# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from megatron.core.enums import ModelType from megatron import get_args from megatron.initialize import initialize_megatron from megatron.arguments import core_transformer_config_from_args from megatron_patch.generation.gpt_predictor import GPTPredictor from megatron_patch.model.llama2.gpt_model import GPTModel from megatron_patch.tokenizer import build_tokenizer from megatron_patch.arguments import get_patch_args class MegatronGPTPredictor(GPTPredictor): def model_provider(self, pre_process=True, post_process=True): args = get_args() build_tokenizer(args) if args.tensor_model_parallel_size > 1 or args.pipeline_model_parallel_size > 1: parallel_output = False else: parallel_output = True config = core_transformer_config_from_args(get_args()) model = GPTModel(config, num_tokentypes=0, parallel_output=parallel_output, pre_process=pre_process, post_process=post_process) return model if __name__ == '__main__': initialize_megatron(extra_args_provider=get_patch_args) predictor = MegatronGPTPredictor() predictor.predict()