# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import torch from megatron.core.enums import ModelType from megatron import get_args from megatron.core import tensor_parallel from megatron.utils import average_losses_across_data_parallel_group from megatron_patch.data.pretrain_dataset import \ build_pretrain_glm130b_datasets_from_idxmap from megatron_patch.model.glm130b.gpt_model import GPTModel from megatron_patch.tokenizer import build_tokenizer from megatron_patch.training import pretrain from megatron_patch.arguments import get_patch_args def model_provider(pre_process=True, post_process=True): args = get_args() build_tokenizer(args) model = GPTModel(num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process) return model def train_valid_test_datasets_provider(train_val_test_num_samples): args = get_args() """ train_ds, valid_ds, test_ds = \ build_pretrain_glm130b_datasets_from_original( data_prefix=args.data_path, max_seq_length=args.seq_length, generation_length=args.generation_length) """ train_ds, valid_ds, test_ds = \ build_pretrain_glm130b_datasets_from_idxmap( data_prefix=args.data_path, data_impl=args.data_impl, splits_string=args.split, train_valid_test_num_samples=train_val_test_num_samples, seq_length=args.seq_length, generation_length=args.generation_length, seed=args.seed, skip_warmup=(not args.mmap_warmup)) return train_ds, valid_ds, test_ds def forward_step(data_iterator, model): keys = ['tokens', 'targets', 'position_ids', 'attention_mask', 'loss_mask'] datatype = torch.int64 # Broadcast data. if data_iterator is not None: data = next(data_iterator) else: data = None batch = tensor_parallel.broadcast_data(keys, data, datatype) tokens = batch['tokens'].long().cuda().contiguous() labels = batch['targets'].long().cuda().contiguous() attention_mask = batch['attention_mask'].long().cuda().contiguous() loss_mask = batch['loss_mask'].long().cuda().contiguous() position_ids = batch['position_ids'].long().cuda().contiguous() attention_mask = attention_mask < 0.5 attention_mask = attention_mask.to(torch.bool).unsqueeze(1) output_tensor = model(tokens, position_ids, attention_mask, labels=labels) def loss_func(loss_mask, output_tensor): losses = output_tensor.float() loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() averaged_loss = average_losses_across_data_parallel_group([loss]) return loss, {'lm loss': averaged_loss[0]} return output_tensor, partial(loss_func, loss_mask) if __name__ == '__main__': pretrain(train_valid_test_datasets_provider, model_provider, ModelType.encoder_or_decoder, forward_step, extra_args_provider=get_patch_args)