# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import torch from megatron import get_args from megatron.initialize import initialize_megatron from megatron.utils import average_losses_across_data_parallel_group from megatron_patch.data.finetune_dataset import LLamaDataset from megatron_patch.finetune_utils import finetune from megatron_patch.model.llama.gpt_model import GPTModel from megatron_patch.tokenizer import build_tokenizer from megatron_patch.tokenizer import get_tokenizer from megatron_patch.arguments import get_patch_args def model_provider(pre_process=True, post_process=True): model = GPTModel(num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process) return model def train_valid_datasets_provider(): args = get_args() tokenizer = build_tokenizer(args) train_dataset = LLamaDataset(args.train_data, tokenizer, args.max_padding_length) valid_dataset = LLamaDataset(args.valid_data, tokenizer, args.max_padding_length) return train_dataset, valid_dataset def forward_step(data_iterator, model): tokenizer = get_tokenizer() try: data_iterator = next(data_iterator) except BaseException: data_iterator = data_iterator tokens_ = data_iterator['input_ids'].long().cuda().contiguous() labels = tokens_[:, 1:].contiguous() input_ids = tokens_[:, :-1].contiguous() loss_mask = data_iterator['loss_mask'].long().cuda() loss_mask = loss_mask[..., 1:].contiguous() attention_mask = input_ids.ne(tokenizer.pad_token_id) output_tensor = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels) def loss_func(loss_mask, output_tensor): losses = output_tensor.float() loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() averaged_loss = average_losses_across_data_parallel_group([loss]) return loss, {'lm loss': averaged_loss[0]} return output_tensor, partial(loss_func, loss_mask) if __name__ == '__main__': initialize_megatron(extra_args_provider=get_patch_args) finetune(train_valid_datasets_provider=train_valid_datasets_provider, model_provider=model_provider, forward_step=forward_step)