import enum import glob import json import os from tensorboard.backend.event_processing import event_accumulator # By default TB tries to be smart about what to load in memory to avoid OOM # Since we expect every step to be there when we do our comparisons, we explicitly # set the size guidance to 0 so that we load everything. It's okay given our tests # are small/short. SIZE_GUIDANCE = { event_accumulator.TENSORS: 0, event_accumulator.SCALARS: 0, } class TypeOfTest(enum.Enum): APPROX = 1 DETERMINISTIC = 2 TYPE_OF_TEST_TO_METRIC = { TypeOfTest.DETERMINISTIC: ["lm loss", "num-zeros"], TypeOfTest.APPROX: ["lm loss", "iteration-time", "mem-allocated-bytes"], } METRIC_TO_THRESHOLD = { "iteration-time": 0.3, "mem-allocated-bytes": 3 * 1000 * 1000, # 3MB "lm loss": 0.05 } ALLOW_NONDETERMINISTIC = bool(int(os.getenv("NVTE_ALLOW_NONDETERMINISTIC_ALGO"))) LOGS_DIR = os.getenv("LOGS_DIR") def read_tb_logs_as_list(path, index=0): """Reads a TensorBoard Events file from the input path, and returns the summary specified as input as a list. Args: path: str, path to the dir where the events file is located. summary_name: str, name of the summary to read from the TB logs. Returns: summary_list: list, the values in the read summary list, formatted as a list. """ files = glob.glob(f"{path}/events*tfevents*") files += glob.glob(f"{path}/results/events*tfevents*") if not files: raise FileNotFoundError( f"File not found matching: {path}/events* || {path}/results/events*" ) files.sort(key=lambda x: os.path.getmtime(os.path.join(path, x))) event_file = files[index] ea = event_accumulator.EventAccumulator(event_file, size_guidance=SIZE_GUIDANCE) ea.Reload() summaries = {} for scalar_name in ea.Tags()["scalars"]: summaries[scalar_name] = [round(x.value, 5) for x in ea.Scalars(scalar_name)] print( f"\nObtained the following list for {summaries[scalar_name]} ------------------" ) print(summaries) return summaries def load_expected_data(): expected_metrics_file = os.getenv("EXPECTED_METRICS_FILE") with open(expected_metrics_file) as f: if os.path.exists(expected_metrics_file): with open(expected_metrics_file) as f: return json.load(f) else: print(f"File {expected_metrics_file} not found!")