# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import torch from megatron.core.enums import ModelType from megatron.utils import get_ltor_masks_and_position_ids from megatron.arguments import core_transformer_config_from_args from megatron import get_args from megatron import get_timers from megatron.core import tensor_parallel from megatron.utils import average_losses_across_data_parallel_group from megatron_patch.data import build_pretrain_dataset_from_original from megatron_patch.model.llava.gpt_model import GPTModel from megatron_patch.tokenizer import build_tokenizer from megatron_patch.tokenizer import get_tokenizer from megatron_patch.training import pretrain from megatron_patch.arguments import get_patch_args from megatron_patch.data.llava.constants import IGNORE_INDEX def model_provider(pre_process=True, post_process=True): args = get_args() build_tokenizer(args) config = core_transformer_config_from_args(get_args()) model = GPTModel( config, num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process ) return model def get_batch(data_iterator): """Generate a batch""" args = get_args() tokenizer = get_tokenizer() text_keys = ['input_ids', 'labels'] img_keys = ['image'] if data_iterator is not None: data = next(data_iterator) else: data = None data_text = {'input_ids': data['input_ids'], 'labels': data['labels']} data_image = {'image': data['image']} data_text = tensor_parallel.broadcast_data(text_keys, data_text, torch.int64) data_image = tensor_parallel.broadcast_data(img_keys, data_image, torch.bfloat16) tokens_ = data_text['input_ids'].long() labels_ = data_text['labels'].long() images = data_image['image'] tokens = tokens_[:, :-1].contiguous() labels = labels_[:, 1:].contiguous() # Get the masks and postition ids. attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, IGNORE_INDEX, args.reset_position_ids, args.reset_attention_mask, True) return tokens, labels, loss_mask, attention_mask, position_ids, images def loss_func(loss_mask, output_tensor): losses = output_tensor.float() loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() # Reduce loss for logging. averaged_loss = average_losses_across_data_parallel_group([loss]) return loss, {'lm loss': averaged_loss[0]} def forward_step(data_iterator, model): """Forward step.""" timers = get_timers() args = get_args() # Get the batch. timers('batch-generator', log_level=2).start() tokens, labels, loss_mask, attention_mask, position_ids, images = get_batch( data_iterator) num_patch = int((args.image_size / args.patch_size) ** 2) timers('batch-generator').stop() image_label = torch.full((labels.shape[0], num_patch-1), IGNORE_INDEX, device=labels.device, dtype=labels.dtype) image_loss_mask = torch.zeros((labels.shape[0], num_patch-1), dtype=torch.float, device=labels.device) total_label = torch.cat([image_label, labels], dim=1) total_loss_mask = torch.cat([image_loss_mask, loss_mask], dim=1) output_tensor = model(tokens, position_ids, attention_mask, labels=total_label, images=images) return output_tensor, partial(loss_func, total_loss_mask) def train_valid_test_datasets_provider(train_val_test_num_samples): """Build train, valid, and test datasets.""" args = get_args() train_ds, valid_ds, test_ds = \ build_pretrain_dataset_from_original(args.dataset) return train_ds, valid_ds, test_ds if __name__ == "__main__": pretrain(train_valid_test_datasets_provider, model_provider, ModelType.encoder_or_decoder, forward_step, extra_args_provider=get_patch_args)