# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import AutoModelForCausalLM from megatron import get_args from megatron.initialize import initialize_megatron from megatron_patch.data.finetune_dataset import FalconDataset from megatron_patch.finetune_utils import finetune from megatron_patch.tokenizer import build_tokenizer from megatron_patch.tokenizer import get_tokenizer from megatron_patch.arguments import get_patch_args def model_provider(pre_process=True, post_process=True): args = get_args() tokenizer = get_tokenizer() model = AutoModelForCausalLM.from_pretrained(args.load, trust_remote_code=True) model.resize_token_embeddings(len(tokenizer)) return model def train_valid_datasets_provider(): """Build train and validation dataset.""" args = get_args() tokenizer = build_tokenizer(args) train_dataset = FalconDataset(args.train_data, tokenizer, args.max_padding_length) valid_dataset = FalconDataset(args.valid_data, tokenizer, args.max_padding_length) return train_dataset, valid_dataset def forward_step(data_iterator, model): tokenizer = get_tokenizer() try: data_iterator = next(data_iterator) except BaseException: data_iterator = data_iterator input_ids = data_iterator['input_ids'].cuda() labels = data_iterator['labels'].cuda() attention_mask = input_ids.ne(tokenizer.pad_token_id) output_tensor = model(input_ids=input_ids, labels=labels, attention_mask=attention_mask) return output_tensor.loss if __name__ == '__main__': initialize_megatron(extra_args_provider=get_patch_args) finetune(train_valid_datasets_provider=train_valid_datasets_provider, model_provider=model_provider, forward_step=forward_step)