \returns the matrix with the permutation applied to the columns.
*/
template<typename Derived, typename PermutationDerived>
inline const internal::permut_matrix_product_retval<PermutationDerived, Derived, OnTheRight>
operator*(const MatrixBase<Derived>& matrix,
const PermutationBase<PermutationDerived> &permutation)
template<typename MatrixDerived, typename PermutationDerived>
EIGEN_DEVICE_FUNC
const Product<MatrixDerived, PermutationDerived, AliasFreeProduct>
operator*(const MatrixBase<MatrixDerived> &matrix,
const PermutationBase<PermutationDerived>& permutation)
{
return internal::permut_matrix_product_retval
<PermutationDerived, Derived, OnTheRight>
(permutation.derived(), matrix.derived());
return Product<MatrixDerived, PermutationDerived, AliasFreeProduct>
(matrix.derived(), permutation.derived());
}
/** \returns the matrix with the permutation applied to the rows.
*/
template<typename Derived, typename PermutationDerived>
inline const internal::permut_matrix_product_retval
<PermutationDerived, Derived, OnTheLeft>
template<typename PermutationDerived, typename MatrixDerived>
EIGEN_DEVICE_FUNC
const Product<PermutationDerived, MatrixDerived, AliasFreeProduct>
operator*(const PermutationBase<PermutationDerived> &permutation,
const MatrixBase<Derived>& matrix)
const MatrixBase<MatrixDerived>& matrix)
{
return internal::permut_matrix_product_retval
<PermutationDerived, Derived, OnTheLeft>
(permutation.derived(), matrix.derived());
return Product<PermutationDerived, MatrixDerived, AliasFreeProduct>
(permutation.derived(), matrix.derived());
}
namespace internal {
template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
struct traits<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
{
typedef typename MatrixType::PlainObject ReturnType;
};
template<typename PermutationType, typename MatrixType, int Side, bool Transposed>
struct permut_matrix_product_retval
: public ReturnByValue<permut_matrix_product_retval<PermutationType, MatrixType, Side, Transposed> >
{
typedef typename remove_all<typename MatrixType::Nested>::type MatrixTypeNestedCleaned;
permut_matrix_product_retval(const PermutationType& perm, const MatrixType& matrix)
: m_permutation(perm), m_matrix(matrix)
{}
inline int rows() const { return m_matrix.rows(); }
inline int cols() const { return m_matrix.cols(); }
template<typename Dest> inline void evalTo(Dest& dst) const
{
const int n = Side==OnTheLeft ? rows() : cols();
if(is_same<MatrixTypeNestedCleaned,Dest>::value && extract_data(dst) == extract_data(m_matrix))
{
// apply the permutation inplace
Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(m_permutation.size());
mask.fill(false);
int r = 0;
while(r < m_permutation.size())
{
// search for the next seed
while(r<m_permutation.size() && mask[r]) r++;
if(r>=m_permutation.size())
break;
// we got one, let's follow it until we are back to the seed
int k0 = r++;
int kPrev = k0;
mask.coeffRef(k0) = true;
for(int k=m_permutation.indices().coeff(k0); k!=k0; k=m_permutation.indices().coeff(k))
{
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
.swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
(dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));
mask.coeffRef(k) = true;
kPrev = k;
}
}
}
else
{
for(int i = 0; i < n; ++i)
{
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
(dst, ((Side==OnTheLeft) ^ Transposed) ? m_permutation.indices().coeff(i) : i)
=
Block<const MatrixTypeNestedCleaned,Side==OnTheLeft ? 1 : MatrixType::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixType::ColsAtCompileTime>
(m_matrix, ((Side==OnTheRight) ^ Transposed) ? m_permutation.indices().coeff(i) : i);
}
}
}
protected:
const PermutationType& m_permutation;
typename MatrixType::Nested m_matrix;
};
/* Template partial specialization for transposed/inverse permutations */
template<typename Derived>
struct traits<Transpose<PermutationBase<Derived> > >
: traits<Derived>
{};
} // end namespace internal
template<typename Derived>
class Transpose<PermutationBase<Derived> >
: public EigenBase<Transpose<PermutationBase<Derived> > >
template<typename PermutationType>
class InverseImpl<PermutationType, PermutationStorage>
: public EigenBase<Inverse<PermutationType> >
{
typedef Derived PermutationType;
typedef typename PermutationType::IndicesType IndicesType;
typedef typename PermutationType::PlainPermutationType PlainPermutationType;
typedef internal::traits<PermutationType> PermTraits;
protected:
InverseImpl() {}
public:
typedef Inverse<PermutationType> InverseType;
using EigenBase<Inverse<PermutationType> >::derived;
#ifndef EIGEN_PARSED_BY_DOXYGEN
typedef internal::traits<PermutationType> Traits;
typedef typename Derived::DenseMatrixType DenseMatrixType;
typedef typename PermutationType::DenseMatrixType DenseMatrixType;
enum {
Flags = Traits::Flags,
CoeffReadCost = Traits::CoeffReadCost,
RowsAtCompileTime = Traits::RowsAtCompileTime,
ColsAtCompileTime = Traits::ColsAtCompileTime,
MaxRowsAtCompileTime = Traits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = Traits::MaxColsAtCompileTime
RowsAtCompileTime = PermTraits::RowsAtCompileTime,
ColsAtCompileTime = PermTraits::ColsAtCompileTime,
MaxRowsAtCompileTime = PermTraits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = PermTraits::MaxColsAtCompileTime
};
typedef typename Traits::Scalar Scalar;
#endif
Transpose(const PermutationType& p) : m_permutation(p) {}
inline int rows() const { return m_permutation.rows(); }
inline int cols() const { return m_permutation.cols(); }
#ifndef EIGEN_PARSED_BY_DOXYGEN
template<typename DenseDerived>
void evalTo(MatrixBase<DenseDerived>& other) const
{
other.setZero();
for (int i=0; i<rows();++i)
other.coeffRef(i, m_permutation.indices().coeff(i)) = typename DenseDerived::Scalar(1);
for (Index i=0; i<derived().rows();++i)
other.coeffRef(i, derived().nestedExpression().indices().coeff(i)) = typename DenseDerived::Scalar(1);
}
#endif
/** \return the equivalent permutation matrix */
PlainPermutationType eval() const { return *this; }
PlainPermutationType eval() const { return derived(); }
DenseMatrixType toDenseMatrix() const { return *this; }
DenseMatrixType toDenseMatrix() const { return derived(); }
/** \returns the matrix with the inverse permutation applied to the columns.
*/
template<typename OtherDerived> friend
inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>
operator*(const MatrixBase<OtherDerived>& matrix, const Transpose& trPerm)
const Product<OtherDerived, InverseType, AliasFreeProduct>
operator*(const MatrixBase<OtherDerived>& matrix, const InverseType& trPerm)
{
return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheRight, true>(trPerm.m_permutation, matrix.derived());
return Product<OtherDerived, InverseType, AliasFreeProduct>(matrix.derived(), trPerm.derived());
}
/** \returns the matrix with the inverse permutation applied to the rows.
*/
template<typename OtherDerived>
inline const internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>
const Product<InverseType, OtherDerived, AliasFreeProduct>
operator*(const MatrixBase<OtherDerived>& matrix) const
{
return internal::permut_matrix_product_retval<PermutationType, OtherDerived, OnTheLeft, true>(m_permutation, matrix.derived());
return Product<InverseType, OtherDerived, AliasFreeProduct>(derived(), matrix.derived());
}
const PermutationType& nestedPermutation() const { return m_permutation; }
protected:
const PermutationType& m_permutation;
};
template<typename Derived>
......@@ -682,6 +594,12 @@ const PermutationWrapper<const Derived> MatrixBase<Derived>::asPermutation() con
return derived();
}
namespace internal {
template<> struct AssignmentKind<DenseShape,PermutationShape> { typedef EigenBase2EigenBase Kind; };
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PERMUTATIONMATRIX_H
......@@ -11,62 +11,88 @@
#ifndef EIGEN_DENSESTORAGEBASE_H
#define EIGEN_DENSESTORAGEBASE_H
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
#if defined(EIGEN_INITIALIZE_MATRICES_BY_ZERO)
# define EIGEN_INITIALIZE_COEFFS
# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=Scalar(0);
#elif defined(EIGEN_INITIALIZE_MATRICES_BY_NAN)
# define EIGEN_INITIALIZE_COEFFS
# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED for(int i=0;i<base().size();++i) coeffRef(i)=std::numeric_limits<Scalar>::quiet_NaN();
#else
# define EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
# undef EIGEN_INITIALIZE_COEFFS
# define EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
#endif
namespace Eigen {
namespace internal {
template<typename Index>
EIGEN_ALWAYS_INLINE void check_rows_cols_for_overflow(Index rows, Index cols)
{
// http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242
// we assume Index is signed
Index max_index = (size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed
bool error = (rows < 0 || cols < 0) ? true
: (rows == 0 || cols == 0) ? false
: (rows > max_index / cols);
if (error)
throw_std_bad_alloc();
}
template <typename Derived, typename OtherDerived = Derived, bool IsVector = bool(Derived::IsVectorAtCompileTime)> struct conservative_resize_like_impl;
template<int MaxSizeAtCompileTime> struct check_rows_cols_for_overflow {
template<typename Index>
EIGEN_DEVICE_FUNC
static EIGEN_ALWAYS_INLINE void run(Index, Index)
{
}
};
template<> struct check_rows_cols_for_overflow<Dynamic> {
template<typename Index>
EIGEN_DEVICE_FUNC
static EIGEN_ALWAYS_INLINE void run(Index rows, Index cols)
{
// http://hg.mozilla.org/mozilla-central/file/6c8a909977d3/xpcom/ds/CheckedInt.h#l242
// we assume Index is signed
Index max_index = (std::size_t(1) << (8 * sizeof(Index) - 1)) - 1; // assume Index is signed
bool error = (rows == 0 || cols == 0) ? false
: (rows > max_index / cols);
if (error)
throw_std_bad_alloc();
}
};
template <typename Derived,
typename OtherDerived = Derived,
bool IsVector = bool(Derived::IsVectorAtCompileTime) && bool(OtherDerived::IsVectorAtCompileTime)>
struct conservative_resize_like_impl;
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers> struct matrix_swap_impl;
} // end namespace internal
/** \class PlainObjectBase
* \brief %Dense storage base class for matrices and arrays.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN.
*
* \sa \ref TopicClassHierarchy
*/
#ifdef EIGEN_PARSED_BY_DOXYGEN
namespace internal {
namespace doxygen {
// this is a warkaround to doxygen not being able to understand the inheritence logic
// This is a workaround to doxygen not being able to understand the inheritance logic
// when it is hidden by the dense_xpr_base helper struct.
template<typename Derived> struct dense_xpr_base_dispatcher_for_doxygen;// : public MatrixBase<Derived> {};
// Moreover, doxygen fails to include members that are not documented in the declaration body of
// MatrixBase if we inherits MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >,
// this is why we simply inherits MatrixBase, though this does not make sense.
/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename Derived> struct dense_xpr_base_dispatcher;
/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct dense_xpr_base_dispatcher_for_doxygen<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
: public MatrixBase<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {};
struct dense_xpr_base_dispatcher<Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
: public MatrixBase {};
/** This class is just a workaround for Doxygen and it does not not actually exist. */
template<typename _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols>
struct dense_xpr_base_dispatcher_for_doxygen<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
: public ArrayBase<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> > {};
struct dense_xpr_base_dispatcher<Array<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> >
: public ArrayBase {};
} // namespace internal
} // namespace doxygen
/** \class PlainObjectBase
* \ingroup Core_Module
* \brief %Dense storage base class for matrices and arrays.
*
* This class can be extended with the help of the plugin mechanism described on the page
* \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_PLAINOBJECTBASE_PLUGIN.
*
* \tparam Derived is the derived type, e.g., a Matrix or Array
*
* \sa \ref TopicClassHierarchy
*/
template<typename Derived>
class PlainObjectBase : public internal::dense_xpr_base_dispatcher_for_doxygen<Derived>
class PlainObjectBase : public doxygen::dense_xpr_base_dispatcher<Derived>
#else
template<typename Derived>
class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
......@@ -77,8 +103,8 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
typedef typename internal::dense_xpr_base<Derived>::type Base;
typedef typename internal::traits<Derived>::StorageKind StorageKind;
typedef typename internal::traits<Derived>::Index Index;
typedef typename internal::traits<Derived>::Scalar Scalar;
typedef typename internal::packet_traits<Scalar>::type PacketScalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Derived DenseType;
......@@ -97,62 +123,95 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
typedef Eigen::Map<Derived, Unaligned> MapType;
friend class Eigen::Map<const Derived, Unaligned>;
typedef const Eigen::Map<const Derived, Unaligned> ConstMapType;
friend class Eigen::Map<Derived, Aligned>;
typedef Eigen::Map<Derived, Aligned> AlignedMapType;
friend class Eigen::Map<const Derived, Aligned>;
typedef const Eigen::Map<const Derived, Aligned> ConstAlignedMapType;
#if EIGEN_MAX_ALIGN_BYTES>0
// for EIGEN_MAX_ALIGN_BYTES==0, AlignedMax==Unaligned, and many compilers generate warnings for friend-ing a class twice.
friend class Eigen::Map<Derived, AlignedMax>;
friend class Eigen::Map<const Derived, AlignedMax>;
#endif
typedef Eigen::Map<Derived, AlignedMax> AlignedMapType;
typedef const Eigen::Map<const Derived, AlignedMax> ConstAlignedMapType;
template<typename StrideType> struct StridedMapType { typedef Eigen::Map<Derived, Unaligned, StrideType> type; };
template<typename StrideType> struct StridedConstMapType { typedef Eigen::Map<const Derived, Unaligned, StrideType> type; };
template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, Aligned, StrideType> type; };
template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, Aligned, StrideType> type; };
template<typename StrideType> struct StridedAlignedMapType { typedef Eigen::Map<Derived, AlignedMax, StrideType> type; };
template<typename StrideType> struct StridedConstAlignedMapType { typedef Eigen::Map<const Derived, AlignedMax, StrideType> type; };
protected:
DenseStorage<Scalar, Base::MaxSizeAtCompileTime, Base::RowsAtCompileTime, Base::ColsAtCompileTime, Options> m_storage;
public:
enum { NeedsToAlign = SizeAtCompileTime != Dynamic && (internal::traits<Derived>::Flags & AlignedBit) != 0 };
enum { NeedsToAlign = (SizeAtCompileTime != Dynamic) && (internal::traits<Derived>::Alignment>0) };
EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(NeedsToAlign)
EIGEN_DEVICE_FUNC
Base& base() { return *static_cast<Base*>(this); }
EIGEN_DEVICE_FUNC
const Base& base() const { return *static_cast<const Base*>(this); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index rows() const { return m_storage.rows(); }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Index cols() const { return m_storage.cols(); }
EIGEN_STRONG_INLINE const Scalar& coeff(Index row, Index col) const
/** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index,Index) const
* provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
*
* See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& coeff(Index rowId, Index colId) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
return m_storage.data()[colId + rowId * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
return m_storage.data()[rowId + colId * m_storage.rows()];
}
/** This is an overloaded version of DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const
* provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
*
* See DenseCoeffsBase<Derived,ReadOnlyAccessors>::coeff(Index) const for details. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& coeff(Index index) const
{
return m_storage.data()[index];
}
EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col)
/** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const
* provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
*
* See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index,Index) const for details. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& coeffRef(Index rowId, Index colId)
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
return m_storage.data()[colId + rowId * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
return m_storage.data()[rowId + colId * m_storage.rows()];
}
/** This is an overloaded version of DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const
* provided to by-pass the creation of an evaluator of the expression, thus saving compilation efforts.
*
* See DenseCoeffsBase<Derived,WriteAccessors>::coeffRef(Index) const for details. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Scalar& coeffRef(Index index)
{
return m_storage.data()[index];
}
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index row, Index col) const
/** This is the const version of coeffRef(Index,Index) which is thus synonym of coeff(Index,Index).
* It is provided for convenience. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index rowId, Index colId) const
{
if(Flags & RowMajorBit)
return m_storage.data()[col + row * m_storage.cols()];
return m_storage.data()[colId + rowId * m_storage.cols()];
else // column-major
return m_storage.data()[row + col * m_storage.rows()];
return m_storage.data()[rowId + colId * m_storage.rows()];
}
/** This is the const version of coeffRef(Index) which is thus synonym of coeff(Index).
* It is provided for convenience. */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE const Scalar& coeffRef(Index index) const
{
return m_storage.data()[index];
......@@ -160,12 +219,12 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
/** \internal */
template<int LoadMode>
EIGEN_STRONG_INLINE PacketScalar packet(Index row, Index col) const
EIGEN_STRONG_INLINE PacketScalar packet(Index rowId, Index colId) const
{
return internal::ploadt<PacketScalar, LoadMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()));
? colId + rowId * m_storage.cols()
: rowId + colId * m_storage.rows()));
}
/** \internal */
......@@ -177,27 +236,27 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
/** \internal */
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(Index row, Index col, const PacketScalar& x)
EIGEN_STRONG_INLINE void writePacket(Index rowId, Index colId, const PacketScalar& val)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>
(m_storage.data() + (Flags & RowMajorBit
? col + row * m_storage.cols()
: row + col * m_storage.rows()), x);
? colId + rowId * m_storage.cols()
: rowId + colId * m_storage.rows()), val);
}
/** \internal */
template<int StoreMode>
EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& x)
EIGEN_STRONG_INLINE void writePacket(Index index, const PacketScalar& val)
{
internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, x);
internal::pstoret<Scalar, PacketScalar, StoreMode>(m_storage.data() + index, val);
}
/** \returns a const pointer to the data array of this matrix */
EIGEN_STRONG_INLINE const Scalar *data() const
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar *data() const
{ return m_storage.data(); }
/** \returns a pointer to the data array of this matrix */
EIGEN_STRONG_INLINE Scalar *data()
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar *data()
{ return m_storage.data(); }
/** Resizes \c *this to a \a rows x \a cols matrix.
......@@ -216,16 +275,21 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
*
* \sa resize(Index) for vectors, resize(NoChange_t, Index), resize(Index, NoChange_t)
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void resize(Index rows, Index cols)
{
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
internal::check_rows_cols_for_overflow(rows, cols);
eigen_assert( EIGEN_IMPLIES(RowsAtCompileTime!=Dynamic,rows==RowsAtCompileTime)
&& EIGEN_IMPLIES(ColsAtCompileTime!=Dynamic,cols==ColsAtCompileTime)
&& EIGEN_IMPLIES(RowsAtCompileTime==Dynamic && MaxRowsAtCompileTime!=Dynamic,rows<=MaxRowsAtCompileTime)
&& EIGEN_IMPLIES(ColsAtCompileTime==Dynamic && MaxColsAtCompileTime!=Dynamic,cols<=MaxColsAtCompileTime)
&& rows>=0 && cols>=0 && "Invalid sizes when resizing a matrix or array.");
internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(rows, cols);
#ifdef EIGEN_INITIALIZE_COEFFS
Index size = rows*cols;
bool size_changed = size != this->size();
m_storage.resize(size, rows, cols);
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
#else
internal::check_rows_cols_for_overflow(rows, cols);
m_storage.resize(rows*cols, rows, cols);
#endif
}
......@@ -241,19 +305,20 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
*
* \sa resize(Index,Index), resize(NoChange_t, Index), resize(Index, NoChange_t)
*/
EIGEN_DEVICE_FUNC
inline void resize(Index size)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(PlainObjectBase)
eigen_assert(SizeAtCompileTime == Dynamic || SizeAtCompileTime == size);
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
eigen_assert(((SizeAtCompileTime == Dynamic && (MaxSizeAtCompileTime==Dynamic || size<=MaxSizeAtCompileTime)) || SizeAtCompileTime == size) && size>=0);
#ifdef EIGEN_INITIALIZE_COEFFS
bool size_changed = size != this->size();
#endif
if(RowsAtCompileTime == 1)
m_storage.resize(size, 1, size);
else
m_storage.resize(size, size, 1);
#ifdef EIGEN_INITIALIZE_MATRICES_BY_ZERO
if(size_changed) EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
#ifdef EIGEN_INITIALIZE_COEFFS
if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
#endif
}
......@@ -265,6 +330,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
*
* \sa resize(Index,Index)
*/
EIGEN_DEVICE_FUNC
inline void resize(NoChange_t, Index cols)
{
resize(rows(), cols);
......@@ -278,6 +344,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
*
* \sa resize(Index,Index)
*/
EIGEN_DEVICE_FUNC
inline void resize(Index rows, NoChange_t)
{
resize(rows, cols());
......@@ -291,10 +358,11 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void resizeLike(const EigenBase<OtherDerived>& _other)
{
const OtherDerived& other = _other.derived();
internal::check_rows_cols_for_overflow(other.rows(), other.cols());
internal::check_rows_cols_for_overflow<MaxSizeAtCompileTime>::run(other.rows(), other.cols());
const Index othersize = other.rows()*other.cols();
if(RowsAtCompileTime == 1)
{
......@@ -318,6 +386,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
* Matrices are resized relative to the top-left element. In case values need to be
* appended to the matrix they will be uninitialized.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void conservativeResize(Index rows, Index cols)
{
internal::conservative_resize_like_impl<Derived>::run(*this, rows, cols);
......@@ -330,6 +399,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
*
* In case the matrix is growing, new rows will be uninitialized.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void conservativeResize(Index rows, NoChange_t)
{
// Note: see the comment in conservativeResize(Index,Index)
......@@ -343,6 +413,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
*
* In case the matrix is growing, new columns will be uninitialized.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void conservativeResize(NoChange_t, Index cols)
{
// Note: see the comment in conservativeResize(Index,Index)
......@@ -357,6 +428,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
*
* When values are appended, they will be uninitialized.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void conservativeResize(Index size)
{
internal::conservative_resize_like_impl<Derived>::run(*this, size);
......@@ -372,6 +444,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
* appended to the matrix they will copied from \c other.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void conservativeResizeLike(const DenseBase<OtherDerived>& other)
{
internal::conservative_resize_like_impl<Derived,OtherDerived>::run(*this, other);
......@@ -380,6 +453,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
/** This is a special case of the templated operator=. Its purpose is to
* prevent a default operator= from hiding the templated operator=.
*/
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& operator=(const PlainObjectBase& other)
{
return _set(other);
......@@ -387,6 +461,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
/** \sa MatrixBase::lazyAssign() */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& lazyAssign(const DenseBase<OtherDerived>& other)
{
_resize_to_match(other);
......@@ -394,53 +469,107 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
}
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& operator=(const ReturnByValue<OtherDerived>& func)
{
resize(func.rows(), func.cols());
return Base::operator=(func);
}
EIGEN_STRONG_INLINE explicit PlainObjectBase() : m_storage()
// Prevent user from trying to instantiate PlainObjectBase objects
// by making all its constructor protected. See bug 1074.
protected:
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase() : m_storage()
{
// _check_template_params();
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#ifndef EIGEN_PARSED_BY_DOXYGEN
// FIXME is it still needed ?
/** \internal */
PlainObjectBase(internal::constructor_without_unaligned_array_assert)
EIGEN_DEVICE_FUNC
explicit PlainObjectBase(internal::constructor_without_unaligned_array_assert)
: m_storage(internal::constructor_without_unaligned_array_assert())
{
// _check_template_params(); EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
// _check_template_params(); EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
#endif
#if EIGEN_HAS_RVALUE_REFERENCES
EIGEN_DEVICE_FUNC
PlainObjectBase(PlainObjectBase&& other) EIGEN_NOEXCEPT
: m_storage( std::move(other.m_storage) )
{
}
EIGEN_DEVICE_FUNC
PlainObjectBase& operator=(PlainObjectBase&& other) EIGEN_NOEXCEPT
{
using std::swap;
swap(m_storage, other.m_storage);
return *this;
}
#endif
/** Copy constructor */
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase(const PlainObjectBase& other)
: Base(), m_storage(other.m_storage) { }
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase(Index size, Index rows, Index cols)
: m_storage(size, rows, cols)
{
// _check_template_params();
// EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
// EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
}
/** \copydoc MatrixBase::operator=(const EigenBase<OtherDerived>&)
*/
/** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other)
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase(const DenseBase<OtherDerived> &other)
: m_storage()
{
_resize_to_match(other);
Base::operator=(other.derived());
return this->derived();
_check_template_params();
resizeLike(other);
_set_noalias(other);
}
/** \sa MatrixBase::operator=(const EigenBase<OtherDerived>&) */
/** \sa PlainObjectBase::operator=(const EigenBase<OtherDerived>&) */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase(const EigenBase<OtherDerived> &other)
: m_storage(other.derived().rows() * other.derived().cols(), other.derived().rows(), other.derived().cols())
: m_storage()
{
_check_template_params();
resizeLike(other);
*this = other.derived();
}
/** \brief Copy constructor with in-place evaluation */
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE PlainObjectBase(const ReturnByValue<OtherDerived>& other)
{
_check_template_params();
internal::check_rows_cols_for_overflow(other.derived().rows(), other.derived().cols());
// FIXME this does not automatically transpose vectors if necessary
resize(other.rows(), other.cols());
other.evalTo(this->derived());
}
public:
/** \brief Copies the generic expression \a other into *this.
* \copydetails DenseBase::operator=(const EigenBase<OtherDerived> &other)
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& operator=(const EigenBase<OtherDerived> &other)
{
_resize_to_match(other);
Base::operator=(other.derived());
return this->derived();
}
/** \name Map
......@@ -448,6 +577,10 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
* while the AlignedMap() functions return aligned Map objects and thus should be called only with 16-byte-aligned
* \a data pointers.
*
* Here is an example using strides:
* \include Matrix_Map_stride.cpp
* Output: \verbinclude Matrix_Map_stride.out
*
* \see class Map
*/
//@{
......@@ -517,16 +650,16 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
//@}
using Base::setConstant;
Derived& setConstant(Index size, const Scalar& value);
Derived& setConstant(Index rows, Index cols, const Scalar& value);
EIGEN_DEVICE_FUNC Derived& setConstant(Index size, const Scalar& val);
EIGEN_DEVICE_FUNC Derived& setConstant(Index rows, Index cols, const Scalar& val);
using Base::setZero;
Derived& setZero(Index size);
Derived& setZero(Index rows, Index cols);
EIGEN_DEVICE_FUNC Derived& setZero(Index size);
EIGEN_DEVICE_FUNC Derived& setZero(Index rows, Index cols);
using Base::setOnes;
Derived& setOnes(Index size);
Derived& setOnes(Index rows, Index cols);
EIGEN_DEVICE_FUNC Derived& setOnes(Index size);
EIGEN_DEVICE_FUNC Derived& setOnes(Index rows, Index cols);
using Base::setRandom;
Derived& setRandom(Index size);
......@@ -545,6 +678,7 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
* remain row-vectors and vectors remain vectors.
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _resize_to_match(const EigenBase<OtherDerived>& other)
{
#ifdef EIGEN_NO_AUTOMATIC_RESIZING
......@@ -571,25 +705,23 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
*
* \internal
*/
// aliasing is dealt once in internall::call_assignment
// so at this stage we have to assume aliasing... and resising has to be done later.
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& _set(const DenseBase<OtherDerived>& other)
{
_set_selector(other.derived(), typename internal::conditional<static_cast<bool>(int(OtherDerived::Flags) & EvalBeforeAssigningBit), internal::true_type, internal::false_type>::type());
internal::call_assignment(this->derived(), other.derived());
return this->derived();
}
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::true_type&) { _set_noalias(other.eval()); }
template<typename OtherDerived>
EIGEN_STRONG_INLINE void _set_selector(const OtherDerived& other, const internal::false_type&) { _set_noalias(other); }
/** \internal Like _set() but additionally makes the assumption that no aliasing effect can happen (which
* is the case when creating a new matrix) so one can enforce lazy evaluation.
*
* \sa operator=(const MatrixBase<OtherDerived>&), _set()
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE Derived& _set_noalias(const DenseBase<OtherDerived>& other)
{
// I don't think we need this resize call since the lazyAssign will anyways resize
......@@ -597,44 +729,177 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
//_resize_to_match(other);
// the 'false' below means to enforce lazy evaluation. We don't use lazyAssign() because
// it wouldn't allow to copy a row-vector into a column-vector.
return internal::assign_selector<Derived,OtherDerived,false>::run(this->derived(), other.derived());
internal::call_assignment_no_alias(this->derived(), other.derived(), internal::assign_op<Scalar,typename OtherDerived::Scalar>());
return this->derived();
}
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init2(Index rows, Index cols, typename internal::enable_if<Base::SizeAtCompileTime!=2,T0>::type* = 0)
{
EIGEN_STATIC_ASSERT(bool(NumTraits<T0>::IsInteger) &&
bool(NumTraits<T1>::IsInteger),
const bool t0_is_integer_alike = internal::is_valid_index_type<T0>::value;
const bool t1_is_integer_alike = internal::is_valid_index_type<T1>::value;
EIGEN_STATIC_ASSERT(t0_is_integer_alike &&
t1_is_integer_alike,
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
eigen_assert(rows >= 0 && (RowsAtCompileTime == Dynamic || RowsAtCompileTime == rows)
&& cols >= 0 && (ColsAtCompileTime == Dynamic || ColsAtCompileTime == cols));
internal::check_rows_cols_for_overflow(rows, cols);
m_storage.resize(rows*cols,rows,cols);
EIGEN_INITIALIZE_BY_ZERO_IF_THAT_OPTION_IS_ENABLED
resize(rows,cols);
}
template<typename T0, typename T1>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init2(const T0& val0, const T1& val1, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
m_storage.data()[0] = Scalar(val0);
m_storage.data()[1] = Scalar(val1);
}
template<typename T0, typename T1>
EIGEN_STRONG_INLINE void _init2(const Scalar& x, const Scalar& y, typename internal::enable_if<Base::SizeAtCompileTime==2,T0>::type* = 0)
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init2(const Index& val0, const Index& val1,
typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
&& (internal::is_same<T0,Index>::value)
&& (internal::is_same<T1,Index>::value)
&& Base::SizeAtCompileTime==2,T1>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 2)
m_storage.data()[0] = x;
m_storage.data()[1] = y;
m_storage.data()[0] = Scalar(val0);
m_storage.data()[1] = Scalar(val1);
}
// The argument is convertible to the Index type and we either have a non 1x1 Matrix, or a dynamic-sized Array,
// then the argument is meant to be the size of the object.
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(Index size, typename internal::enable_if< (Base::SizeAtCompileTime!=1 || !internal::is_convertible<T, Scalar>::value)
&& ((!internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value || Base::SizeAtCompileTime==Dynamic)),T>::type* = 0)
{
// NOTE MSVC 2008 complains if we directly put bool(NumTraits<T>::IsInteger) as the EIGEN_STATIC_ASSERT argument.
const bool is_integer_alike = internal::is_valid_index_type<T>::value;
EIGEN_UNUSED_VARIABLE(is_integer_alike);
EIGEN_STATIC_ASSERT(is_integer_alike,
FLOATING_POINT_ARGUMENT_PASSED__INTEGER_WAS_EXPECTED)
resize(size);
}
// We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type can be implicitely converted)
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar& val0, typename internal::enable_if<Base::SizeAtCompileTime==1 && internal::is_convertible<T, Scalar>::value,T>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
m_storage.data()[0] = val0;
}
// We have a 1x1 matrix/array => the argument is interpreted as the value of the unique coefficient (case where scalar type match the index type)
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Index& val0,
typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
&& (internal::is_same<Index,T>::value)
&& Base::SizeAtCompileTime==1
&& internal::is_convertible<T, Scalar>::value,T*>::type* = 0)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(PlainObjectBase, 1)
m_storage.data()[0] = Scalar(val0);
}
// Initialize a fixed size matrix from a pointer to raw data
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar* data){
this->_set_noalias(ConstMapType(data));
}
// Initialize an arbitrary matrix from a dense expression
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const DenseBase<OtherDerived>& other){
this->_set_noalias(other);
}
// Initialize an arbitrary matrix from an object convertible to the Derived type.
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Derived& other){
this->_set_noalias(other);
}
// Initialize an arbitrary matrix from a generic Eigen expression
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const EigenBase<OtherDerived>& other){
this->derived() = other;
}
template<typename T, typename OtherDerived>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const ReturnByValue<OtherDerived>& other)
{
resize(other.rows(), other.cols());
other.evalTo(this->derived());
}
template<typename T, typename OtherDerived, int ColsAtCompileTime>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
this->derived() = r;
}
// For fixed-size Array<Scalar,...>
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Scalar& val0,
typename internal::enable_if< Base::SizeAtCompileTime!=Dynamic
&& Base::SizeAtCompileTime!=1
&& internal::is_convertible<T, Scalar>::value
&& internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T>::type* = 0)
{
Base::setConstant(val0);
}
// For fixed-size Array<Index,...>
template<typename T>
EIGEN_DEVICE_FUNC
EIGEN_STRONG_INLINE void _init1(const Index& val0,
typename internal::enable_if< (!internal::is_same<Index,Scalar>::value)
&& (internal::is_same<Index,T>::value)
&& Base::SizeAtCompileTime!=Dynamic
&& Base::SizeAtCompileTime!=1
&& internal::is_convertible<T, Scalar>::value
&& internal::is_same<typename internal::traits<Derived>::XprKind,ArrayXpr>::value,T*>::type* = 0)
{
Base::setConstant(val0);
}
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
friend struct internal::matrix_swap_impl;
/** \internal generic implementation of swap for dense storage since for dynamic-sized matrices of same type it is enough to swap the
* data pointers.
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal
* \brief Override DenseBase::swap() since for dynamic-sized matrices
* of same type it is enough to swap the data pointers.
*/
template<typename OtherDerived>
void _swap(DenseBase<OtherDerived> const & other)
EIGEN_DEVICE_FUNC
void swap(DenseBase<OtherDerived> & other)
{
enum { SwapPointers = internal::is_same<Derived, OtherDerived>::value && Base::SizeAtCompileTime==Dynamic };
internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.const_cast_derived());
internal::matrix_swap_impl<Derived, OtherDerived, bool(SwapPointers)>::run(this->derived(), other.derived());
}
public:
#ifndef EIGEN_PARSED_BY_DOXYGEN
/** \internal
* \brief const version forwarded to DenseBase::swap
*/
template<typename OtherDerived>
EIGEN_DEVICE_FUNC
void swap(DenseBase<OtherDerived> const & other)
{ Base::swap(other.derived()); }
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE void _check_template_params()
{
EIGEN_STATIC_ASSERT((EIGEN_IMPLIES(MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1, (Options&RowMajor)==RowMajor)
......@@ -648,16 +913,16 @@ class PlainObjectBase : public internal::dense_xpr_base<Derived>::type
&& (Options & (DontAlign|RowMajor)) == Options),
INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
#endif
private:
enum { ThisConstantIsPrivateInPlainObjectBase };
enum { IsPlainObjectBase = 1 };
#endif
};
namespace internal {
template <typename Derived, typename OtherDerived, bool IsVector>
struct internal::conservative_resize_like_impl
struct conservative_resize_like_impl
{
typedef typename Derived::Index Index;
static void run(DenseBase<Derived>& _this, Index rows, Index cols)
{
if (_this.rows() == rows && _this.cols() == cols) return;
......@@ -666,15 +931,15 @@ struct internal::conservative_resize_like_impl
if ( ( Derived::IsRowMajor && _this.cols() == cols) || // row-major and we change only the number of rows
(!Derived::IsRowMajor && _this.rows() == rows) ) // column-major and we change only the number of columns
{
internal::check_rows_cols_for_overflow(rows, cols);
internal::check_rows_cols_for_overflow<Derived::MaxSizeAtCompileTime>::run(rows, cols);
_this.derived().m_storage.conservativeResize(rows*cols,rows,cols);
}
else
{
// The storage order does not allow us to use reallocation.
typename Derived::PlainObject tmp(rows,cols);
const Index common_rows = (std::min)(rows, _this.rows());
const Index common_cols = (std::min)(cols, _this.cols());
const Index common_rows = numext::mini(rows, _this.rows());
const Index common_cols = numext::mini(cols, _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
......@@ -707,20 +972,22 @@ struct internal::conservative_resize_like_impl
{
// The storage order does not allow us to use reallocation.
typename Derived::PlainObject tmp(other);
const Index common_rows = (std::min)(tmp.rows(), _this.rows());
const Index common_cols = (std::min)(tmp.cols(), _this.cols());
const Index common_rows = numext::mini(tmp.rows(), _this.rows());
const Index common_cols = numext::mini(tmp.cols(), _this.cols());
tmp.block(0,0,common_rows,common_cols) = _this.block(0,0,common_rows,common_cols);
_this.derived().swap(tmp);
}
}
};
namespace internal {
// Here, the specialization for vectors inherits from the general matrix case
// to allow calling .conservativeResize(rows,cols) on vectors.
template <typename Derived, typename OtherDerived>
struct conservative_resize_like_impl<Derived,OtherDerived,true>
: conservative_resize_like_impl<Derived,OtherDerived,false>
{
typedef typename Derived::Index Index;
using conservative_resize_like_impl<Derived,OtherDerived,false>::run;
static void run(DenseBase<Derived>& _this, Index size)
{
const Index new_rows = Derived::RowsAtCompileTime==1 ? 1 : size;
......@@ -746,6 +1013,7 @@ struct conservative_resize_like_impl<Derived,OtherDerived,true>
template<typename MatrixTypeA, typename MatrixTypeB, bool SwapPointers>
struct matrix_swap_impl
{
EIGEN_DEVICE_FUNC
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
{
a.base().swap(b);
......@@ -755,6 +1023,7 @@ struct matrix_swap_impl
template<typename MatrixTypeA, typename MatrixTypeB>
struct matrix_swap_impl<MatrixTypeA, MatrixTypeB, true>
{
EIGEN_DEVICE_FUNC
static inline void run(MatrixTypeA& a, MatrixTypeB& b)
{
static_cast<typename MatrixTypeA::Base&>(a).m_storage.swap(static_cast<typename MatrixTypeB::Base&>(b).m_storage);
......
......@@ -3,96 +3,184 @@
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PRODUCT_H
#define EIGEN_PRODUCT_H
template<typename Lhs, typename Rhs> class Product;
template<typename Lhs, typename Rhs, typename StorageKind> class ProductImpl;
namespace Eigen {
/** \class Product
* \ingroup Core_Module
*
* \brief Expression of the product of two arbitrary matrices or vectors
*
* \param Lhs the type of the left-hand side expression
* \param Rhs the type of the right-hand side expression
*
* This class represents an expression of the product of two arbitrary matrices.
*
*/
template<typename Lhs, typename Rhs, int Option, typename StorageKind> class ProductImpl;
namespace internal {
template<typename Lhs, typename Rhs>
struct traits<Product<Lhs, Rhs> >
template<typename Lhs, typename Rhs, int Option>
struct traits<Product<Lhs, Rhs, Option> >
{
typedef MatrixXpr XprKind;
typedef typename remove_all<Lhs>::type LhsCleaned;
typedef typename remove_all<Rhs>::type RhsCleaned;
typedef typename scalar_product_traits<typename traits<LhsCleaned>::Scalar, typename traits<RhsCleaned>::Scalar>::ReturnType Scalar;
typedef typename promote_storage_type<typename traits<LhsCleaned>::StorageKind,
typename traits<RhsCleaned>::StorageKind>::ret StorageKind;
typedef typename promote_index_type<typename traits<LhsCleaned>::Index,
typename traits<RhsCleaned>::Index>::type Index;
typedef traits<LhsCleaned> LhsTraits;
typedef traits<RhsCleaned> RhsTraits;
typedef MatrixXpr XprKind;
typedef typename ScalarBinaryOpTraits<typename traits<LhsCleaned>::Scalar, typename traits<RhsCleaned>::Scalar>::ReturnType Scalar;
typedef typename product_promote_storage_type<typename LhsTraits::StorageKind,
typename RhsTraits::StorageKind,
internal::product_type<Lhs,Rhs>::ret>::ret StorageKind;
typedef typename promote_index_type<typename LhsTraits::StorageIndex,
typename RhsTraits::StorageIndex>::type StorageIndex;
enum {
RowsAtCompileTime = LhsCleaned::RowsAtCompileTime,
ColsAtCompileTime = RhsCleaned::ColsAtCompileTime,
MaxRowsAtCompileTime = LhsCleaned::MaxRowsAtCompileTime,
MaxColsAtCompileTime = RhsCleaned::MaxColsAtCompileTime,
Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0), // TODO should be no storage order
CoeffReadCost = 0 // TODO CoeffReadCost should not be part of the expression traits
RowsAtCompileTime = LhsTraits::RowsAtCompileTime,
ColsAtCompileTime = RhsTraits::ColsAtCompileTime,
MaxRowsAtCompileTime = LhsTraits::MaxRowsAtCompileTime,
MaxColsAtCompileTime = RhsTraits::MaxColsAtCompileTime,
// FIXME: only needed by GeneralMatrixMatrixTriangular
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsTraits::ColsAtCompileTime, RhsTraits::RowsAtCompileTime),
// The storage order is somewhat arbitrary here. The correct one will be determined through the evaluator.
Flags = (MaxRowsAtCompileTime==1 && MaxColsAtCompileTime!=1) ? RowMajorBit
: (MaxColsAtCompileTime==1 && MaxRowsAtCompileTime!=1) ? 0
: ( ((LhsTraits::Flags&NoPreferredStorageOrderBit) && (RhsTraits::Flags&RowMajorBit))
|| ((RhsTraits::Flags&NoPreferredStorageOrderBit) && (LhsTraits::Flags&RowMajorBit)) ) ? RowMajorBit
: NoPreferredStorageOrderBit
};
};
} // end namespace internal
} // end namespace internal
template<typename Lhs, typename Rhs>
class Product : public ProductImpl<Lhs,Rhs,typename internal::promote_storage_type<typename internal::traits<Lhs>::StorageKind,
typename internal::traits<Rhs>::StorageKind>::ret>
/** \class Product
* \ingroup Core_Module
*
* \brief Expression of the product of two arbitrary matrices or vectors
*
* \tparam _Lhs the type of the left-hand side expression
* \tparam _Rhs the type of the right-hand side expression
*
* This class represents an expression of the product of two arbitrary matrices.
*
* The other template parameters are:
* \tparam Option can be DefaultProduct, AliasFreeProduct, or LazyProduct
*
*/
template<typename _Lhs, typename _Rhs, int Option>
class Product : public ProductImpl<_Lhs,_Rhs,Option,
typename internal::product_promote_storage_type<typename internal::traits<_Lhs>::StorageKind,
typename internal::traits<_Rhs>::StorageKind,
internal::product_type<_Lhs,_Rhs>::ret>::ret>
{
public:
typedef _Lhs Lhs;
typedef _Rhs Rhs;
typedef typename ProductImpl<
Lhs, Rhs,
typename internal::promote_storage_type<typename Lhs::StorageKind,
typename Rhs::StorageKind>::ret>::Base Base;
Lhs, Rhs, Option,
typename internal::product_promote_storage_type<typename internal::traits<Lhs>::StorageKind,
typename internal::traits<Rhs>::StorageKind,
internal::product_type<Lhs,Rhs>::ret>::ret>::Base Base;
EIGEN_GENERIC_PUBLIC_INTERFACE(Product)
typedef typename Lhs::Nested LhsNested;
typedef typename Rhs::Nested RhsNested;
typedef typename internal::ref_selector<Lhs>::type LhsNested;
typedef typename internal::ref_selector<Rhs>::type RhsNested;
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs)
EIGEN_DEVICE_FUNC Product(const Lhs& lhs, const Rhs& rhs) : m_lhs(lhs), m_rhs(rhs)
{
eigen_assert(lhs.cols() == rhs.rows()
&& "invalid matrix product"
&& "if you wanted a coeff-wise or a dot product use the respective explicit functions");
}
inline Index rows() const { return m_lhs.rows(); }
inline Index cols() const { return m_rhs.cols(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rows() const { return m_lhs.rows(); }
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index cols() const { return m_rhs.cols(); }
const LhsNestedCleaned& lhs() const { return m_lhs; }
const RhsNestedCleaned& rhs() const { return m_rhs; }
EIGEN_DEVICE_FUNC const LhsNestedCleaned& lhs() const { return m_lhs; }
EIGEN_DEVICE_FUNC const RhsNestedCleaned& rhs() const { return m_rhs; }
protected:
const LhsNested m_lhs;
const RhsNested m_rhs;
LhsNested m_lhs;
RhsNested m_rhs;
};
namespace internal {
template<typename Lhs, typename Rhs, int Option, int ProductTag = internal::product_type<Lhs,Rhs>::ret>
class dense_product_base
: public internal::dense_xpr_base<Product<Lhs,Rhs,Option> >::type
{};
/** Convertion to scalar for inner-products */
template<typename Lhs, typename Rhs, int Option>
class dense_product_base<Lhs, Rhs, Option, InnerProduct>
: public internal::dense_xpr_base<Product<Lhs,Rhs,Option> >::type
{
typedef Product<Lhs,Rhs,Option> ProductXpr;
typedef typename internal::dense_xpr_base<ProductXpr>::type Base;
public:
using Base::derived;
typedef typename Base::Scalar Scalar;
EIGEN_STRONG_INLINE operator const Scalar() const
{
return internal::evaluator<ProductXpr>(derived()).coeff(0,0);
}
};
template<typename Lhs, typename Rhs>
class ProductImpl<Lhs,Rhs,Dense> : public internal::dense_xpr_base<Product<Lhs,Rhs> >::type
} // namespace internal
// Generic API dispatcher
template<typename Lhs, typename Rhs, int Option, typename StorageKind>
class ProductImpl : public internal::generic_xpr_base<Product<Lhs,Rhs,Option>, MatrixXpr, StorageKind>::type
{
typedef Product<Lhs, Rhs> Derived;
public:
typedef typename internal::generic_xpr_base<Product<Lhs,Rhs,Option>, MatrixXpr, StorageKind>::type Base;
};
typedef typename internal::dense_xpr_base<Product<Lhs, Rhs> >::type Base;
template<typename Lhs, typename Rhs, int Option>
class ProductImpl<Lhs,Rhs,Option,Dense>
: public internal::dense_product_base<Lhs,Rhs,Option>
{
typedef Product<Lhs, Rhs, Option> Derived;
public:
typedef typename internal::dense_product_base<Lhs, Rhs, Option> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Derived)
protected:
enum {
IsOneByOne = (RowsAtCompileTime == 1 || RowsAtCompileTime == Dynamic) &&
(ColsAtCompileTime == 1 || ColsAtCompileTime == Dynamic),
EnableCoeff = IsOneByOne || Option==LazyProduct
};
public:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index row, Index col) const
{
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
return internal::evaluator<Derived>(derived()).coeff(row,col);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar coeff(Index i) const
{
EIGEN_STATIC_ASSERT(EnableCoeff, THIS_METHOD_IS_ONLY_FOR_INNER_OR_LAZY_PRODUCTS);
eigen_assert( (Option==LazyProduct) || (this->rows() == 1 && this->cols() == 1) );
return internal::evaluator<Derived>(derived()).coeff(i);
}
};
} // end namespace Eigen
#endif // EIGEN_PRODUCT_H
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_PRODUCTEVALUATORS_H
#define EIGEN_PRODUCTEVALUATORS_H
namespace Eigen {
namespace internal {
/** \internal
* Evaluator of a product expression.
* Since products require special treatments to handle all possible cases,
* we simply deffer the evaluation logic to a product_evaluator class
* which offers more partial specialization possibilities.
*
* \sa class product_evaluator
*/
template<typename Lhs, typename Rhs, int Options>
struct evaluator<Product<Lhs, Rhs, Options> >
: public product_evaluator<Product<Lhs, Rhs, Options> >
{
typedef Product<Lhs, Rhs, Options> XprType;
typedef product_evaluator<XprType> Base;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr) : Base(xpr) {}
};
// Catch "scalar * ( A * B )" and transform it to "(A*scalar) * B"
// TODO we should apply that rule only if that's really helpful
template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
const Product<Lhs, Rhs, DefaultProduct> > >
{
static const bool value = true;
};
template<typename Lhs, typename Rhs, typename Scalar1, typename Scalar2, typename Plain1>
struct evaluator<CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
const Product<Lhs, Rhs, DefaultProduct> > >
: public evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> >
{
typedef CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>,
const Product<Lhs, Rhs, DefaultProduct> > XprType;
typedef evaluator<Product<EIGEN_SCALAR_BINARYOP_EXPR_RETURN_TYPE(Scalar1,Lhs,product), Rhs, DefaultProduct> > Base;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
: Base(xpr.lhs().functor().m_other * xpr.rhs().lhs() * xpr.rhs().rhs())
{}
};
template<typename Lhs, typename Rhs, int DiagIndex>
struct evaluator<Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> >
: public evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> >
{
typedef Diagonal<const Product<Lhs, Rhs, DefaultProduct>, DiagIndex> XprType;
typedef evaluator<Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex> > Base;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE explicit evaluator(const XprType& xpr)
: Base(Diagonal<const Product<Lhs, Rhs, LazyProduct>, DiagIndex>(
Product<Lhs, Rhs, LazyProduct>(xpr.nestedExpression().lhs(), xpr.nestedExpression().rhs()),
xpr.index() ))
{}
};
// Helper class to perform a matrix product with the destination at hand.
// Depending on the sizes of the factors, there are different evaluation strategies
// as controlled by internal::product_type.
template< typename Lhs, typename Rhs,
typename LhsShape = typename evaluator_traits<Lhs>::Shape,
typename RhsShape = typename evaluator_traits<Rhs>::Shape,
int ProductType = internal::product_type<Lhs,Rhs>::value>
struct generic_product_impl;
template<typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<Product<Lhs, Rhs, DefaultProduct> > {
static const bool value = true;
};
// This is the default evaluator implementation for products:
// It creates a temporary and call generic_product_impl
template<typename Lhs, typename Rhs, int Options, int ProductTag, typename LhsShape, typename RhsShape>
struct product_evaluator<Product<Lhs, Rhs, Options>, ProductTag, LhsShape, RhsShape>
: public evaluator<typename Product<Lhs, Rhs, Options>::PlainObject>
{
typedef Product<Lhs, Rhs, Options> XprType;
typedef typename XprType::PlainObject PlainObject;
typedef evaluator<PlainObject> Base;
enum {
Flags = Base::Flags | EvalBeforeNestingBit
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
explicit product_evaluator(const XprType& xpr)
: m_result(xpr.rows(), xpr.cols())
{
::new (static_cast<Base*>(this)) Base(m_result);
// FIXME shall we handle nested_eval here?,
// if so, then we must take care at removing the call to nested_eval in the specializations (e.g., in permutation_matrix_product, transposition_matrix_product, etc.)
// typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
// typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
// typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
// typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
//
// const LhsNested lhs(xpr.lhs());
// const RhsNested rhs(xpr.rhs());
//
// generic_product_impl<LhsNestedCleaned, RhsNestedCleaned>::evalTo(m_result, lhs, rhs);
generic_product_impl<Lhs, Rhs, LhsShape, RhsShape, ProductTag>::evalTo(m_result, xpr.lhs(), xpr.rhs());
}
protected:
PlainObject m_result;
};
// The following three shortcuts are enabled only if the scalar types match excatly.
// TODO: we could enable them for different scalar types when the product is not vectorized.
// Dense = Product
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::assign_op<Scalar,Scalar>, Dense2Dense,
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
{
typedef Product<Lhs,Rhs,Options> SrcXprType;
static EIGEN_STRONG_INLINE
void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,Scalar> &)
{
Index dstRows = src.rows();
Index dstCols = src.cols();
if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
dst.resize(dstRows, dstCols);
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::evalTo(dst, src.lhs(), src.rhs());
}
};
// Dense += Product
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::add_assign_op<Scalar,Scalar>, Dense2Dense,
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
{
typedef Product<Lhs,Rhs,Options> SrcXprType;
static EIGEN_STRONG_INLINE
void run(DstXprType &dst, const SrcXprType &src, const internal::add_assign_op<Scalar,Scalar> &)
{
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::addTo(dst, src.lhs(), src.rhs());
}
};
// Dense -= Product
template< typename DstXprType, typename Lhs, typename Rhs, int Options, typename Scalar>
struct Assignment<DstXprType, Product<Lhs,Rhs,Options>, internal::sub_assign_op<Scalar,Scalar>, Dense2Dense,
typename enable_if<(Options==DefaultProduct || Options==AliasFreeProduct)>::type>
{
typedef Product<Lhs,Rhs,Options> SrcXprType;
static EIGEN_STRONG_INLINE
void run(DstXprType &dst, const SrcXprType &src, const internal::sub_assign_op<Scalar,Scalar> &)
{
eigen_assert(dst.rows() == src.rows() && dst.cols() == src.cols());
// FIXME shall we handle nested_eval here?
generic_product_impl<Lhs, Rhs>::subTo(dst, src.lhs(), src.rhs());
}
};
// Dense ?= scalar * Product
// TODO we should apply that rule if that's really helpful
// for instance, this is not good for inner products
template< typename DstXprType, typename Lhs, typename Rhs, typename AssignFunc, typename Scalar, typename ScalarBis, typename Plain>
struct Assignment<DstXprType, CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>, const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
const Product<Lhs,Rhs,DefaultProduct> >, AssignFunc, Dense2Dense>
{
typedef CwiseBinaryOp<internal::scalar_product_op<ScalarBis,Scalar>,
const CwiseNullaryOp<internal::scalar_constant_op<ScalarBis>,Plain>,
const Product<Lhs,Rhs,DefaultProduct> > SrcXprType;
static EIGEN_STRONG_INLINE
void run(DstXprType &dst, const SrcXprType &src, const AssignFunc& func)
{
call_assignment_no_alias(dst, (src.lhs().functor().m_other * src.rhs().lhs())*src.rhs().rhs(), func);
}
};
//----------------------------------------
// Catch "Dense ?= xpr + Product<>" expression to save one temporary
// FIXME we could probably enable these rules for any product, i.e., not only Dense and DefaultProduct
template<typename OtherXpr, typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_sum_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
static const bool value = true;
};
template<typename OtherXpr, typename Lhs, typename Rhs>
struct evaluator_assume_aliasing<CwiseBinaryOp<internal::scalar_difference_op<typename OtherXpr::Scalar,typename Product<Lhs,Rhs,DefaultProduct>::Scalar>, const OtherXpr,
const Product<Lhs,Rhs,DefaultProduct> >, DenseShape > {
static const bool value = true;
};
template<typename DstXprType, typename OtherXpr, typename ProductType, typename Func1, typename Func2>
struct assignment_from_xpr_op_product
{
template<typename SrcXprType, typename InitialFunc>
static EIGEN_STRONG_INLINE
void run(DstXprType &dst, const SrcXprType &src, const InitialFunc& /*func*/)
{
call_assignment_no_alias(dst, src.lhs(), Func1());
call_assignment_no_alias(dst, src.rhs(), Func2());
}
};
#define EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(ASSIGN_OP,BINOP,ASSIGN_OP2) \
template< typename DstXprType, typename OtherXpr, typename Lhs, typename Rhs, typename DstScalar, typename SrcScalar, typename OtherScalar,typename ProdScalar> \
struct Assignment<DstXprType, CwiseBinaryOp<internal::BINOP<OtherScalar,ProdScalar>, const OtherXpr, \
const Product<Lhs,Rhs,DefaultProduct> >, internal::ASSIGN_OP<DstScalar,SrcScalar>, Dense2Dense> \
: assignment_from_xpr_op_product<DstXprType, OtherXpr, Product<Lhs,Rhs,DefaultProduct>, internal::ASSIGN_OP<DstScalar,OtherScalar>, internal::ASSIGN_OP2<DstScalar,ProdScalar> > \
{}
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_sum_op,add_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_sum_op,add_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_sum_op,sub_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(assign_op, scalar_difference_op,sub_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(add_assign_op,scalar_difference_op,sub_assign_op);
EIGEN_CATCH_ASSIGN_XPR_OP_PRODUCT(sub_assign_op,scalar_difference_op,add_assign_op);
//----------------------------------------
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,InnerProduct>
{
template<typename Dst>
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
dst.coeffRef(0,0) = (lhs.transpose().cwiseProduct(rhs)).sum();
}
template<typename Dst>
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
dst.coeffRef(0,0) += (lhs.transpose().cwiseProduct(rhs)).sum();
}
template<typename Dst>
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ dst.coeffRef(0,0) -= (lhs.transpose().cwiseProduct(rhs)).sum(); }
};
/***********************************************************************
* Implementation of outer dense * dense vector product
***********************************************************************/
// Column major result
template<typename Dst, typename Lhs, typename Rhs, typename Func>
void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const false_type&)
{
evaluator<Rhs> rhsEval(rhs);
typename nested_eval<Lhs,Rhs::SizeAtCompileTime>::type actual_lhs(lhs);
// FIXME if cols is large enough, then it might be useful to make sure that lhs is sequentially stored
// FIXME not very good if rhs is real and lhs complex while alpha is real too
const Index cols = dst.cols();
for (Index j=0; j<cols; ++j)
func(dst.col(j), rhsEval.coeff(Index(0),j) * actual_lhs);
}
// Row major result
template<typename Dst, typename Lhs, typename Rhs, typename Func>
void outer_product_selector_run(Dst& dst, const Lhs &lhs, const Rhs &rhs, const Func& func, const true_type&)
{
evaluator<Lhs> lhsEval(lhs);
typename nested_eval<Rhs,Lhs::SizeAtCompileTime>::type actual_rhs(rhs);
// FIXME if rows is large enough, then it might be useful to make sure that rhs is sequentially stored
// FIXME not very good if lhs is real and rhs complex while alpha is real too
const Index rows = dst.rows();
for (Index i=0; i<rows; ++i)
func(dst.row(i), lhsEval.coeff(i,Index(0)) * actual_rhs);
}
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,OuterProduct>
{
template<typename T> struct is_row_major : internal::conditional<(int(T::Flags)&RowMajorBit), internal::true_type, internal::false_type>::type {};
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
// TODO it would be nice to be able to exploit our *_assign_op functors for that purpose
struct set { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() = src; } };
struct add { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() += src; } };
struct sub { template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const { dst.const_cast_derived() -= src; } };
struct adds {
Scalar m_scale;
explicit adds(const Scalar& s) : m_scale(s) {}
template<typename Dst, typename Src> void operator()(const Dst& dst, const Src& src) const {
dst.const_cast_derived() += m_scale * src;
}
};
template<typename Dst>
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
internal::outer_product_selector_run(dst, lhs, rhs, set(), is_row_major<Dst>());
}
template<typename Dst>
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
internal::outer_product_selector_run(dst, lhs, rhs, add(), is_row_major<Dst>());
}
template<typename Dst>
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
internal::outer_product_selector_run(dst, lhs, rhs, sub(), is_row_major<Dst>());
}
template<typename Dst>
static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
internal::outer_product_selector_run(dst, lhs, rhs, adds(alpha), is_row_major<Dst>());
}
};
// This base class provides default implementations for evalTo, addTo, subTo, in terms of scaleAndAddTo
template<typename Lhs, typename Rhs, typename Derived>
struct generic_product_impl_base
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dst>
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ dst.setZero(); scaleAndAddTo(dst, lhs, rhs, Scalar(1)); }
template<typename Dst>
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ scaleAndAddTo(dst,lhs, rhs, Scalar(1)); }
template<typename Dst>
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{ scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); }
template<typename Dst>
static EIGEN_STRONG_INLINE void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{ Derived::scaleAndAddTo(dst,lhs,rhs,alpha); }
};
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemvProduct> >
{
typedef typename nested_eval<Lhs,1>::type LhsNested;
typedef typename nested_eval<Rhs,1>::type RhsNested;
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
enum { Side = Lhs::IsVectorAtCompileTime ? OnTheLeft : OnTheRight };
typedef typename internal::remove_all<typename internal::conditional<int(Side)==OnTheRight,LhsNested,RhsNested>::type>::type MatrixType;
template<typename Dest>
static EIGEN_STRONG_INLINE void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
LhsNested actual_lhs(lhs);
RhsNested actual_rhs(rhs);
internal::gemv_dense_selector<Side,
(int(MatrixType::Flags)&RowMajorBit) ? RowMajor : ColMajor,
bool(internal::blas_traits<MatrixType>::HasUsableDirectAccess)
>::run(actual_lhs, actual_rhs, dst, alpha);
}
};
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dst>
static EIGEN_STRONG_INLINE void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
// Same as: dst.noalias() = lhs.lazyProduct(rhs);
// but easier on the compiler side
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::assign_op<typename Dst::Scalar,Scalar>());
}
template<typename Dst>
static EIGEN_STRONG_INLINE void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
// dst.noalias() += lhs.lazyProduct(rhs);
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::add_assign_op<typename Dst::Scalar,Scalar>());
}
template<typename Dst>
static EIGEN_STRONG_INLINE void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs)
{
// dst.noalias() -= lhs.lazyProduct(rhs);
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op<typename Dst::Scalar,Scalar>());
}
// Catch "dst {,+,-}= (s*A)*B" and evaluate it lazily by moving out the scalar factor:
// dst {,+,-}= s * (A.lazyProduct(B))
// This is a huge benefit for heap-allocated matrix types as it save one costly allocation.
// For them, this strategy is also faster than simply by-passing the heap allocation through
// stack allocation.
// For fixed sizes matrices, this is less obvious, it is sometimes x2 faster, but sometimes x3 slower,
// and the behavior depends also a lot on the compiler... so let's be conservative and enable them for dynamic-size only,
// that is when coming from generic_product_impl<...,GemmProduct> in file GeneralMatrixMatrix.h
template<typename Dst, typename Scalar1, typename Scalar2, typename Plain1, typename Xpr2, typename Func>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void eval_dynamic(Dst& dst, const CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>, Xpr2>& lhs, const Rhs& rhs, const Func &func)
{
call_assignment_no_alias(dst, lhs.lhs().functor().m_other * lhs.rhs().lazyProduct(rhs), func);
}
// Here, we we always have LhsT==Lhs, but we need to make it a template type to make the above
// overload more specialized.
template<typename Dst, typename LhsT, typename Func>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
void eval_dynamic(Dst& dst, const LhsT& lhs, const Rhs& rhs, const Func &func)
{
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), func);
}
// template<typename Dst>
// static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
// { dst.noalias() += alpha * lhs.lazyProduct(rhs); }
};
// This specialization enforces the use of a coefficient-based evaluation strategy
template<typename Lhs, typename Rhs>
struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,LazyCoeffBasedProductMode>
: generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> {};
// Case 2: Evaluate coeff by coeff
//
// This is mostly taken from CoeffBasedProduct.h
// The main difference is that we add an extra argument to the etor_product_*_impl::run() function
// for the inner dimension of the product, because evaluator object do not know their size.
template<int Traversal, int UnrollingIndex, typename Lhs, typename Rhs, typename RetScalar>
struct etor_product_coeff_impl;
template<int StorageOrder, int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl;
template<typename Lhs, typename Rhs, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, DenseShape>
: evaluator_base<Product<Lhs, Rhs, LazyProduct> >
{
typedef Product<Lhs, Rhs, LazyProduct> XprType;
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
explicit product_evaluator(const XprType& xpr)
: m_lhs(xpr.lhs()),
m_rhs(xpr.rhs()),
m_lhsImpl(m_lhs), // FIXME the creation of the evaluator objects should result in a no-op, but check that!
m_rhsImpl(m_rhs), // Moreover, they are only useful for the packet path, so we could completely disable them when not needed,
// or perhaps declare them on the fly on the packet method... We have experiment to check what's best.
m_innerDim(xpr.lhs().cols())
{
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::AddCost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
#if 0
std::cerr << "LhsOuterStrideBytes= " << LhsOuterStrideBytes << "\n";
std::cerr << "RhsOuterStrideBytes= " << RhsOuterStrideBytes << "\n";
std::cerr << "LhsAlignment= " << LhsAlignment << "\n";
std::cerr << "RhsAlignment= " << RhsAlignment << "\n";
std::cerr << "CanVectorizeLhs= " << CanVectorizeLhs << "\n";
std::cerr << "CanVectorizeRhs= " << CanVectorizeRhs << "\n";
std::cerr << "CanVectorizeInner= " << CanVectorizeInner << "\n";
std::cerr << "EvalToRowMajor= " << EvalToRowMajor << "\n";
std::cerr << "Alignment= " << Alignment << "\n";
std::cerr << "Flags= " << Flags << "\n";
#endif
}
// Everything below here is taken from CoeffBasedProduct.h
typedef typename internal::nested_eval<Lhs,Rhs::ColsAtCompileTime>::type LhsNested;
typedef typename internal::nested_eval<Rhs,Lhs::RowsAtCompileTime>::type RhsNested;
typedef typename internal::remove_all<LhsNested>::type LhsNestedCleaned;
typedef typename internal::remove_all<RhsNested>::type RhsNestedCleaned;
typedef evaluator<LhsNestedCleaned> LhsEtorType;
typedef evaluator<RhsNestedCleaned> RhsEtorType;
enum {
RowsAtCompileTime = LhsNestedCleaned::RowsAtCompileTime,
ColsAtCompileTime = RhsNestedCleaned::ColsAtCompileTime,
InnerSize = EIGEN_SIZE_MIN_PREFER_FIXED(LhsNestedCleaned::ColsAtCompileTime, RhsNestedCleaned::RowsAtCompileTime),
MaxRowsAtCompileTime = LhsNestedCleaned::MaxRowsAtCompileTime,
MaxColsAtCompileTime = RhsNestedCleaned::MaxColsAtCompileTime
};
typedef typename find_best_packet<Scalar,RowsAtCompileTime>::type LhsVecPacketType;
typedef typename find_best_packet<Scalar,ColsAtCompileTime>::type RhsVecPacketType;
enum {
LhsCoeffReadCost = LhsEtorType::CoeffReadCost,
RhsCoeffReadCost = RhsEtorType::CoeffReadCost,
CoeffReadCost = InnerSize==0 ? NumTraits<Scalar>::ReadCost
: InnerSize == Dynamic ? HugeCost
: InnerSize * (NumTraits<Scalar>::MulCost + LhsCoeffReadCost + RhsCoeffReadCost)
+ (InnerSize - 1) * NumTraits<Scalar>::AddCost,
Unroll = CoeffReadCost <= EIGEN_UNROLLING_LIMIT,
LhsFlags = LhsEtorType::Flags,
RhsFlags = RhsEtorType::Flags,
LhsRowMajor = LhsFlags & RowMajorBit,
RhsRowMajor = RhsFlags & RowMajorBit,
LhsVecPacketSize = unpacket_traits<LhsVecPacketType>::size,
RhsVecPacketSize = unpacket_traits<RhsVecPacketType>::size,
// Here, we don't care about alignment larger than the usable packet size.
LhsAlignment = EIGEN_PLAIN_ENUM_MIN(LhsEtorType::Alignment,LhsVecPacketSize*int(sizeof(typename LhsNestedCleaned::Scalar))),
RhsAlignment = EIGEN_PLAIN_ENUM_MIN(RhsEtorType::Alignment,RhsVecPacketSize*int(sizeof(typename RhsNestedCleaned::Scalar))),
SameType = is_same<typename LhsNestedCleaned::Scalar,typename RhsNestedCleaned::Scalar>::value,
CanVectorizeRhs = bool(RhsRowMajor) && (RhsFlags & PacketAccessBit) && (ColsAtCompileTime!=1),
CanVectorizeLhs = (!LhsRowMajor) && (LhsFlags & PacketAccessBit) && (RowsAtCompileTime!=1),
EvalToRowMajor = (MaxRowsAtCompileTime==1&&MaxColsAtCompileTime!=1) ? 1
: (MaxColsAtCompileTime==1&&MaxRowsAtCompileTime!=1) ? 0
: (bool(RhsRowMajor) && !CanVectorizeLhs),
Flags = ((unsigned int)(LhsFlags | RhsFlags) & HereditaryBits & ~RowMajorBit)
| (EvalToRowMajor ? RowMajorBit : 0)
// TODO enable vectorization for mixed types
| (SameType && (CanVectorizeLhs || CanVectorizeRhs) ? PacketAccessBit : 0)
| (XprType::IsVectorAtCompileTime ? LinearAccessBit : 0),
LhsOuterStrideBytes = int(LhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename LhsNestedCleaned::Scalar)),
RhsOuterStrideBytes = int(RhsNestedCleaned::OuterStrideAtCompileTime) * int(sizeof(typename RhsNestedCleaned::Scalar)),
Alignment = bool(CanVectorizeLhs) ? (LhsOuterStrideBytes<=0 || (int(LhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,LhsAlignment))!=0 ? 0 : LhsAlignment)
: bool(CanVectorizeRhs) ? (RhsOuterStrideBytes<=0 || (int(RhsOuterStrideBytes) % EIGEN_PLAIN_ENUM_MAX(1,RhsAlignment))!=0 ? 0 : RhsAlignment)
: 0,
/* CanVectorizeInner deserves special explanation. It does not affect the product flags. It is not used outside
* of Product. If the Product itself is not a packet-access expression, there is still a chance that the inner
* loop of the product might be vectorized. This is the meaning of CanVectorizeInner. Since it doesn't affect
* the Flags, it is safe to make this value depend on ActualPacketAccessBit, that doesn't affect the ABI.
*/
CanVectorizeInner = SameType
&& LhsRowMajor
&& (!RhsRowMajor)
&& (LhsFlags & RhsFlags & ActualPacketAccessBit)
&& (InnerSize % packet_traits<Scalar>::size == 0)
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CoeffReturnType coeff(Index row, Index col) const
{
return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
}
/* Allow index-based non-packet access. It is impossible though to allow index-based packed access,
* which is why we don't set the LinearAccessBit.
* TODO: this seems possible when the result is a vector
*/
EIGEN_DEVICE_FUNC const CoeffReturnType coeff(Index index) const
{
const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
return (m_lhs.row(row).transpose().cwiseProduct( m_rhs.col(col) )).sum();
}
template<int LoadMode, typename PacketType>
const PacketType packet(Index row, Index col) const
{
PacketType res;
typedef etor_product_packet_impl<bool(int(Flags)&RowMajorBit) ? RowMajor : ColMajor,
Unroll ? int(InnerSize) : Dynamic,
LhsEtorType, RhsEtorType, PacketType, LoadMode> PacketImpl;
PacketImpl::run(row, col, m_lhsImpl, m_rhsImpl, m_innerDim, res);
return res;
}
template<int LoadMode, typename PacketType>
const PacketType packet(Index index) const
{
const Index row = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? 0 : index;
const Index col = (RowsAtCompileTime == 1 || MaxRowsAtCompileTime==1) ? index : 0;
return packet<LoadMode,PacketType>(row,col);
}
protected:
typename internal::add_const_on_value_type<LhsNested>::type m_lhs;
typename internal::add_const_on_value_type<RhsNested>::type m_rhs;
LhsEtorType m_lhsImpl;
RhsEtorType m_rhsImpl;
// TODO: Get rid of m_innerDim if known at compile time
Index m_innerDim;
};
template<typename Lhs, typename Rhs>
struct product_evaluator<Product<Lhs, Rhs, DefaultProduct>, LazyCoeffBasedProductMode, DenseShape, DenseShape>
: product_evaluator<Product<Lhs, Rhs, LazyProduct>, CoeffBasedProductMode, DenseShape, DenseShape>
{
typedef Product<Lhs, Rhs, DefaultProduct> XprType;
typedef Product<Lhs, Rhs, LazyProduct> BaseProduct;
typedef product_evaluator<BaseProduct, CoeffBasedProductMode, DenseShape, DenseShape> Base;
enum {
Flags = Base::Flags | EvalBeforeNestingBit
};
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base(BaseProduct(xpr.lhs(),xpr.rhs()))
{}
};
/****************************************
*** Coeff based product, Packet path ***
****************************************/
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
etor_product_packet_impl<RowMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
res = pmadd(pset1<Packet>(lhs.coeff(row, Index(UnrollingIndex-1))), rhs.template packet<LoadMode,Packet>(Index(UnrollingIndex-1), col), res);
}
};
template<int UnrollingIndex, typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, UnrollingIndex, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet &res)
{
etor_product_packet_impl<ColMajor, UnrollingIndex-1, Lhs, Rhs, Packet, LoadMode>::run(row, col, lhs, rhs, innerDim, res);
res = pmadd(lhs.template packet<LoadMode,Packet>(row, Index(UnrollingIndex-1)), pset1<Packet>(rhs.coeff(Index(UnrollingIndex-1), col)), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, 1, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
res = pmul(pset1<Packet>(lhs.coeff(row, Index(0))),rhs.template packet<LoadMode,Packet>(Index(0), col));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, 1, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index /*innerDim*/, Packet &res)
{
res = pmul(lhs.template packet<LoadMode,Packet>(row, Index(0)), pset1<Packet>(rhs.coeff(Index(0), col)));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
{
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, 0, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_STRONG_INLINE void run(Index /*row*/, Index /*col*/, const Lhs& /*lhs*/, const Rhs& /*rhs*/, Index /*innerDim*/, Packet &res)
{
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<RowMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
for(Index i = 0; i < innerDim; ++i)
res = pmadd(pset1<Packet>(lhs.coeff(row, i)), rhs.template packet<LoadMode,Packet>(i, col), res);
}
};
template<typename Lhs, typename Rhs, typename Packet, int LoadMode>
struct etor_product_packet_impl<ColMajor, Dynamic, Lhs, Rhs, Packet, LoadMode>
{
static EIGEN_STRONG_INLINE void run(Index row, Index col, const Lhs& lhs, const Rhs& rhs, Index innerDim, Packet& res)
{
res = pset1<Packet>(typename unpacket_traits<Packet>::type(0));
for(Index i = 0; i < innerDim; ++i)
res = pmadd(lhs.template packet<LoadMode,Packet>(row, i), pset1<Packet>(rhs.coeff(i, col)), res);
}
};
/***************************************************************************
* Triangular products
***************************************************************************/
template<int Mode, bool LhsIsTriangular,
typename Lhs, bool LhsIsVector,
typename Rhs, bool RhsIsVector>
struct triangular_product_impl;
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,TriangularShape,DenseShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
triangular_product_impl<Lhs::Mode,true,typename Lhs::MatrixType,false,Rhs, Rhs::ColsAtCompileTime==1>
::run(dst, lhs.nestedExpression(), rhs, alpha);
}
};
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,TriangularShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
triangular_product_impl<Rhs::Mode,false,Lhs,Lhs::RowsAtCompileTime==1, typename Rhs::MatrixType, false>::run(dst, lhs, rhs.nestedExpression(), alpha);
}
};
/***************************************************************************
* SelfAdjoint products
***************************************************************************/
template <typename Lhs, int LhsMode, bool LhsIsVector,
typename Rhs, int RhsMode, bool RhsIsVector>
struct selfadjoint_product_impl;
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,SelfAdjointShape,DenseShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
selfadjoint_product_impl<typename Lhs::MatrixType,Lhs::Mode,false,Rhs,0,Rhs::IsVectorAtCompileTime>::run(dst, lhs.nestedExpression(), rhs, alpha);
}
};
template<typename Lhs, typename Rhs, int ProductTag>
struct generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag>
: generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,SelfAdjointShape,ProductTag> >
{
typedef typename Product<Lhs,Rhs>::Scalar Scalar;
template<typename Dest>
static void scaleAndAddTo(Dest& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
{
selfadjoint_product_impl<Lhs,0,Lhs::IsVectorAtCompileTime,typename Rhs::MatrixType,Rhs::Mode,false>::run(dst, lhs, rhs.nestedExpression(), alpha);
}
};
/***************************************************************************
* Diagonal products
***************************************************************************/
template<typename MatrixType, typename DiagonalType, typename Derived, int ProductOrder>
struct diagonal_product_evaluator_base
: evaluator_base<Derived>
{
typedef typename ScalarBinaryOpTraits<typename MatrixType::Scalar, typename DiagonalType::Scalar>::ReturnType Scalar;
public:
enum {
CoeffReadCost = NumTraits<Scalar>::MulCost + evaluator<MatrixType>::CoeffReadCost + evaluator<DiagonalType>::CoeffReadCost,
MatrixFlags = evaluator<MatrixType>::Flags,
DiagFlags = evaluator<DiagonalType>::Flags,
_StorageOrder = MatrixFlags & RowMajorBit ? RowMajor : ColMajor,
_ScalarAccessOnDiag = !((int(_StorageOrder) == ColMajor && int(ProductOrder) == OnTheLeft)
||(int(_StorageOrder) == RowMajor && int(ProductOrder) == OnTheRight)),
_SameTypes = is_same<typename MatrixType::Scalar, typename DiagonalType::Scalar>::value,
// FIXME currently we need same types, but in the future the next rule should be the one
//_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && ((!_PacketOnDiag) || (_SameTypes && bool(int(DiagFlags)&PacketAccessBit))),
_Vectorizable = bool(int(MatrixFlags)&PacketAccessBit) && _SameTypes && (_ScalarAccessOnDiag || (bool(int(DiagFlags)&PacketAccessBit))),
_LinearAccessMask = (MatrixType::RowsAtCompileTime==1 || MatrixType::ColsAtCompileTime==1) ? LinearAccessBit : 0,
Flags = ((HereditaryBits|_LinearAccessMask) & (unsigned int)(MatrixFlags)) | (_Vectorizable ? PacketAccessBit : 0),
Alignment = evaluator<MatrixType>::Alignment,
AsScalarProduct = (DiagonalType::SizeAtCompileTime==1)
|| (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::RowsAtCompileTime==1 && ProductOrder==OnTheLeft)
|| (DiagonalType::SizeAtCompileTime==Dynamic && MatrixType::ColsAtCompileTime==1 && ProductOrder==OnTheRight)
};
diagonal_product_evaluator_base(const MatrixType &mat, const DiagonalType &diag)
: m_diagImpl(diag), m_matImpl(mat)
{
EIGEN_INTERNAL_CHECK_COST_VALUE(NumTraits<Scalar>::MulCost);
EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost);
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index idx) const
{
if(AsScalarProduct)
return m_diagImpl.coeff(0) * m_matImpl.coeff(idx);
else
return m_diagImpl.coeff(idx) * m_matImpl.coeff(idx);
}
protected:
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::true_type) const
{
return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
internal::pset1<PacketType>(m_diagImpl.coeff(id)));
}
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet_impl(Index row, Index col, Index id, internal::false_type) const
{
enum {
InnerSize = (MatrixType::Flags & RowMajorBit) ? MatrixType::ColsAtCompileTime : MatrixType::RowsAtCompileTime,
DiagonalPacketLoadMode = EIGEN_PLAIN_ENUM_MIN(LoadMode,((InnerSize%16) == 0) ? int(Aligned16) : int(evaluator<DiagonalType>::Alignment)) // FIXME hardcoded 16!!
};
return internal::pmul(m_matImpl.template packet<LoadMode,PacketType>(row, col),
m_diagImpl.template packet<DiagonalPacketLoadMode,PacketType>(id));
}
evaluator<DiagonalType> m_diagImpl;
evaluator<MatrixType> m_matImpl;
};
// diagonal * dense
template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DiagonalShape, DenseShape>
: diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft>
{
typedef diagonal_product_evaluator_base<Rhs, typename Lhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheLeft> Base;
using Base::m_diagImpl;
using Base::m_matImpl;
using Base::coeff;
typedef typename Base::Scalar Scalar;
typedef Product<Lhs, Rhs, ProductKind> XprType;
typedef typename XprType::PlainObject PlainObject;
enum {
StorageOrder = int(Rhs::Flags) & RowMajorBit ? RowMajor : ColMajor
};
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base(xpr.rhs(), xpr.lhs().diagonal())
{
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
{
return m_diagImpl.coeff(row) * m_matImpl.coeff(row, col);
}
#ifndef __CUDACC__
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
{
// FIXME: NVCC used to complain about the template keyword, but we have to check whether this is still the case.
// See also similar calls below.
return this->template packet_impl<LoadMode,PacketType>(row,col, row,
typename internal::conditional<int(StorageOrder)==RowMajor, internal::true_type, internal::false_type>::type());
}
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index idx) const
{
return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
}
#endif
};
// dense * diagonal
template<typename Lhs, typename Rhs, int ProductKind, int ProductTag>
struct product_evaluator<Product<Lhs, Rhs, ProductKind>, ProductTag, DenseShape, DiagonalShape>
: diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight>
{
typedef diagonal_product_evaluator_base<Lhs, typename Rhs::DiagonalVectorType, Product<Lhs, Rhs, LazyProduct>, OnTheRight> Base;
using Base::m_diagImpl;
using Base::m_matImpl;
using Base::coeff;
typedef typename Base::Scalar Scalar;
typedef Product<Lhs, Rhs, ProductKind> XprType;
typedef typename XprType::PlainObject PlainObject;
enum { StorageOrder = int(Lhs::Flags) & RowMajorBit ? RowMajor : ColMajor };
EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
: Base(xpr.lhs(), xpr.rhs().diagonal())
{
}
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar coeff(Index row, Index col) const
{
return m_matImpl.coeff(row, col) * m_diagImpl.coeff(col);
}
#ifndef __CUDACC__
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index row, Index col) const
{
return this->template packet_impl<LoadMode,PacketType>(row,col, col,
typename internal::conditional<int(StorageOrder)==ColMajor, internal::true_type, internal::false_type>::type());
}
template<int LoadMode,typename PacketType>
EIGEN_STRONG_INLINE PacketType packet(Index idx) const
{
return packet<LoadMode,PacketType>(int(StorageOrder)==ColMajor?idx:0,int(StorageOrder)==ColMajor?0:idx);
}
#endif
};
/***************************************************************************
* Products with permutation matrices
***************************************************************************/
/** \internal
* \class permutation_matrix_product
* Internal helper class implementing the product between a permutation matrix and a matrix.
* This class is specialized for DenseShape below and for SparseShape in SparseCore/SparsePermutation.h
*/
template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
struct permutation_matrix_product;
template<typename ExpressionType, int Side, bool Transposed>
struct permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
{
typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
template<typename Dest, typename PermutationType>
static inline void run(Dest& dst, const PermutationType& perm, const ExpressionType& xpr)
{
MatrixType mat(xpr);
const Index n = Side==OnTheLeft ? mat.rows() : mat.cols();
// FIXME we need an is_same for expression that is not sensitive to constness. For instance
// is_same_xpr<Block<const Matrix>, Block<Matrix> >::value should be true.
//if(is_same<MatrixTypeCleaned,Dest>::value && extract_data(dst) == extract_data(mat))
if(is_same_dense(dst, mat))
{
// apply the permutation inplace
Matrix<bool,PermutationType::RowsAtCompileTime,1,0,PermutationType::MaxRowsAtCompileTime> mask(perm.size());
mask.fill(false);
Index r = 0;
while(r < perm.size())
{
// search for the next seed
while(r<perm.size() && mask[r]) r++;
if(r>=perm.size())
break;
// we got one, let's follow it until we are back to the seed
Index k0 = r++;
Index kPrev = k0;
mask.coeffRef(k0) = true;
for(Index k=perm.indices().coeff(k0); k!=k0; k=perm.indices().coeff(k))
{
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>(dst, k)
.swap(Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
(dst,((Side==OnTheLeft) ^ Transposed) ? k0 : kPrev));
mask.coeffRef(k) = true;
kPrev = k;
}
}
}
else
{
for(Index i = 0; i < n; ++i)
{
Block<Dest, Side==OnTheLeft ? 1 : Dest::RowsAtCompileTime, Side==OnTheRight ? 1 : Dest::ColsAtCompileTime>
(dst, ((Side==OnTheLeft) ^ Transposed) ? perm.indices().coeff(i) : i)
=
Block<const MatrixTypeCleaned,Side==OnTheLeft ? 1 : MatrixTypeCleaned::RowsAtCompileTime,Side==OnTheRight ? 1 : MatrixTypeCleaned::ColsAtCompileTime>
(mat, ((Side==OnTheRight) ^ Transposed) ? perm.indices().coeff(i) : i);
}
}
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, PermutationShape, MatrixShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
permutation_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, MatrixShape, PermutationShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
permutation_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Inverse<Lhs>, Rhs, PermutationShape, MatrixShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Inverse<Lhs>& lhs, const Rhs& rhs)
{
permutation_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Inverse<Rhs>, MatrixShape, PermutationShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Inverse<Rhs>& rhs)
{
permutation_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
}
};
/***************************************************************************
* Products with transpositions matrices
***************************************************************************/
// FIXME could we unify Transpositions and Permutation into a single "shape"??
/** \internal
* \class transposition_matrix_product
* Internal helper class implementing the product between a permutation matrix and a matrix.
*/
template<typename ExpressionType, int Side, bool Transposed, typename ExpressionShape>
struct transposition_matrix_product
{
typedef typename nested_eval<ExpressionType, 1>::type MatrixType;
typedef typename remove_all<MatrixType>::type MatrixTypeCleaned;
template<typename Dest, typename TranspositionType>
static inline void run(Dest& dst, const TranspositionType& tr, const ExpressionType& xpr)
{
MatrixType mat(xpr);
typedef typename TranspositionType::StorageIndex StorageIndex;
const Index size = tr.size();
StorageIndex j = 0;
if(!is_same_dense(dst,mat))
dst = mat;
for(Index k=(Transposed?size-1:0) ; Transposed?k>=0:k<size ; Transposed?--k:++k)
if(Index(j=tr.coeff(k))!=k)
{
if(Side==OnTheLeft) dst.row(k).swap(dst.row(j));
else if(Side==OnTheRight) dst.col(k).swap(dst.col(j));
}
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, TranspositionsShape, MatrixShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
transposition_matrix_product<Rhs, OnTheLeft, false, MatrixShape>::run(dst, lhs, rhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Rhs, MatrixShape, TranspositionsShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Rhs& rhs)
{
transposition_matrix_product<Lhs, OnTheRight, false, MatrixShape>::run(dst, rhs, lhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Transpose<Lhs>, Rhs, TranspositionsShape, MatrixShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Transpose<Lhs>& lhs, const Rhs& rhs)
{
transposition_matrix_product<Rhs, OnTheLeft, true, MatrixShape>::run(dst, lhs.nestedExpression(), rhs);
}
};
template<typename Lhs, typename Rhs, int ProductTag, typename MatrixShape>
struct generic_product_impl<Lhs, Transpose<Rhs>, MatrixShape, TranspositionsShape, ProductTag>
{
template<typename Dest>
static void evalTo(Dest& dst, const Lhs& lhs, const Transpose<Rhs>& rhs)
{
transposition_matrix_product<Lhs, OnTheRight, true, MatrixShape>::run(dst, rhs.nestedExpression(), lhs);
}
};
} // end namespace internal
} // end namespace Eigen
#endif // EIGEN_PRODUCT_EVALUATORS_H
......@@ -16,8 +16,7 @@ namespace internal {
template<typename Scalar> struct scalar_random_op {
EIGEN_EMPTY_STRUCT_CTOR(scalar_random_op)
template<typename Index>
inline const Scalar operator() (Index, Index = 0) const { return random<Scalar>(); }
inline const Scalar operator() () const { return random<Scalar>(); }
};
template<typename Scalar>
......@@ -28,12 +27,18 @@ struct functor_traits<scalar_random_op<Scalar> >
/** \returns a random matrix expression
*
* Numbers are uniformly spread through their whole definition range for integer types,
* and in the [-1:1] range for floating point scalar types.
*
* The parameters \a rows and \a cols are the number of rows and of columns of
* the returned matrix. Must be compatible with this MatrixBase type.
*
* \not_reentrant
*
* This variant is meant to be used for dynamic-size matrix types. For fixed-size types,
* it is redundant to pass \a rows and \a cols as arguments, so Random() should be used
* instead.
*
*
* Example: \include MatrixBase_random_int_int.cpp
* Output: \verbinclude MatrixBase_random_int_int.out
......@@ -41,22 +46,28 @@ struct functor_traits<scalar_random_op<Scalar> >
* This expression has the "evaluate before nesting" flag so that it will be evaluated into
* a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
* behavior with expressions involving random matrices.
*
* See DenseBase::NullaryExpr(Index, const CustomNullaryOp&) for an example using C++11 random generators.
*
* \sa MatrixBase::setRandom(), MatrixBase::Random(Index), MatrixBase::Random()
* \sa DenseBase::setRandom(), DenseBase::Random(Index), DenseBase::Random()
*/
template<typename Derived>
inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
inline const typename DenseBase<Derived>::RandomReturnType
DenseBase<Derived>::Random(Index rows, Index cols)
{
return NullaryExpr(rows, cols, internal::scalar_random_op<Scalar>());
}
/** \returns a random vector expression
*
* Numbers are uniformly spread through their whole definition range for integer types,
* and in the [-1:1] range for floating point scalar types.
*
* The parameter \a size is the size of the returned vector.
* Must be compatible with this MatrixBase type.
*
* \only_for_vectors
* \not_reentrant
*
* This variant is meant to be used for dynamic-size vector types. For fixed-size types,
* it is redundant to pass \a size as argument, so Random() should be used
......@@ -69,10 +80,10 @@ DenseBase<Derived>::Random(Index rows, Index cols)
* a temporary vector whenever it is nested in a larger expression. This prevents unexpected
* behavior with expressions involving random matrices.
*
* \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random()
* \sa DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random()
*/
template<typename Derived>
inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
inline const typename DenseBase<Derived>::RandomReturnType
DenseBase<Derived>::Random(Index size)
{
return NullaryExpr(size, internal::scalar_random_op<Scalar>());
......@@ -80,6 +91,9 @@ DenseBase<Derived>::Random(Index size)
/** \returns a fixed-size random matrix or vector expression
*
* Numbers are uniformly spread through their whole definition range for integer types,
* and in the [-1:1] range for floating point scalar types.
*
* This variant is only for fixed-size MatrixBase types. For dynamic-size types, you
* need to use the variants taking size arguments.
*
......@@ -89,11 +103,13 @@ DenseBase<Derived>::Random(Index size)
* This expression has the "evaluate before nesting" flag so that it will be evaluated into
* a temporary matrix whenever it is nested in a larger expression. This prevents unexpected
* behavior with expressions involving random matrices.
*
* \not_reentrant
*
* \sa MatrixBase::setRandom(), MatrixBase::Random(Index,Index), MatrixBase::Random(Index)
* \sa DenseBase::setRandom(), DenseBase::Random(Index,Index), DenseBase::Random(Index)
*/
template<typename Derived>
inline const CwiseNullaryOp<internal::scalar_random_op<typename internal::traits<Derived>::Scalar>, Derived>
inline const typename DenseBase<Derived>::RandomReturnType
DenseBase<Derived>::Random()
{
return NullaryExpr(RowsAtCompileTime, ColsAtCompileTime, internal::scalar_random_op<Scalar>());
......@@ -101,6 +117,11 @@ DenseBase<Derived>::Random()
/** Sets all coefficients in this expression to random values.
*
* Numbers are uniformly spread through their whole definition range for integer types,
* and in the [-1:1] range for floating point scalar types.
*
* \not_reentrant
*
* Example: \include MatrixBase_setRandom.cpp
* Output: \verbinclude MatrixBase_setRandom.out
*
......@@ -112,32 +133,41 @@ inline Derived& DenseBase<Derived>::setRandom()
return *this = Random(rows(), cols());
}
/** Resizes to the given \a size, and sets all coefficients in this expression to random values.
/** Resizes to the given \a newSize, and sets all coefficients in this expression to random values.
*
* Numbers are uniformly spread through their whole definition range for integer types,
* and in the [-1:1] range for floating point scalar types.
*
* \only_for_vectors
* \not_reentrant
*
* Example: \include Matrix_setRandom_int.cpp
* Output: \verbinclude Matrix_setRandom_int.out
*
* \sa MatrixBase::setRandom(), setRandom(Index,Index), class CwiseNullaryOp, MatrixBase::Random()
* \sa DenseBase::setRandom(), setRandom(Index,Index), class CwiseNullaryOp, DenseBase::Random()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
PlainObjectBase<Derived>::setRandom(Index size)
PlainObjectBase<Derived>::setRandom(Index newSize)
{
resize(size);
resize(newSize);
return setRandom();
}
/** Resizes to the given size, and sets all coefficients in this expression to random values.
*
* Numbers are uniformly spread through their whole definition range for integer types,
* and in the [-1:1] range for floating point scalar types.
*
* \not_reentrant
*
* \param rows the new number of rows
* \param cols the new number of columns
*
* Example: \include Matrix_setRandom_int_int.cpp
* Output: \verbinclude Matrix_setRandom_int_int.out
*
* \sa MatrixBase::setRandom(), setRandom(Index), class CwiseNullaryOp, MatrixBase::Random()
* \sa DenseBase::setRandom(), setRandom(Index), class CwiseNullaryOp, DenseBase::Random()
*/
template<typename Derived>
EIGEN_STRONG_INLINE Derived&
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment