# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from functools import partial import torch from megatron.core.enums import ModelType from megatron import get_args from megatron.utils import average_losses_across_data_parallel_group from megatron_patch.data import \ build_pretrain_dataset_from_original, build_pretrain_dataset_from_idxmap from megatron_patch.model.chatglm.gpt_model import GPTModel from megatron_patch.tokenizer import build_tokenizer from megatron_patch.training import pretrain from megatron_patch.arguments import get_patch_args from megatron.arguments import core_transformer_config_from_args from megatron_patch.tokenizer import get_tokenizer from megatron_patch.data.finetune_dataset import ChatGLMDataset from megatron.core import tensor_parallel def model_provider(pre_process=True, post_process=True): args = get_args() build_tokenizer(args) config = core_transformer_config_from_args(get_args()) model = GPTModel(config, num_tokentypes=0, parallel_output=True, pre_process=pre_process, post_process=post_process) return model def train_valid_test_datasets_provider(train_val_test_num_samples): """Build train, valid, and test datasets.""" args = get_args() train_ds, valid_ds, test_ds = \ build_pretrain_dataset_from_original(args.dataset) return train_ds, valid_ds, test_ds def forward_step(data_iterator, model): """Forward step.""" # try: # data = next(data_iterator) # except BaseException: # data = data_iterator # datatype = torch.int64 # keys = ['input_ids', 'labels'] # data_b = tensor_parallel.broadcast_data(keys, data, datatype) # input_ids = data_b['input_ids'].long().cuda() # labels = data_b['labels'].long().cuda() # lm_logits = model(input_ids=input_ids) try: data_iterator = next(data_iterator) except BaseException: data_iterator = data_iterator input_ids = data_iterator['input_ids'].long().cuda() labels = data_iterator['labels'].long().cuda() lm_logits = model(input_ids=input_ids) shift_logits = lm_logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = torch.nn.CrossEntropyLoss(ignore_index=-100) def loss_func(shift_logits): loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)) averaged_loss = average_losses_across_data_parallel_group([loss]) return loss, {'lm loss': averaged_loss[0]} return shift_logits, partial(loss_func) if __name__ == '__main__': pretrain(train_valid_test_datasets_provider, model_provider, ModelType.encoder_or_decoder, forward_step, extra_args_provider=get_patch_args)