# Copyright (c) 2023 Alibaba PAI and Nvidia Megatron-LM Team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from transformers import AutoModel from megatron import get_args from megatron.initialize import initialize_megatron from megatron_patch.data.finetune_dataset import ChatGLMDataset from megatron_patch.finetune_utils import finetune from megatron_patch.tokenizer import build_tokenizer from megatron_patch.arguments import get_patch_args def model_provider(pre_process=True, post_process=True): args = get_args() model = AutoModel.from_pretrained(args.load, trust_remote_code=True) return model def train_valid_datasets_provider(): """Build train and validation dataset.""" args = get_args() tokenizer = build_tokenizer(args) train_dataset = ChatGLMDataset(args.train_data, tokenizer, args.source_seq_len, args.target_seq_len) valid_dataset = ChatGLMDataset(args.valid_data, tokenizer, args.source_seq_len, args.target_seq_len) return train_dataset, valid_dataset def forward_step(data_iterator, model): try: data_iterator = next(data_iterator) except BaseException: data_iterator = data_iterator tokens = data_iterator['input_ids'].long().cuda() # huggingface will shift labels inside transformers labels = data_iterator['labels'].long().cuda() output_tensor = model(input_ids=tokens, labels=labels) return output_tensor.loss if __name__ == '__main__': initialize_megatron(extra_args_provider=get_patch_args) finetune(train_valid_datasets_provider=train_valid_datasets_provider, model_provider=model_provider, forward_step=forward_step)