# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved. Except portions as noted which are Copyright (c) 2023 OpenGVLab and licensed under the MIT license found in LICENSE. import numpy as np import torch from PIL import Image, ImageDraw from torchvision import transforms as T from torchvision.transforms import Compose, RandAugment, RandomResizedCrop, Resize, ToPILImage # Imagenet's mean and std. pixel_mean = [123.675, 116.28, 103.53] pixel_std = [58.395, 57.12, 57.375] # Reshape for broadcasting. pixel_mean = torch.Tensor(pixel_mean).view(-1, 1, 1) pixel_std = torch.Tensor(pixel_std).view(-1, 1, 1) def convert_to_rgb(image): return image.convert("RGB") def _transform_train_aug(img_h, img_w): return Compose([ ToPILImage(), RandomResizedCrop((img_h, img_w), scale=(0.5, 1.0)), convert_to_rgb, RandAugment(2, 5, isPIL=True, augs=['Identity', 'AutoContrast', 'Brightness', 'Sharpness', 'Equalize', 'ShearX', 'ShearY', 'TranslateX', 'TranslateY', 'Rotate']), ]) def _transform_test(img_h, img_w): return Compose([ ToPILImage(), Resize((img_h, img_w)), convert_to_rgb, ]) def standardize_image(img): """Standardize image pixel values.""" return (torch.Tensor(np.array(img)).permute(2, 0, 1) - pixel_mean) / pixel_std def get_visual_transform(img, img_h, img_w, use_tiling=False, max_num_tiles=1, use_thumbnail=False, augment=False): if use_tiling: assert img_h == img_w, "dynamic tiling expects equal tile height and width" imgs = dynamic_preprocess(img, min_num=1, max_num=max_num_tiles, image_size=img_h, use_thumbnail=use_thumbnail) imgs = [standardize_image(img.convert("RGB")) for img in imgs] else: img = np.array(img) original_h, original_w = img.shape[0], img.shape[1] ratio = float(max(img_h, img_w)) / max(original_h, original_w) scaled_h, scaled_w = int(original_h * ratio + 0.5), int(original_w * ratio + 0.5) if augment: visual_transform = _transform_train_aug(scaled_h, scaled_w) else: visual_transform = _transform_test(scaled_h, scaled_w) img = visual_transform(img) # Standardize pixel values. img = standardize_image(img) # Pad to target image size. delta_h, delta_w = img_h - scaled_h, img_w - scaled_w img = torch.nn.functional.pad(img, (0, delta_w, 0, delta_h)) imgs = [img] return imgs # From https://github.com/OpenGVLab/InternVL/blob/c62fa4f7c850165d7386bdc48ac6bc5a6fab0864/internvl_chat/internvl/train/dataset.py#L685 # Copyright (c) 2023 OpenGVLab. def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio # print(f'width: {width}, height: {height}, best_ratio: {best_ratio}') return best_ratio # From https://github.com/OpenGVLab/InternVL/blob/c62fa4f7c850165d7386bdc48ac6bc5a6fab0864/internvl_chat/internvl/train/dataset.py#L702 # Copyright (c) 2023 OpenGVLab. def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images