# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import torch import os from megatron.core.enums import ModelType from megatron.utils import get_ltor_masks_and_position_ids from megatron.arguments import core_transformer_config_from_args from megatron import get_args from megatron import get_timers from megatron.core import tensor_parallel from megatron.utils import average_losses_across_data_parallel_group from megatron_patch.data import \ build_pretrain_dataset_from_original, build_pretrain_dataset_from_idxmap from megatron_patch.model.llama2.gpt_model import GPTModel from megatron_patch.tokenizer import get_tokenizer, build_tokenizer from megatron_patch.training import pretrain from megatron_patch.arguments import get_patch_args def model_provider(pre_process=True, post_process=True): args = get_args() build_tokenizer(args) config = core_transformer_config_from_args(get_args()) model = GPTModel( config, num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process ) return model def get_batch(data_iterator): """Generate a batch""" args = get_args() tokenizer = get_tokenizer() datatype = torch.int64 keys = ['input_ids', 'labels'] if data_iterator is not None: data = next(data_iterator) else: data = None data_b = tensor_parallel.broadcast_data(keys, data, datatype) tokens_ = data_b['input_ids'].long() labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() # Get the masks and postition ids. attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.pad_token_id, args.reset_position_ids, args.reset_attention_mask, True) return tokens, labels, loss_mask, attention_mask, position_ids def loss_func(loss_mask, output_tensor): losses = output_tensor.float() loss_mask = loss_mask.view(-1).float() loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum() # Reduce loss for logging. averaged_loss = average_losses_across_data_parallel_group([loss]) return loss, {'lm loss': averaged_loss[0]} def forward_step(data_iterator, model): """Forward step.""" timers = get_timers() # Get the batch. timers('batch-generator', log_level=2).start() tokens, labels, loss_mask, attention_mask, position_ids = get_batch( data_iterator) timers('batch-generator').stop() output_tensor = model(tokens, position_ids, attention_mask, labels=labels) return output_tensor, partial(loss_func, loss_mask) def train_valid_test_datasets_provider(train_val_test_num_samples): """Build train, valid, and test datasets.""" args = get_args() if os.path.isfile(args.train_data_path[0]): train_ds, valid_ds, test_ds = \ build_pretrain_dataset_from_original(args.dataset) else: train_ds, valid_ds, test_ds = \ build_pretrain_dataset_from_idxmap( data_prefix=args.train_data_path, max_padding_length=args.max_padding_length, dataset_type=args.dataset, splits_string=args.split, train_valid_test_num_samples=train_val_test_num_samples, seed=args.seed, skip_warmup=(not args.mmap_warmup) ) return train_ds, valid_ds, test_ds if __name__ == "__main__": pretrain(train_valid_test_datasets_provider, model_provider, ModelType.encoder_or_decoder, forward_step, extra_args_provider=get_patch_args)