# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from transformers import AutoModelForCausalLM from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP from megatron.core.enums import ModelType from megatron import get_args from megatron import print_rank_0 from megatron.core import parallel_state from megatron.core.pipeline_parallel.p2p_communication import send_forward from megatron.initialize import initialize_megatron from megatron.model import DistributedDataParallel as LocalDDP from megatron.model import Float16Module from megatron.utils import unwrap_model from megatron.arguments import core_transformer_config_from_args from megatron_patch.data import build_evaluation_dataset from megatron_patch.finetune_utils import build_data_loader from megatron_patch.tokenizer import build_tokenizer from megatron_patch.tokenizer import get_tokenizer from megatron_patch.training import get_model from megatron_patch.arguments import get_patch_args def get_model_provider(): """Based on evaluation metric set the parallel-output flag and return the model provider.""" def model_provider(pre_process=True, post_process=True): args = get_args() tokenizer = build_tokenizer(args) model = AutoModelForCausalLM.from_pretrained(args.load, trust_remote_code=False) model.resize_token_embeddings(len(tokenizer)) return model return model_provider def forward_step(batch, model): """Forward step.""" tokenizer = get_tokenizer() # Get the batch. input_ids = batch['input_ids'].long().cuda() labels = batch['labels'].long().cuda() labels[labels == 0] = -100 attention_mask = input_ids.ne(tokenizer.pad_token_id) # Tell the model what our actual batch size will be args = get_args() args.micro_batch_size = len(labels) # Forward pass through the model. unwrapped_model = unwrap_model(model, (torchDDP, LocalDDP, Float16Module)) output = unwrapped_model(input_ids=input_ids, labels=labels, attention_mask=attention_mask) config = core_transformer_config_from_args(args) send_forward(output, config) if parallel_state.is_pipeline_last_stage(): print_rank_0(output.loss) return output.loss return None def evaluate(data_loader, model): """Evaluation.""" args = get_args() # Turn on evaluation mode which disables dropout. model.eval() total_output = 0.0 with torch.no_grad(): # For all the batches in the dataset. for iteration, batch in enumerate(data_loader): if iteration % args.log_interval == 0: print_rank_0('> working on iteration: {}'.format(iteration)) # Forward evaluation. output = forward_step(batch, model) # Reduce across processes. if parallel_state.is_pipeline_last_stage(): torch.distributed.all_reduce( output, group=parallel_state.get_data_parallel_group()) total_output += output return total_output def main(): """Main program.""" args = get_args() if args.num_layers_per_virtual_pipeline_stage is not None: print('Interleaved pipeline schedule ' 'is not yet supported for text generation.') exit() # Set up model and load checkpoint. model = get_model(get_model_provider(), model_type=ModelType.encoder_or_decoder, wrap_with_ddp=False) assert len(model) == 1, 'Above condition should have caught this' model = model[0] # Data stuff. dataset = build_evaluation_dataset(args.dataset) dataloader = build_data_loader(dataset, args.micro_batch_size, args.num_workers, drop_last=False) # Run evaluation. evaluate(dataloader, model) print_rank_0('done :-)') if __name__ == '__main__': initialize_megatron(extra_args_provider=get_patch_args) main()