# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import torch from megatron import get_args from megatron.core import parallel_state, tensor_parallel from megatron.initialize import initialize_megatron from megatron.utils import average_losses_across_data_parallel_group from megatron.utils import get_ltor_masks_and_position_ids from megatron_patch.finetune_utils import finetune from megatron_patch.model.llava.gpt_model import GPTModel from megatron_patch.tokenizer import get_tokenizer from megatron_patch.arguments import get_patch_args from megatron_patch.tokenizer import build_tokenizer from megatron.arguments import core_transformer_config_from_args from megatron_patch.data.llava.constants import IGNORE_INDEX from megatron_patch.data import build_finetune_dataset def model_provider(pre_process=True, post_process=True): config = core_transformer_config_from_args(get_args()) model = GPTModel( config, num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process ) return model def train_valid_test_datasets_provider(): """Build train, valid, and test datasets.""" args = get_args() train_ds, valid_ds = build_finetune_dataset(args.dataset) return train_ds, valid_ds def forward_step(data_iterator, model): args = get_args() tokenizer = get_tokenizer() try: data_iterator = next(data_iterator) except BaseException: data_iterator = data_iterator text_keys = ['input_ids', 'labels'] img_keys = ['image'] data_text = {'input_ids': data_iterator['input_ids'], 'labels': data_iterator['labels']} data_image = {'image': data_iterator['image']} data_text = tensor_parallel.broadcast_data(text_keys, data_text, torch.int64) data_image = tensor_parallel.broadcast_data(img_keys, data_image, torch.bfloat16) tokens = data_text['input_ids'].long() labels = data_text['labels'].long() images = data_image['image'] # Get the masks and postition ids. _, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, IGNORE_INDEX, args.reset_position_ids, args.reset_attention_mask, True) num_patch = int((args.image_size / args.patch_size) ** 2) image_label = torch.full((labels.shape[0], num_patch-1), IGNORE_INDEX, device=labels.device, dtype=labels.dtype) image_loss_mask = torch.zeros((labels.shape[0], num_patch-1), dtype=torch.float, device=labels.device) total_labels = torch.cat([image_label, labels], dim=1) attention_mask = total_labels.ne(tokenizer.pad_token_id) total_loss_mask = torch.cat([image_loss_mask, loss_mask], dim=1) logits = model(tokens, position_ids, attention_mask, images=images) shift_logits = logits[..., :-1, :].contiguous() shift_labels = total_labels[..., 1:].contiguous() loss_mask = total_loss_mask[..., 1:].contiguous() def loss_func(loss_mask, shift_logits): losses = tensor_parallel.vocab_parallel_cross_entropy( shift_logits.contiguous().float(), shift_labels.contiguous()) loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() averaged_loss = average_losses_across_data_parallel_group([loss]) return loss, {'vlm loss': averaged_loss[0]} return shift_logits, partial(loss_func, loss_mask) if __name__ == '__main__': initialize_megatron(extra_args_provider=get_patch_args) args = get_args() build_tokenizer(args) finetune(train_valid_datasets_provider=train_valid_test_datasets_provider, model_provider=model_provider, forward_step=forward_step)