"vscode:/vscode.git/clone" did not exist on "59f31c61bc1da9e7fb21592d98defca1a6a3235e"
Commit dbe08e9b authored by yuguo960516yuguo's avatar yuguo960516yuguo
Browse files

2.4.2

parent b5499578
...@@ -27,6 +27,7 @@ ...@@ -27,6 +27,7 @@
#include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/argument.h" #include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/string/pretty_log.h" #include "paddle/fluid/string/pretty_log.h"
#include "paddle/phi/core/errors.h"
namespace paddle { namespace paddle {
namespace inference { namespace inference {
...@@ -36,15 +37,6 @@ using string::PrettyLogEndl; ...@@ -36,15 +37,6 @@ using string::PrettyLogEndl;
using string::Style; using string::Style;
IRPassManager::IRPassManager(Argument *argument) { IRPassManager::IRPassManager(Argument *argument) {
ARGUMENT_CHECK_FIELD(argument, main_program);
graph_ = std::unique_ptr<Graph>(new Graph(argument->main_program()));
if (argument->Has("scope")) {
auto *scope_ptr = argument->scope_ptr();
PADDLE_ENFORCE_NOT_NULL(scope_ptr,
platform::errors::PreconditionNotMet(
"The scope ptr should not be nullptr."));
graph_->SetNotOwned(framework::ir::kParamScopeAttr, scope_ptr);
}
disable_logs_ = argument->disable_logs(); disable_logs_ = argument->disable_logs();
ARGUMENT_CHECK_FIELD(argument, ir_analysis_passes); ARGUMENT_CHECK_FIELD(argument, ir_analysis_passes);
...@@ -95,10 +87,14 @@ void IRPassManager::CreatePasses(Argument *argument, ...@@ -95,10 +87,14 @@ void IRPassManager::CreatePasses(Argument *argument,
argument->tensorrt_tuned_dynamic_shape(); argument->tensorrt_tuned_dynamic_shape();
pass->Set("with_dynamic_shape", new bool(with_dynamic_shape)); pass->Set("with_dynamic_shape", new bool(with_dynamic_shape));
// mixed precision related
pass->Set("model_precision", new int(argument->model_precision())); pass->Set("model_precision", new int(argument->model_precision()));
pass->Set( pass->Set(
"mixed_black_list", "mixed_black_list",
new std::unordered_set<std::string>(argument->mixed_black_list())); new std::unordered_set<std::string>(argument->mixed_black_list()));
pass->Set("enable_gpu_mixed", new bool(argument->enable_gpu_mixed()));
pass->Set("mixed_precision_mode",
new int(argument->mixed_precision_mode()));
if (pass_name == "graph_viz_pass") { if (pass_name == "graph_viz_pass") {
std::string optim_cache_dir = argument->optim_cache_dir(); std::string optim_cache_dir = argument->optim_cache_dir();
...@@ -302,42 +298,18 @@ void IRPassManager::CreatePasses(Argument *argument, ...@@ -302,42 +298,18 @@ void IRPassManager::CreatePasses(Argument *argument,
} }
std::unique_ptr<Graph> IRPassManager::Apply(std::unique_ptr<Graph> graph) { std::unique_ptr<Graph> IRPassManager::Apply(std::unique_ptr<Graph> graph) {
if (passes_.empty()) {
return graph;
}
PADDLE_ENFORCE_NOT_NULL( PADDLE_ENFORCE_NOT_NULL(
graph.get(), graph.get(), platform::errors::InvalidArgument("Graph cannot be null."));
platform::errors::PreconditionNotMet("Graph cannot be NULL."));
// Apply all the passes // Apply all the passes
for (const auto &pass : passes_) { for (const auto &pass : passes_) {
if (pass->Type() != "graph_viz_pass" && !disable_logs_) { if (pass->Type() != "graph_viz_pass" && !disable_logs_) {
PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass->Type()); PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass->Type());
} }
// delete_fill_constant_op_pass is not apply under trt dynamic shape
if (pass->Type() == "delete_fill_constant_op_pass") {
bool use_dynamic = pass->Get<bool>("with_dynamic_shape");
if (use_dynamic) continue;
}
graph.reset(pass->Apply(graph.release())); graph.reset(pass->Apply(graph.release()));
} }
return graph; return graph;
} }
framework::proto::ProgramDesc IRPassManager::AcquireProgram(
std::unique_ptr<Graph> *graph, ProgramDesc *program) const {
auto pass =
framework::ir::PassRegistry::Instance().Get("graph_to_program_pass");
// Direct using ProgramDesc desc(argument->main_program()) may cause
// incomplete copies of information.
ProgramDesc desc;
desc.CopyFrom(*program->Proto());
pass->SetNotOwned("program", &desc);
auto *the_graph = graph->release();
graph->reset(pass->Apply(the_graph));
return *desc.Proto();
}
} // namespace analysis } // namespace analysis
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -48,15 +48,9 @@ class IRPassManager final { ...@@ -48,15 +48,9 @@ class IRPassManager final {
std::unique_ptr<Graph> Apply(std::unique_ptr<Graph> graph); std::unique_ptr<Graph> Apply(std::unique_ptr<Graph> graph);
framework::proto::ProgramDesc AcquireProgram(std::unique_ptr<Graph> *graph,
ProgramDesc *program) const;
framework::ir::Graph &graph() const { return *graph_; }
private: private:
void CreatePasses(Argument *argument, const std::vector<std::string> &passes); void CreatePasses(Argument *argument, const std::vector<std::string> &passes);
std::unique_ptr<Graph> graph_;
std::vector<std::unique_ptr<Pass>> passes_; std::vector<std::unique_ptr<Pass>> passes_;
bool disable_logs_{false}; bool disable_logs_{false};
}; };
......
...@@ -94,14 +94,14 @@ void OutputProcess(framework::ir::Graph *graph, ...@@ -94,14 +94,14 @@ void OutputProcess(framework::ir::Graph *graph,
backend, backend,
precision, precision,
blacklist)) { blacklist)) {
AddCastOp(graph, InsertCastOp(graph,
var_node, var_node,
next_op, next_op,
framework::proto::VarType::FP32, framework::proto::VarType::FP32,
to_type, to_type,
&suffix, block_desc,
block_desc, &suffix,
&var_to_cast_op_map); &var_to_cast_op_map);
var_node->Var()->SetDataType(framework::proto::VarType::FP32); var_node->Var()->SetDataType(framework::proto::VarType::FP32);
} }
} }
......
...@@ -13,7 +13,7 @@ cc_library( ...@@ -13,7 +13,7 @@ cc_library(
cc_library( cc_library(
convert_to_mixed_precision convert_to_mixed_precision
SRCS convert_to_mixed_precision.cc SRCS convert_to_mixed_precision.cc
DEPS analysis_pass ir_graph_build_pass) DEPS analysis_pass ir_graph_build_pass auto_mixed_precision_pass)
cc_library( cc_library(
ir_params_sync_among_devices_pass ir_params_sync_among_devices_pass
SRCS ir_params_sync_among_devices_pass.cc SRCS ir_params_sync_among_devices_pass.cc
...@@ -30,17 +30,6 @@ cc_library( ...@@ -30,17 +30,6 @@ cc_library(
inference_op_replace_pass inference_op_replace_pass
SRCS inference_op_replace_pass.cc SRCS inference_op_replace_pass.cc
DEPS analysis_pass graph_to_program_pass) DEPS analysis_pass graph_to_program_pass)
if(WITH_TESTING)
cc_library(
ir_graph_clean_pass
SRCS ir_graph_clean_pass.cc
DEPS analysis_pass gtest)
else()
cc_library(
ir_graph_clean_pass
SRCS ir_graph_clean_pass.cc
DEPS analysis_pass)
endif()
cc_library( cc_library(
analysis_passes analysis_passes
...@@ -52,8 +41,7 @@ cc_library( ...@@ -52,8 +41,7 @@ cc_library(
memory_optim_pass memory_optim_pass
convert_to_mixed_precision convert_to_mixed_precision
inference_op_replace_pass inference_op_replace_pass
ir_graph_to_program_pass ir_graph_to_program_pass)
ir_graph_clean_pass)
set(analysis_deps set(analysis_deps
${analysis_deps} analysis_passes subgraph_detector ${analysis_deps} analysis_passes subgraph_detector
......
...@@ -14,807 +14,88 @@ ...@@ -14,807 +14,88 @@
#include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h" #include "paddle/fluid/inference/analysis/passes/convert_to_mixed_precision.h"
#include <algorithm>
#include <iterator>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/ir/auto_mixed_precision_pass.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h" #include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/var_desc.h"
#include "paddle/fluid/inference/analysis/argument.h"
#include "paddle/fluid/inference/analysis/passes/ir_graph_clean_pass.h"
#include "paddle/fluid/inference/io.h" #include "paddle/fluid/inference/io.h"
#include "paddle/phi/common/bfloat16.h" #include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/place.h"
#include "paddle/phi/core/tensor_meta.h"
using namespace paddle::framework; // NOLINT
namespace paddle { namespace paddle {
namespace inference { namespace inference {
namespace analysis { namespace analysis {
namespace { ConvertToMixedPrecisionPass::ConvertToMixedPrecisionPass(
bool PhiKernelSupportPrecision( const std::string& model_file,
const std::string& op_type, const std::string& params_file,
const std::string& mixed_model_file,
const std::string& mixed_params_file,
phi::DataType mixed_precision,
phi::Backend backend, phi::Backend backend,
phi::DataType data_type, bool keep_io_types,
phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) { const std::unordered_set<std::string>& black_list)
auto kernels = phi::KernelFactory::Instance().kernels(); : model_file_(model_file),
if (kernels.find(op_type) == kernels.end()) { params_file_(params_file),
return false; mixed_model_file_(mixed_model_file),
} mixed_params_file_(mixed_params_file),
phi::KernelKey kernel_key(backend, layout, data_type); mixed_precision_(mixed_precision),
return phi::KernelFactory::Instance().HasKernel(op_type, kernel_key); backend_(backend),
} keep_io_types_(keep_io_types),
black_list_(black_list) {
bool GpuKernelSupportPrecision( if (mixed_precision_ != phi::DataType::FLOAT16 &&
const std::string& op_type, mixed_precision_ != phi::DataType::BFLOAT16) {
phi::DataType data_type, PADDLE_THROW(paddle::platform::errors::InvalidArgument(
phi::DataLayout layout = phi::DataLayout::ALL_LAYOUT) { "mixed_precision currently not supported dtype %d, we now only "
auto phi_op_type = phi::TransToPhiKernelName(op_type); "support fp16 and bf16.",
bool res = PhiKernelSupportPrecision( static_cast<int>(mixed_precision_)));
phi_op_type, phi::Backend::GPU, data_type, layout);
res |= PhiKernelSupportPrecision(
phi_op_type, phi::Backend::GPUDNN, data_type, layout);
if (!res) {
auto& all_kernels = OperatorWithKernel::AllOpKernels();
auto it = all_kernels.find(op_type);
if (it != all_kernels.end()) {
for (auto& kern_pair : it->second) {
if (platform::is_gpu_place(kern_pair.first.place_) &&
kern_pair.first.data_type_ == framework::proto::VarType::FP16) {
res = true;
}
}
}
}
return res;
}
class ConvertToMixedPrecisionPass {
public:
explicit ConvertToMixedPrecisionPass(
const std::string& model_file,
const std::string& params_file,
const std::string& mixed_model_file,
const std::string& mixed_params_file,
phi::DataType mixed_precision,
phi::Backend backend,
bool keep_io_types,
std::unordered_set<std::string> black_list)
: model_file_(model_file),
params_file_(params_file),
mixed_model_file_(mixed_model_file),
mixed_params_file_(mixed_params_file),
mixed_precision_(mixed_precision),
backend_(backend),
keep_io_types_(keep_io_types),
black_list_(black_list),
place_(paddle::CPUPlace()),
executor_(place_) {
black_list_.insert("assign");
black_list_.insert("fill_constant");
black_list_.insert("assign_value");
black_list_.insert("eye");
black_list_.insert("fill_any_like");
black_list_.insert("fill_constant_batch_size_like");
}
void Run();
private:
void LoadAndPrepare();
inline bool NodeVarHasDtype(framework::ir::Node* node);
void ConvertAllFp64ToFp32(framework::ir::Graph* graph);
void FixCastAttr(framework::ir::Graph* graph);
void SaveMixedModel();
void ConvertTensorDtype(int block_idx);
void ProcessInputNode(bool support_precision,
ir::Node* in_node,
ir::Node* op_node,
int* suffix,
framework::BlockDesc* block_desc,
framework::proto::VarType::Type to_type,
int block_idx);
void ProcessOutputNode(int block_idx,
ir::Node* var_node,
framework::proto::VarType::Type to_type);
inline bool IsFloatVarType(framework::proto::VarType::Type type);
bool OutShouldNotConvert(ir::Node* var_node);
// Just process special cases for weights conversion.
bool WeightsShouldNotConvert(ir::Node* var_node);
// To support multi block, we need to consider a lot of special cases.
// Return Node* which first appers in block.
framework::ir::Node* GetRealNode(int block_idx, framework::ir::Node* node);
void FindVarsInMultiBlock();
inline bool VarIsMultiPrecisionOpsOut(int block_idx,
framework::ir::Node* op_node);
private:
// A trick. Patch for strange op, which input name equal to output name, such
// as `fused_multi_transformer`
void PatchForStrangeOp();
private:
std::string model_file_;
std::string params_file_;
std::string mixed_model_file_;
std::string mixed_params_file_;
phi::DataType mixed_precision_;
phi::Backend backend_;
bool keep_io_types_;
std::unordered_set<std::string> black_list_;
paddle::CPUPlace place_;
framework::Executor executor_;
framework::Scope scope_;
std::unordered_map<framework::ir::Node*, framework::ir::Node*> cast_map_;
std::unordered_map<std::string,
std::pair<framework::proto::VarType::Type, int>>
vars_in_multi_block_map_;
std::vector<std::unordered_map<std::string, std::vector<std::string>>>
vars_appear_multi_in_one_block_;
int suffix_{0};
std::unique_ptr<framework::ProgramDesc> program_desc_{nullptr};
std::unique_ptr<framework::ir::Graph> main_graph_{nullptr};
std::vector<framework::ir::Graph*> graphes_;
};
framework::ir::Node* ConvertToMixedPrecisionPass::GetRealNode(
int block_idx, framework::ir::Node* node) {
if (vars_in_multi_block_map_.count(node->Name())) {
int var_origin_block_id = vars_in_multi_block_map_.at(node->Name()).second;
if (block_idx != var_origin_block_id) {
auto graph = graphes_[var_origin_block_id];
for (auto nd : graph->Nodes()) {
if (nd->Name() == node->Name()) {
return nd;
}
}
}
}
return node;
}
inline bool ConvertToMixedPrecisionPass::NodeVarHasDtype(
framework::ir::Node* node) {
if (node->IsVar() &&
(node->Var()->GetType() ==
paddle::framework::proto::VarType::SELECTED_ROWS ||
node->Var()->GetType() ==
paddle::framework::proto::VarType::LOD_TENSOR ||
node->Var()->GetType() ==
paddle::framework::proto::VarType::LOD_TENSOR_ARRAY ||
node->Var()->GetType() == paddle::framework::proto::VarType::STRINGS ||
node->Var()->GetType() == paddle::framework::proto::VarType::VOCAB)) {
return true;
}
return false;
}
// op1(fp32) -> var1, op2(fp16) -> var1
// if and only if op1 and op2 both support fp16, we convert op1 and op2's
// precision.
inline bool ConvertToMixedPrecisionPass::VarIsMultiPrecisionOpsOut(
int block_idx, framework::ir::Node* op_node) {
CHECK_EQ(op_node->IsOp(), true);
bool ret{false};
for (auto* out : op_node->outputs) {
auto* real_node = GetRealNode(block_idx, out);
if (!real_node->Var()->Persistable() &&
vars_appear_multi_in_one_block_[block_idx].count(out->Name())) {
for (auto op_type :
vars_appear_multi_in_one_block_[block_idx].at(out->Name())) {
if (OpSupportPrecision(
op_type, backend_, mixed_precision_, black_list_)) {
ret = true;
VLOG(2) << out->Name()
<< " is multi precision op's out, so we skip convert to fp16";
break;
}
}
}
if (ret) break;
}
return ret;
}
void ConvertToMixedPrecisionPass::ProcessInputNode(
bool support_precision,
ir::Node* in_node,
ir::Node* op_node,
int* suffix,
framework::BlockDesc* block_desc,
framework::proto::VarType::Type to_type,
int block_idx) {
auto* real_node = GetRealNode(block_idx, in_node);
if (!NodeVarHasDtype(real_node)) return;
auto graph = graphes_[block_idx];
bool is_main_block = block_idx == 0;
auto* in_var = real_node->Var();
auto in_var_type = in_var->GetDataType();
auto prev_type = in_var_type;
bool is_in_multi_block = vars_in_multi_block_map_.count(in_var->Name());
if (!is_main_block && is_in_multi_block) {
in_var_type = vars_in_multi_block_map_.at(in_var->Name()).first;
}
if (support_precision) {
if (in_var->Persistable() &&
in_var_type == framework::proto::VarType::FP32) {
if (WeightsShouldNotConvert(in_node)) return;
in_var->SetDataType(to_type);
in_var_type = to_type;
VLOG(3) << " in_node name " << in_var->Name() << " from " << prev_type
<< " to " << to_type;
} else if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
in_var_type != to_type) {
AddCastOp(graph,
in_node,
op_node,
in_var_type,
to_type,
suffix,
block_desc,
&cast_map_);
VLOG(3) << " in_node name " << in_var->Name() << "(" << prev_type
<< ") to " << cast_map_[in_node]->Name() << "(" << to_type << ")";
}
} else {
if (!in_var->Persistable() && IsFloatVarType(in_var_type) &&
in_var_type != to_type) {
AddCastOp(graph,
in_node,
op_node,
in_var_type,
to_type,
suffix,
block_desc,
&cast_map_);
VLOG(3) << " in_node name " << in_var->Name() << "(" << prev_type
<< ") to " << cast_map_[in_node]->Name() << "(" << to_type << ")";
}
} }
} if (backend_ != phi::Backend::GPU) {
PADDLE_THROW(paddle::platform::errors::InvalidArgument(
void ConvertToMixedPrecisionPass::ProcessOutputNode( "mixed_precision currently not supported place %d, we now only "
int block_idx, "support gpu.",
ir::Node* var_node, static_cast<int>(backend_)));
framework::proto::VarType::Type to_type) {
auto* real_node = GetRealNode(block_idx, var_node);
if (!NodeVarHasDtype(real_node)) return;
auto* out_var = real_node->Var();
auto prev_type = out_var->GetDataType();
if (out_var->GetDataType() == framework::proto::VarType::FP32) {
if (OutShouldNotConvert(var_node)) return;
out_var->SetDataType(to_type);
} }
VLOG(3) << " out_node name " << var_node->Name() << " from dtype "
<< prev_type << " to " << out_var->GetDataType();
} }
// Just process special cases. void ConvertToMixedPrecisionPass::LoadModel() {
bool ConvertToMixedPrecisionPass::OutShouldNotConvert(ir::Node* var_node) { framework::Executor exe{platform::CPUPlace{}};
auto op_node = var_node->inputs[0];
auto* op_desc = op_node->Op();
// batch_norm's input and output (variance and mean) are the same.
if (op_desc->Type() == "batch_norm") {
auto vecs = op_desc->Output("MeanOut");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
vecs = op_desc->Output("VarianceOut");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
vecs = op_desc->Output("SavedMean");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
vecs = op_desc->Output("SavedVariance");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
}
return false;
}
bool ConvertToMixedPrecisionPass::WeightsShouldNotConvert(ir::Node* var_node) { auto program_desc = inference::Load(&exe, &scope_, model_file_, params_file_);
auto op_nodes = var_node->outputs;
for (auto* op_node : op_nodes) {
auto* op_desc = op_node->Op();
// batch_norm op's bias, mean, scale and variance just be float32, so we can
// not convert the dtype.
if (op_desc->Type() == "batch_norm") {
auto vecs = op_desc->Input("Bias");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
vecs = op_desc->Input("Mean");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
vecs = op_desc->Input("Scale");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
vecs = op_desc->Input("Variance");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
} else if (op_desc->Type() == "fused_multi_transformer") {
auto vecs = op_desc->Input("LnScale");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
vecs = op_desc->Input("LnBias");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
vecs = op_desc->Input("FFNLnScale");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
vecs = op_desc->Input("FFNLnBias");
if (std::find(vecs.begin(), vecs.end(), var_node->Name()) != vecs.end()) {
return true;
}
}
}
return false;
}
inline bool ConvertToMixedPrecisionPass::IsFloatVarType(
framework::proto::VarType::Type type) {
if (type == framework::proto::VarType::FP16 ||
type == framework::proto::VarType::FP32 ||
type == framework::proto::VarType::BF16)
return true;
return false;
}
void ConvertToMixedPrecisionPass::LoadAndPrepare() {
program_desc_ =
inference::Load(&executor_, &scope_, model_file_, params_file_);
main_graph_ = std::unique_ptr<framework::ir::Graph>( main_graph_ = std::unique_ptr<framework::ir::Graph>(
new framework::ir::Graph(*program_desc_)); new framework::ir::Graph(*program_desc));
main_graph_->SetNotOwned(framework::ir::kParamScopeAttr, &scope_);
// Remove all control var
IrInferCleanGraphPass pass;
Argument arg;
arg.SetMainGraphNotOwned(main_graph_.get());
pass.Run(&arg);
vars_appear_multi_in_one_block_.resize(program_desc_->Size());
FindVarsInMultiBlock();
}
void ConvertToMixedPrecisionPass::FindVarsInMultiBlock() {
std::vector<std::set<std::string>> block_var_names_set(program_desc_->Size());
for (size_t i = 0; i < program_desc_->Size(); ++i) {
for (auto op : program_desc_->Block(i).AllOps()) {
auto in_names = op->InputArgumentNames();
block_var_names_set[i].insert(in_names.begin(), in_names.end());
auto out_names = op->OutputArgumentNames();
if (op->HasAttr("sub_block") == false) {
for (auto& n : out_names) {
if (block_var_names_set[i].count(n)) {
vars_appear_multi_in_one_block_[i][n].push_back(op->Type());
}
}
}
block_var_names_set[i].insert(out_names.begin(), out_names.end());
}
}
for (size_t i = 0; i < program_desc_->Size() - 1; ++i) {
for (size_t j = i + 1; j < program_desc_->Size(); ++j) {
std::set<std::string> vars_in_multi_block;
std::set_intersection(
block_var_names_set[i].begin(),
block_var_names_set[i].end(),
block_var_names_set[j].begin(),
block_var_names_set[j].end(),
std::inserter(vars_in_multi_block, vars_in_multi_block.begin()));
for (auto name : vars_in_multi_block) {
vars_in_multi_block_map_.emplace(
name, std::make_pair(framework::proto::VarType::FP32, i));
}
}
}
}
void ConvertToMixedPrecisionPass::ConvertAllFp64ToFp32(
framework::ir::Graph* graph) {
auto op_nodes = framework::ir::TopologySortOperations(*graph);
for (auto* op_node : op_nodes) {
if (!op_node->IsOp()) continue;
auto op_type = op_node->Op()->Type();
if (op_type == "feed" || op_type == "fetch") continue;
if (op_type == "fill_constant") {
if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
static_cast<int>(framework::proto::VarType::FP64))
op_node->Op()->SetAttr(
"dtype", static_cast<int>(framework::proto::VarType::FP32));
} else if (op_type == "assign_value") {
if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
static_cast<int>(framework::proto::VarType::FP64))
op_node->Op()->SetAttr(
"dtype", static_cast<int>(framework::proto::VarType::FP32));
} else if (op_type == "eye") {
if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
static_cast<int>(framework::proto::VarType::FP64))
op_node->Op()->SetAttr(
"dtype", static_cast<int>(framework::proto::VarType::FP32));
} else if (op_type == "fill_any_like") {
if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("dtype")) ==
static_cast<int>(framework::proto::VarType::FP64))
op_node->Op()->SetAttr(
"dtype", static_cast<int>(framework::proto::VarType::FP32));
} else if (op_type == "cast") {
if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("in_dtype")) ==
static_cast<int>(framework::proto::VarType::FP64))
op_node->Op()->SetAttr(
"in_dtype", static_cast<int>(framework::proto::VarType::FP32));
if (PADDLE_GET_CONST(int, op_node->Op()->GetAttr("out_dtype")) ==
static_cast<int>(framework::proto::VarType::FP64))
op_node->Op()->SetAttr(
"out_dtype", static_cast<int>(framework::proto::VarType::FP32));
}
auto inputs = op_node->inputs;
for (auto* in_node : inputs) {
auto* in_var = in_node->Var();
if (!in_var->Persistable() &&
in_var->GetDataType() == framework::proto::VarType::FP64) {
in_var->SetDataType(framework::proto::VarType::FP32);
}
}
}
} }
void ConvertToMixedPrecisionPass::Run() { void ConvertToMixedPrecisionPass::Run() {
LoadAndPrepare(); LoadModel();
for (size_t i = 0; i < main_graph_->SubGraphsSize(); ++i) { framework::ir::AutoMixedPrecisionPass pass;
auto graph = main_graph_->GetSubGraph(i); pass.Set("mixed_precision_mode", new int{static_cast<int>(mixed_precision_)});
graphes_.push_back(graph); pass.Set("mixed_black_list",
VLOG(2) << " -------- handle subgraph " << i << ", has " new std::unordered_set<std::string>{black_list_});
<< graph->Nodes().size() << " nodes --------"; pass.Set("enable_gpu_mixed", new bool{true});
pass.Set("keep_io_types", new bool{keep_io_types_});
ConvertAllFp64ToFp32(graph); pass.Apply(main_graph_.get());
ConvertTensorDtype(i);
FixCastAttr(graph);
// A trick
PatchForStrangeOp();
CHECK_EQ(ir::VarDescIsConsistency(*graph), true);
}
SaveMixedModel(); SaveMixedModel();
} }
void ConvertToMixedPrecisionPass::ConvertTensorDtype(int block_idx) {
auto graph = graphes_[block_idx];
framework::proto::VarType::Type to_type;
if (mixed_precision_ == phi::DataType::FLOAT16) {
to_type = framework::proto::VarType::FP16;
} else if (mixed_precision_ == phi::DataType::BFLOAT16) {
to_type = framework::proto::VarType::BF16;
} else {
PADDLE_THROW(paddle::platform::errors::InvalidArgument(
"mixed_precision currently not supported dtype %d, we now only "
"support fp16 and bf16.",
static_cast<int>(mixed_precision_)));
}
auto op_nodes = framework::ir::TopologySortOperations(*graph);
auto* block_desc = op_nodes[0]->Op()->Block();
int num_low_precision = 0;
std::vector<framework::ir::Node*> output_nodes;
for (auto* op_node : op_nodes) {
if (!op_node->IsOp()) continue;
auto op_type = op_node->Op()->Type();
VLOG(3) << "-------------------- op_type " << op_type << ", phi_type "
<< phi::TransToPhiKernelName(op_type);
// 1. set input dtype.
if (op_type == "feed") {
auto feed_var = op_node->outputs[0]->Var();
if (!keep_io_types_ &&
feed_var->GetDataType() == framework::proto::VarType::FP32) {
feed_var->SetDataType(to_type);
}
} else if (op_type == "fetch") {
auto* fetch_var = op_node->inputs[0];
output_nodes.push_back(fetch_var);
continue;
} else if (op_type == "cast") {
continue;
}
else if (op_node->Op()->HasAttr("sub_block")) { // NOLINT
// sub_block op's output dtype should be same as input dtype, if have the
// same name.
std::unordered_map<std::string, framework::ir::Node*> in_name_to_node;
for (auto* in : op_node->inputs) {
auto* real_node = GetRealNode(block_idx, in);
if (NodeVarHasDtype(real_node)) {
in_name_to_node[in->Name()] = in;
}
}
for (auto out : op_node->outputs) {
auto* real_node = GetRealNode(block_idx, out);
if (NodeVarHasDtype(real_node)) {
if (in_name_to_node.count(out->Name()))
real_node->Var()->SetDataType(
in_name_to_node[out->Name()]->Var()->GetDataType());
}
}
continue;
}
// 2. if op support fp16/bf16 and not in blacklist.
// - cast weight to fp16/bf16.
// - add cast op if the input dtype is not fp16/bf16.
// - set output dtype.
//
// If a var(op's out var) appears multiple times in a block, we should not
// convert to fp16.
else if (black_list_.count(op_type) == 0 && // NOLINT
!VarIsMultiPrecisionOpsOut(block_idx, op_node)) {
bool support_precision =
OpSupportPrecision(op_type, backend_, mixed_precision_, black_list_);
// if op not has float input, we will not choose the low precision kernel.
{
bool has_float_input{false};
for (auto in_node : op_node->inputs) {
auto* real_node = GetRealNode(block_idx, in_node);
if (real_node->Var()->GetDataType() == proto::VarType::FP16 ||
real_node->Var()->GetDataType() == proto::VarType::FP32 ||
real_node->Var()->GetDataType() == proto::VarType::FP64 ||
real_node->Var()->GetDataType() == proto::VarType::BF16) {
has_float_input = true;
break;
}
}
if (!has_float_input) {
support_precision = false;
VLOG(2) << " op doesn't has float input, just skip.";
}
}
VLOG(2) << " support low precision " << support_precision;
if (support_precision) {
VLOG(2) << " process input nodes:";
++num_low_precision;
auto inputs = op_node->inputs;
// Just for paddle's terriable case: op's input and output has the same
// name.
std::unordered_map<std::string, std::string> names_map;
for (auto out_node : op_node->outputs) {
for (auto in_node : op_node->inputs) {
if (out_node->Name() == in_node->Name()) {
names_map[out_node->Name()] = in_node->Name();
}
}
}
// Process inputs.
for (auto* in_node : inputs) {
ProcessInputNode(
true, in_node, op_node, &suffix_, block_desc, to_type, block_idx);
if (names_map.count(in_node->Name()) && cast_map_.count(in_node)) {
names_map[in_node->Name()] = cast_map_[in_node]->Name();
}
}
VLOG(2) << " process output nodes:";
// Process outputs.
for (auto* out_node : op_node->outputs) {
ProcessOutputNode(block_idx, out_node, to_type);
}
} else {
auto inputs = op_node->inputs;
for (auto* in_node : inputs) {
ProcessInputNode(false,
in_node,
op_node,
&suffix_,
block_desc,
framework::proto::VarType::FP32,
block_idx);
}
}
}
// 3. check op not support fp16/bf16 or in blacklist.
// - add cast op if the input dtype is not fp32.
else { // NOLINT
VLOG(3) << "not to run fp16 op_type: " << op_type;
auto ins = op_node->inputs;
for (auto* in_node : ins) {
auto* in_var = in_node->Var();
if (in_var->GetDataType() == to_type) {
AddCastOp(graph,
in_node,
op_node,
to_type,
framework::proto::VarType::FP32,
&suffix_,
block_desc,
&cast_map_);
VLOG(3) << "-- " << in_node->Name() << "(" << to_type << ") to "
<< cast_map_[in_node]->Name() << "("
<< framework::proto::VarType::FP32 << ")";
}
}
}
}
// 4. if output_op's dtype is not compatible to output dtype, then just
// insert cast.
for (auto* node : output_nodes) {
ir::Node* fetch_op{nullptr};
for (auto* op_node : node->outputs) {
if (op_node->IsOp() && op_node->Op()->Type() == "fetch") {
fetch_op = op_node;
}
}
CHECK_NOTNULL(fetch_op);
auto var = node->Var();
if (keep_io_types_ && var->GetDataType() == to_type) {
// fp16/bf16 -> fp32.
AddCastOp(graph,
node,
fetch_op,
to_type,
framework::proto::VarType::FP32,
&suffix_,
block_desc,
&cast_map_);
} else if (!keep_io_types_ &&
var->GetDataType() == framework::proto::VarType::FP32) {
// fp32 -> fp16/bf16
AddCastOp(graph,
node,
fetch_op,
framework::proto::VarType::FP32,
to_type,
&suffix_,
block_desc,
&cast_map_);
}
}
for (auto node : graph->Nodes()) {
auto* real_node = GetRealNode(block_idx, node);
if (!NodeVarHasDtype(real_node)) continue;
if (vars_in_multi_block_map_.count(real_node->Name()) &&
vars_in_multi_block_map_.at(real_node->Name()).second == block_idx) {
vars_in_multi_block_map_.at(real_node->Name()).first =
real_node->Var()->GetDataType();
}
}
if (num_low_precision)
LOG(INFO) << "--- detected " << num_low_precision
<< " low precision ops in " << block_idx << " subgraph";
}
// We modify op's input output precision, and we need to fix cast op in_dtype
// and out_dtype attribute.
void ConvertToMixedPrecisionPass::FixCastAttr(framework::ir::Graph* graph) {
auto op_nodes = framework::ir::TopologySortOperations(*graph);
for (auto* op_node : op_nodes) {
if (!op_node->IsOp()) continue;
auto op_type = op_node->Op()->Type();
if (op_type != "cast") continue;
auto input = op_node->inputs[0];
auto output = op_node->outputs[0];
op_node->Op()->SetAttr("in_dtype",
static_cast<int>(input->Var()->GetDataType()));
op_node->Op()->SetAttr("out_dtype",
static_cast<int>(output->Var()->GetDataType()));
}
}
void ConvertToMixedPrecisionPass::SaveMixedModel() { void ConvertToMixedPrecisionPass::SaveMixedModel() {
framework::ProgramDesc mixed_program_desc; framework::ProgramDesc mixed_program_desc;
framework::ir::GraphToProgram(*main_graph_, &mixed_program_desc); framework::ir::GraphToProgram(*main_graph_, &mixed_program_desc);
paddle::CPUPlace place;
auto parameters = scope_.LocalVarNames(); auto parameters = scope_.LocalVarNames();
std::sort(parameters.begin(), parameters.end()); std::sort(parameters.begin(), parameters.end());
std::unordered_set<std::string> weights_should_be_fp32;
for (auto* node : main_graph_->Nodes()) {
if (!(node->IsVar())) continue;
if (NodeVarHasDtype(node)) {
if (node->Var()->Persistable() &&
node->Var()->GetDataType() ==
paddle::framework::proto::VarType::FP32) {
VLOG(2) << "weights keep to fp32: " << node->Name();
weights_should_be_fp32.insert(node->Name());
}
}
}
#define CONVERT_TENSOR_DTYPE(DTYPE, dtype) \
mixed_tensor.set_type(DTYPE); \
auto* mixed_data = mixed_tensor.mutable_data<dtype>(platform::CPUPlace()); \
for (int i = 0; i < t->numel(); i++) { \
mixed_data[i] = static_cast<dtype>(data[i]); \
} \
t->clear(); \
paddle::framework::TensorCopySync(mixed_tensor, place, t)
for (const auto& param_name : parameters) {
auto* var = scope_.FindLocalVar(param_name);
if (var->IsType<phi::DenseTensor>()) {
auto* t = var->GetMutable<phi::DenseTensor>();
if (t->dtype() != phi::DataType::FLOAT32) continue;
phi::DenseTensor mixed_tensor;
mixed_tensor.Resize(t->dims());
auto* data = t->mutable_data<float>(platform::CPUPlace());
if (mixed_precision_ == phi::DataType::FLOAT16 &&
!weights_should_be_fp32.count(param_name)) {
CONVERT_TENSOR_DTYPE(paddle::experimental::DataType::FLOAT16,
phi::dtype::float16);
} else if (mixed_precision_ == phi::DataType::BFLOAT16 &&
!weights_should_be_fp32.count(param_name)) {
CONVERT_TENSOR_DTYPE(paddle::experimental::DataType::BFLOAT16,
phi::dtype::bfloat16);
}
}
}
#undef CONVERT_TENSOR_DTYPE
auto SerializeParams = [&]() -> std::string { auto SerializeParams = [&]() -> std::string {
std::ostringstream os; std::ostringstream os;
phi::CPUContext ctx; phi::CPUContext ctx;
for (const auto& param : parameters) { for (const auto& param : parameters) {
VLOG(3) << "Serialize param: " << param;
PADDLE_ENFORCE_NOT_NULL( PADDLE_ENFORCE_NOT_NULL(
scope_.FindVar(param), scope_.FindVar(param),
platform::errors::NotFound( platform::errors::NotFound(
"Block should already have a '%s' variable", param)); "Block should already have a '%s' variable", param));
auto* tensor = scope_.FindVar(param)->GetMutable<framework::LoDTensor>(); auto* tensor = scope_.FindVar(param)->GetMutable<phi::DenseTensor>();
framework::SerializeToStream(os, *tensor, ctx); framework::SerializeToStream(os, *tensor, ctx);
} }
return os.str(); return os.str();
...@@ -831,96 +112,42 @@ void ConvertToMixedPrecisionPass::SaveMixedModel() { ...@@ -831,96 +112,42 @@ void ConvertToMixedPrecisionPass::SaveMixedModel() {
StrToBinary(mixed_params_file_, SerializeParams()); StrToBinary(mixed_params_file_, SerializeParams());
} }
void ConvertToMixedPrecisionPass::PatchForStrangeOp() { bool OpSupportPrecision(const std::string& op_type,
for (auto* graph : graphes_) { phi::Backend backend,
for (auto op_node : framework::ir::TopologySortOperations(*graph)) { phi::DataType precision,
if (op_node->Name() == "fused_multi_transformer") { const std::unordered_set<std::string>& black_list) {
auto cache_kv_inputs = op_node->Op()->Input("CacheKV"); return framework::ir::OpSupportPrecision(
auto cache_kv_outputs = op_node->Op()->Output("CacheKVOut"); op_type, backend, precision, black_list);
CHECK_EQ(cache_kv_inputs.size(), cache_kv_outputs.size());
for (size_t i = 0; i < cache_kv_inputs.size(); ++i) {
op_node->Op()->RenameOutput(cache_kv_outputs[i], cache_kv_inputs[i]);
}
}
}
}
} }
} // namespace
void AddCastOp( void InsertCastOp(
framework::ir::Graph* graph, framework::ir::Graph* graph,
framework::ir::Node* node, framework::ir::Node* var_node,
framework::ir::Node* next_op, framework::ir::Node* op_node,
framework::proto::VarType::Type from_type, framework::proto::VarType::Type from_type,
framework::proto::VarType::Type to_type, framework::proto::VarType::Type to_type,
int* suffix,
framework::BlockDesc* block_desc, framework::BlockDesc* block_desc,
std::unordered_map<framework::ir::Node*, framework::ir::Node*>* map) { int* suffix,
auto update_cast_desc = [&](framework::OpDesc& desc, std::unordered_map<framework::ir::Node*, framework::ir::Node*>* visited) {
const std::string& x_name, framework::ir::DoInsertCastOp(graph,
const std::string& out_name, var_node,
const int in_dtype, op_node,
const int out_dtype) { from_type,
desc.SetType("cast"); to_type,
desc.SetInput("X", {x_name}); block_desc,
desc.SetOutput("Out", {out_name}); suffix,
desc.SetAttr("in_dtype", in_dtype); visited);
desc.SetAttr("out_dtype", out_dtype); }
desc.SetAttr("use_mkldnn", false);
desc.SetAttr("with_quant_attr", false); void ConvertToMixedPrecision(
desc.Flush(); const std::string& model_file,
}; const std::string& params_file,
const std::string& mixed_model_file,
if (map->count(node) == 0) { const std::string& mixed_params_file,
// insert cast op before node. phi::DataType mixed_precision,
std::string cast_input_name = node->Var()->Name(); phi::Backend backend,
std::string cast_output_name = bool keep_io_types,
node->Var()->Name() + "_cast.tmp_" + std::to_string((*suffix)++); const std::unordered_set<std::string>& black_list) {
CHECK_NOTNULL(block_desc);
framework::OpDesc cast_op_desc(block_desc);
update_cast_desc(cast_op_desc,
cast_input_name,
cast_output_name,
static_cast<int>(from_type),
static_cast<int>(to_type));
auto* cast_op_node = graph->CreateOpNode(&cast_op_desc);
auto* cast_output_vardesc = block_desc->Var(cast_output_name);
cast_output_vardesc->SetPersistable(false);
cast_output_vardesc->SetDataType(to_type);
cast_output_vardesc->SetShape(node->Var()->GetShape());
auto* cast_output_node = graph->CreateVarNode(cast_output_vardesc);
IR_NODE_LINK_TO(cast_op_node, cast_output_node);
(*map)[node] = cast_output_node;
}
next_op->Op()->Rename(node->Name(), map->at(node)->Name());
IR_NODE_LINK_TO(node, map->at(node)->inputs[0]);
IR_NODE_LINK_TO(map->at(node), next_op);
}
bool OpSupportPrecision(const std::string& op_type,
phi::Backend backend,
phi::DataType precision,
const std::unordered_set<std::string>& blacklist) {
auto phi_op_type = phi::TransToPhiKernelName(op_type);
bool support_precision = false;
if (blacklist.count(op_type) == 0) {
if (backend == phi::Backend::GPU)
support_precision = GpuKernelSupportPrecision(op_type, precision);
else
support_precision =
PhiKernelSupportPrecision(phi_op_type, backend, precision);
}
return support_precision;
}
void ConvertToMixedPrecision(const std::string& model_file,
const std::string& params_file,
const std::string& mixed_model_file,
const std::string& mixed_params_file,
phi::DataType mixed_precision,
phi::Backend backend,
bool keep_io_types,
std::unordered_set<std::string> black_list) {
ConvertToMixedPrecisionPass pass(model_file, ConvertToMixedPrecisionPass pass(model_file,
params_file, params_file,
mixed_model_file, mixed_model_file,
......
...@@ -15,14 +15,12 @@ ...@@ -15,14 +15,12 @@
#pragma once #pragma once
#include <string> #include <string>
#include <unordered_map>
#include <unordered_set> #include <unordered_set>
#include "paddle/fluid/framework/block_desc.h" #include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/phi/common/backend.h" #include "paddle/phi/common/backend.h"
#include "paddle/phi/common/data_type.h" #include "paddle/phi/common/data_type.h"
...@@ -30,20 +28,52 @@ namespace paddle { ...@@ -30,20 +28,52 @@ namespace paddle {
namespace inference { namespace inference {
namespace analysis { namespace analysis {
class ConvertToMixedPrecisionPass {
public:
explicit ConvertToMixedPrecisionPass(
const std::string& model_file,
const std::string& params_file,
const std::string& mixed_model_file,
const std::string& mixed_params_file,
phi::DataType mixed_precision,
phi::Backend backend,
bool keep_io_types,
const std::unordered_set<std::string>& black_list);
void Run();
private:
void LoadModel();
void SaveMixedModel();
private:
std::string model_file_;
std::string params_file_;
std::string mixed_model_file_;
std::string mixed_params_file_;
phi::DataType mixed_precision_;
phi::Backend backend_;
bool keep_io_types_;
std::unordered_set<std::string> black_list_;
framework::Scope scope_;
std::unique_ptr<framework::ir::Graph> main_graph_{nullptr};
};
bool OpSupportPrecision(const std::string& op_type, bool OpSupportPrecision(const std::string& op_type,
phi::Backend backend, phi::Backend backend,
phi::DataType precision, phi::DataType precision,
const std::unordered_set<std::string>& blacklist); const std::unordered_set<std::string>& black_list);
void AddCastOp( void InsertCastOp(
framework::ir::Graph* graph, framework::ir::Graph* graph,
framework::ir::Node* node, framework::ir::Node* var_node,
framework::ir::Node* next_op, framework::ir::Node* op_node,
framework::proto::VarType::Type from_type, framework::proto::VarType::Type from_type,
framework::proto::VarType::Type to_type, framework::proto::VarType::Type to_type,
int* suffix,
framework::BlockDesc* block_desc, framework::BlockDesc* block_desc,
std::unordered_map<framework::ir::Node*, framework::ir::Node*>* map); int* suffix,
std::unordered_map<framework::ir::Node*, framework::ir::Node*>* visited);
void ConvertToMixedPrecision(const std::string& model_file, void ConvertToMixedPrecision(const std::string& model_file,
const std::string& params_file, const std::string& params_file,
...@@ -51,8 +81,8 @@ void ConvertToMixedPrecision(const std::string& model_file, ...@@ -51,8 +81,8 @@ void ConvertToMixedPrecision(const std::string& model_file,
const std::string& mixed_params_file, const std::string& mixed_params_file,
phi::DataType mixed_precision, phi::DataType mixed_precision,
phi::Backend backend, phi::Backend backend,
bool keep_io_types = true, bool keep_io_types,
std::unordered_set<std::string> black_list = {}); const std::unordered_set<std::string>& black_list);
} // namespace analysis } // namespace analysis
} // namespace inference } // namespace inference
......
...@@ -40,7 +40,7 @@ void InferenceOpReplacePass::RunImpl(Argument* argument) { ...@@ -40,7 +40,7 @@ void InferenceOpReplacePass::RunImpl(Argument* argument) {
} }
std::string InferenceOpReplacePass::repr() const { std::string InferenceOpReplacePass::repr() const {
return "inference-op-replace-pass"; return "inference_op_replace_pass";
} }
} // namespace analysis } // namespace analysis
......
...@@ -105,7 +105,7 @@ void IrAnalysisPass::CollectFusionStatis(Argument* argument) { ...@@ -105,7 +105,7 @@ void IrAnalysisPass::CollectFusionStatis(Argument* argument) {
framework::ir::kFuseStatisAttr)); framework::ir::kFuseStatisAttr));
} }
std::string IrAnalysisPass::repr() const { return "ir-analysis-pass"; } std::string IrAnalysisPass::repr() const { return "ir_analysis_pass"; }
} // namespace analysis } // namespace analysis
} // namespace inference } // namespace inference
......
...@@ -64,7 +64,8 @@ void IrGraphBuildPass::RunImpl(Argument *argument) { ...@@ -64,7 +64,8 @@ void IrGraphBuildPass::RunImpl(Argument *argument) {
"set.")); "set."));
} }
auto graph = std::unique_ptr<Graph>(new Graph(argument->main_program())); auto graph = std::unique_ptr<framework::ir::Graph>(
new framework::ir::Graph(argument->main_program()));
argument->SetMainGraph(graph.release()); argument->SetMainGraph(graph.release());
auto *scope_ptr = argument->scope_ptr(); auto *scope_ptr = argument->scope_ptr();
PADDLE_ENFORCE_NOT_NULL(scope_ptr, PADDLE_ENFORCE_NOT_NULL(scope_ptr,
...@@ -125,7 +126,7 @@ std::unique_ptr<framework::ProgramDesc> IrGraphBuildPass::LoadModel( ...@@ -125,7 +126,7 @@ std::unique_ptr<framework::ProgramDesc> IrGraphBuildPass::LoadModel(
} }
} }
std::string IrGraphBuildPass::repr() const { return "ir-graph-build-pass"; } std::string IrGraphBuildPass::repr() const { return "ir_graph_build_pass"; }
} // namespace analysis } // namespace analysis
} // namespace inference } // namespace inference
......
...@@ -31,7 +31,7 @@ void IrGraphToProgramPass::RunImpl(Argument *argument) { ...@@ -31,7 +31,7 @@ void IrGraphToProgramPass::RunImpl(Argument *argument) {
new int(argument->memory_optim_sort_kind())); new int(argument->memory_optim_sort_kind()));
} }
std::unique_ptr<Graph> graph(argument->main_graph_ptr()); std::unique_ptr<framework::ir::Graph> graph(argument->main_graph_ptr());
// Direct using ProgramDesc desc(argument->main_program()) may cause // Direct using ProgramDesc desc(argument->main_program()) may cause
// incomplete copies of information. // incomplete copies of information.
......
...@@ -28,7 +28,7 @@ class IrGraphToProgramPass : public AnalysisPass { ...@@ -28,7 +28,7 @@ class IrGraphToProgramPass : public AnalysisPass {
public: public:
void RunImpl(Argument *argument) override; void RunImpl(Argument *argument) override;
std::string repr() const override { return "ir-graph-to-param-pass"; } std::string repr() const override { return "ir_graph_to_param_pass"; }
}; };
} // namespace analysis } // namespace analysis
......
...@@ -169,7 +169,7 @@ void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) { ...@@ -169,7 +169,7 @@ void IrParamsSyncAmongDevicesPass::RunImpl(Argument *argument) {
} }
std::string IrParamsSyncAmongDevicesPass::repr() const { std::string IrParamsSyncAmongDevicesPass::repr() const {
return "ir-params-sync-among-devices-pass"; return "ir_params_sync_among_devices_pass";
} }
} // namespace analysis } // namespace analysis
......
...@@ -295,7 +295,7 @@ void UpdateOpDescsByReuse( ...@@ -295,7 +295,7 @@ void UpdateOpDescsByReuse(
} }
} }
std::string MemoryOptimizePass::repr() const { return "memory optimize pass"; } std::string MemoryOptimizePass::repr() const { return "memory_optimize_pass"; }
void MemoryOptimizePass::RunImpl(Argument* argument) { void MemoryOptimizePass::RunImpl(Argument* argument) {
// Memory optimization. // Memory optimization.
......
...@@ -18,7 +18,6 @@ ...@@ -18,7 +18,6 @@
#include "paddle/fluid/inference/analysis/passes/inference_op_replace_pass.h" #include "paddle/fluid/inference/analysis/passes/inference_op_replace_pass.h"
#include "paddle/fluid/inference/analysis/passes/ir_analysis_pass.h" #include "paddle/fluid/inference/analysis/passes/ir_analysis_pass.h"
#include "paddle/fluid/inference/analysis/passes/ir_graph_build_pass.h" #include "paddle/fluid/inference/analysis/passes/ir_graph_build_pass.h"
#include "paddle/fluid/inference/analysis/passes/ir_graph_clean_pass.h"
#include "paddle/fluid/inference/analysis/passes/ir_graph_to_program_pass.h" #include "paddle/fluid/inference/analysis/passes/ir_graph_to_program_pass.h"
#include "paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.h" #include "paddle/fluid/inference/analysis/passes/ir_params_sync_among_devices_pass.h"
#include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h" #include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h"
...@@ -34,8 +33,6 @@ PassRegistry::PassRegistry() { ...@@ -34,8 +33,6 @@ PassRegistry::PassRegistry() {
std::unique_ptr<AnalysisPass>(new IrAnalysisPass)); std::unique_ptr<AnalysisPass>(new IrAnalysisPass));
passes_.emplace("ir_graph_build_pass", passes_.emplace("ir_graph_build_pass",
std::unique_ptr<AnalysisPass>(new IrGraphBuildPass)); std::unique_ptr<AnalysisPass>(new IrGraphBuildPass));
passes_.emplace("ir_graph_clean_pass",
std::unique_ptr<AnalysisPass>(new IrInferCleanGraphPass));
passes_.emplace("memory_optimize_pass", passes_.emplace("memory_optimize_pass",
std::unique_ptr<AnalysisPass>(new MemoryOptimizePass)); std::unique_ptr<AnalysisPass>(new MemoryOptimizePass));
passes_.emplace( passes_.emplace(
......
...@@ -85,15 +85,29 @@ void AnalysisConfig::SetModel(const std::string &prog_file_path, ...@@ -85,15 +85,29 @@ void AnalysisConfig::SetModel(const std::string &prog_file_path,
Update(); Update();
} }
void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb, void AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
int device_id) { int device_id,
Precision precision_mode) {
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
use_gpu_ = true; use_gpu_ = true;
memory_pool_init_size_mb_ = memory_pool_init_size_mb; memory_pool_init_size_mb_ = memory_pool_init_size_mb;
FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_; FLAGS_initial_gpu_memory_in_mb = memory_pool_init_size_mb_;
gpu_device_id_ = device_id; gpu_device_id_ = device_id;
mixed_precision_mode_ = precision_mode;
if (precision_mode == Precision::kFloat32) {
// default
} else if (precision_mode == Precision::kHalf ||
precision_mode == Precision::kBf16) {
enable_gpu_mixed_ = true;
} else {
LOG(ERROR)
<< "The Paddle-GPU inference currently only supports "
"float32/float16/bfloat16 precision. Please check the parameters "
"you specified in EnableUseGpu or enable_use_gpu function.";
}
#else #else
LOG(ERROR) << "Please compile with gpu to EnableGpu()"; LOG(ERROR) << "Please use PaddlePaddle with GPU version.";
use_gpu_ = false; use_gpu_ = false;
#endif #endif
...@@ -279,7 +293,7 @@ void AnalysisConfig::LoadIpuConfig(const std::string &config_path) { ...@@ -279,7 +293,7 @@ void AnalysisConfig::LoadIpuConfig(const std::string &config_path) {
if (ipu_config_mapper_.find(key) == ipu_config_mapper_.end()) { if (ipu_config_mapper_.find(key) == ipu_config_mapper_.end()) {
PADDLE_THROW(platform::errors::InvalidArgument( PADDLE_THROW(platform::errors::InvalidArgument(
"invalid key {} in IPU config", key)); "invalid key %s in IPU config: ", key));
} }
switch (ipu_config_mapper_.at(key)) { switch (ipu_config_mapper_.at(key)) {
case ipu_config_code::ipu_device_num: case ipu_config_code::ipu_device_num:
...@@ -315,7 +329,7 @@ void AnalysisConfig::LoadIpuConfig(const std::string &config_path) { ...@@ -315,7 +329,7 @@ void AnalysisConfig::LoadIpuConfig(const std::string &config_path) {
default: default:
PADDLE_THROW(platform::errors::InvalidArgument( PADDLE_THROW(platform::errors::InvalidArgument(
"invalid key {} in IPU config", key)); "invalid key %s in IPU config", key));
break; break;
} }
} }
...@@ -372,8 +386,10 @@ AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) { ...@@ -372,8 +386,10 @@ AnalysisConfig::AnalysisConfig(const AnalysisConfig &other) {
CP_MEMBER(gpu_device_id_); CP_MEMBER(gpu_device_id_);
CP_MEMBER(memory_pool_init_size_mb_); CP_MEMBER(memory_pool_init_size_mb_);
// Mixed related. // Mixed precision related.
CP_MEMBER(mixed_black_list_); CP_MEMBER(mixed_black_list_);
CP_MEMBER(enable_gpu_mixed_);
CP_MEMBER(mixed_precision_mode_);
CP_MEMBER(enable_memory_optim_); CP_MEMBER(enable_memory_optim_);
// TensorRT related. // TensorRT related.
...@@ -740,13 +756,7 @@ void AnalysisConfig::Update() { ...@@ -740,13 +756,7 @@ void AnalysisConfig::Update() {
((use_custom_device() ^ pass_builder_->use_custom_device()))) { ((use_custom_device() ^ pass_builder_->use_custom_device()))) {
if (use_gpu()) { if (use_gpu()) {
pass_builder_.reset(new GpuPassStrategy); pass_builder_.reset(new GpuPassStrategy);
if (use_tensorrt_) {
// Append after the Affine_channel_conv_fuse pass.
pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
}
} else if (use_ipu()) { } else if (use_ipu()) {
VLOG(1) << "IpuPassStrategy has been used for new.";
pass_builder_.reset(new IpuPassStrategy); pass_builder_.reset(new IpuPassStrategy);
} else if (use_xpu()) { } else if (use_xpu()) {
PADDLE_ENFORCE_EQ( PADDLE_ENFORCE_EQ(
...@@ -946,9 +956,6 @@ void AnalysisConfig::Update() { ...@@ -946,9 +956,6 @@ void AnalysisConfig::Update() {
"but did not have the option -DWITH_CUSTOM_DEVICE compiled.")); "but did not have the option -DWITH_CUSTOM_DEVICE compiled."));
#endif #endif
} }
if (ir_debug_) {
pass_builder()->TurnOnDebug();
}
} }
std::string AnalysisConfig::SerializeInfoCache() { std::string AnalysisConfig::SerializeInfoCache() {
...@@ -960,6 +967,7 @@ std::string AnalysisConfig::SerializeInfoCache() { ...@@ -960,6 +967,7 @@ std::string AnalysisConfig::SerializeInfoCache() {
ss << calibration_file_path_; ss << calibration_file_path_;
ss << use_gpu_; ss << use_gpu_;
ss << enable_gpu_mixed_;
ss << use_external_stream_; ss << use_external_stream_;
ss << exec_stream_; ss << exec_stream_;
ss << use_fc_padding_; ss << use_fc_padding_;
...@@ -1167,6 +1175,7 @@ std::string AnalysisConfig::Summary() { ...@@ -1167,6 +1175,7 @@ std::string AnalysisConfig::Summary() {
os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"}); os.InsertRow({"use_gpu", use_gpu_ ? "true" : "false"});
if (use_gpu_) { if (use_gpu_) {
os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)}); os.InsertRow({"gpu_device_id", std::to_string(gpu_device_id_)});
os.InsertRow({"enable_gpu_mixed", std::to_string(enable_gpu_mixed_)});
os.InsertRow({"memory_pool_init_size", os.InsertRow({"memory_pool_init_size",
std::to_string(memory_pool_init_size_mb_) + "MB"}); std::to_string(memory_pool_init_size_mb_) + "MB"});
os.InsertRow( os.InsertRow(
...@@ -1360,7 +1369,7 @@ bool AnalysisConfig::trt_allow_build_at_runtime() { ...@@ -1360,7 +1369,7 @@ bool AnalysisConfig::trt_allow_build_at_runtime() {
return trt_allow_build_at_runtime_; return trt_allow_build_at_runtime_;
} }
void AnalysisConfig::Exp_SetBlackListOpsForMixedModel( void AnalysisConfig::Exp_DisableMixedPrecisionOps(
const std::unordered_set<std::string> &black_list) { const std::unordered_set<std::string> &black_list) {
mixed_black_list_ = black_list; mixed_black_list_ = black_list;
} }
......
...@@ -1065,7 +1065,7 @@ void AnalysisPredictor::PrepareArgument() { ...@@ -1065,7 +1065,7 @@ void AnalysisPredictor::PrepareArgument() {
argument_.SetUseGPU(config_.use_gpu()); argument_.SetUseGPU(config_.use_gpu());
argument_.SetUseFcPadding(config_.use_fc_padding()); argument_.SetUseFcPadding(config_.use_fc_padding());
argument_.SetGPUDeviceId(config_.gpu_device_id()); argument_.SetGPUDeviceId(config_.gpu_device_id());
argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_); argument_.SetEnableIrOptim(config_.enable_ir_optim_);
argument_.SetEnableMemoryOptim(config_.enable_memory_optim()); argument_.SetEnableMemoryOptim(config_.enable_memory_optim());
argument_.SetModelFromMemory(config_.model_from_memory_); argument_.SetModelFromMemory(config_.model_from_memory_);
// Analyze inference_program // Analyze inference_program
...@@ -1210,53 +1210,57 @@ void AnalysisPredictor::PrepareArgument() { ...@@ -1210,53 +1210,57 @@ void AnalysisPredictor::PrepareArgument() {
} }
#endif #endif
auto passes = config_.pass_builder()->AllPasses(); auto *pass_builder = config_.pass_builder();
if (model_precision_ != phi::DataType::FLOAT32) { if (model_precision_ != phi::DataType::FLOAT32) {
LOG(INFO) << "Model is mixed precision type with " << model_precision_ LOG(INFO) << "Model is mixed precision type with " << model_precision_
<< ", we will use a new PassStrategy. Note that only the GPU " << ", we will use a new PassStrategy. Note that only the GPU "
"backend is supported for now."; "backend is supported for now.";
passes.clear(); pass_builder->ClearPasses();
const auto &deleted_passes = pass_builder->GetAllDeletedPasses();
if (config_.tensorrt_engine_enabled()) { if (config_.tensorrt_engine_enabled()) {
for (const auto &pass : kTrtLowerPrecisionPasses) { for (const auto &pass : kTrtLowerPrecisionPasses) {
passes.push_back(pass); if (deleted_passes.count(pass)) continue;
pass_builder->AppendPass(pass);
} }
} else if (config_.use_gpu()) { } else if (config_.use_gpu()) {
for (const auto &pass : kGpuLowerPrecisionPasses) { for (const auto &pass : kGpuLowerPrecisionPasses) {
passes.push_back(pass); if (deleted_passes.count(pass)) continue;
pass_builder->AppendPass(pass);
} }
} }
}
const auto &deleted_passes = config_.pass_builder()->GetAllDeletedPasses(); if (!config_.ir_optim()) {
for (const auto &it : deleted_passes) { argument_.SetEnableIrOptim(false);
auto iterator = std::find(passes.begin(), passes.end(), it); if (config_.enable_gpu_mixed_) {
if (iterator != passes.end()) { argument_.SetEnableIrOptim(true);
passes.erase(iterator); pass_builder->ClearPasses();
} pass_builder->AppendPass("auto_mixed_precision_pass");
LOG(INFO)
<< "This model run in Paddle-GPU mixed precision mode with no ir "
"optimization.";
} else {
LOG(INFO) << "ir_optim is turned off, no IR pass will be executed.";
} }
} else {
if (config_.ir_debug_) { if (config_.ir_debug_) {
auto it = std::begin(passes); pass_builder->TurnOnDebug();
while (it != std::end(passes)) { }
if (*it != "graph_viz_pass") { if (config_.enable_gpu_mixed_) {
it = passes.insert(it + 1, "graph_viz_pass"); LOG(INFO) << "This model run in Paddle-GPU mixed precision mode.";
} else {
++it;
}
}
} }
}
if (!config_.ir_optim()) {
passes.clear();
LOG(INFO) << "ir_optim is turned off, no IR pass will be executed";
} }
argument_.SetDisableLogs(config_.glog_info_disabled()); argument_.SetDisableLogs(config_.glog_info_disabled());
argument_.SetIrAnalysisPasses(passes); argument_.SetIrAnalysisPasses(pass_builder->AllPasses());
argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses()); argument_.SetAnalysisPasses(pass_builder->AnalysisPasses());
argument_.SetScopeNotOwned(scope_.get()); argument_.SetScopeNotOwned(scope_.get());
// mixed precison. // mixed precison.
argument_.SetModelPrecision(static_cast<int>(model_precision_)); argument_.SetModelPrecision(static_cast<int>(model_precision_));
argument_.SetMixedBlackList(config_.mixed_black_list_); argument_.SetMixedBlackList(config_.mixed_black_list_);
argument_.SetEnableGPUMixed(config_.enable_gpu_mixed_);
argument_.SetMixedPrecisionMode(static_cast<int>(
paddle::ConvertPrecision(config_.mixed_precision_mode_)));
} }
// NOTE All the members in AnalysisConfig should be copied to Argument. // NOTE All the members in AnalysisConfig should be copied to Argument.
...@@ -2107,7 +2111,9 @@ std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) { ...@@ -2107,7 +2111,9 @@ std::unique_ptr<PaddlePredictor> AnalysisPredictor::Clone(void *stream) {
} }
x->predictor_stream_ = stream; x->predictor_stream_ = stream;
x->Init(scope_, inference_program_); x->Init(scope_, inference_program_);
#ifdef PADDLE_WITH_TENSORRT
x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_); x->executor_->ResetTrtOps(++AnalysisPredictor::clone_num_);
#endif
return std::unique_ptr<PaddlePredictor>(x); return std::unique_ptr<PaddlePredictor>(x);
} }
......
...@@ -604,10 +604,8 @@ void AnalysisPredictor::MkldnnQuantizer::PrepareArgument() const { ...@@ -604,10 +604,8 @@ void AnalysisPredictor::MkldnnQuantizer::PrepareArgument() const {
if (predictor_.config_.ir_debug_) builder->TurnOnDebug(); if (predictor_.config_.ir_debug_) builder->TurnOnDebug();
auto passes = builder->AllPasses(); auto passes = builder->AllPasses();
predictor_.argument_.SetIrAnalysisPasses(passes); predictor_.argument_.SetIrAnalysisPasses(passes);
predictor_.argument_.SetAnalysisPasses({"ir_graph_clean_pass", predictor_.argument_.SetAnalysisPasses(
"ir_analysis_pass", {"ir_analysis_pass", "memory_optimize_pass", "ir_graph_to_program_pass"});
"memory_optimize_pass",
"ir_graph_to_program_pass"});
predictor_.argument_.SetQuantVarScales(scales_); predictor_.argument_.SetQuantVarScales(scales_);
} }
......
...@@ -247,8 +247,12 @@ struct PD_INFER_DECL AnalysisConfig { ...@@ -247,8 +247,12 @@ struct PD_INFER_DECL AnalysisConfig {
/// ///
/// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB. /// \param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
/// \param device_id device_id the GPU card to use (default is 0). /// \param device_id device_id the GPU card to use (default is 0).
/// \param precision the precision used in Paddle-GPU inference.
/// ///
void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0); void EnableUseGpu(uint64_t memory_pool_init_size_mb,
int device_id = 0,
Precision precision_mode = Precision::kFloat32);
/// ///
/// \brief Turn off GPU. /// \brief Turn off GPU.
/// ///
...@@ -967,7 +971,7 @@ struct PD_INFER_DECL AnalysisConfig { ...@@ -967,7 +971,7 @@ struct PD_INFER_DECL AnalysisConfig {
/// interface is in the experimental stage and may change in the future. Note /// interface is in the experimental stage and may change in the future. Note
/// that the blacklist must be the same as the model conversion blacklist. /// that the blacklist must be the same as the model conversion blacklist.
/// ///
void Exp_SetBlackListOpsForMixedModel( void Exp_DisableMixedPrecisionOps(
const std::unordered_set<std::string>& black_list); const std::unordered_set<std::string>& black_list);
void SetApplyOptim(bool value) { apply_optim_ = value; } void SetApplyOptim(bool value) { apply_optim_ = value; }
...@@ -987,13 +991,15 @@ struct PD_INFER_DECL AnalysisConfig { ...@@ -987,13 +991,15 @@ struct PD_INFER_DECL AnalysisConfig {
mutable std::string params_file_; mutable std::string params_file_;
mutable std::string calibration_file_path_; mutable std::string calibration_file_path_;
// Mixed precision. // Mixed precision related.
Precision mixed_precision_mode_{Precision::kFloat32};
std::unordered_set<std::string> mixed_black_list_; std::unordered_set<std::string> mixed_black_list_;
// GPU related. // GPU related.
bool use_gpu_{false}; bool use_gpu_{false};
int gpu_device_id_{0}; int gpu_device_id_{0};
uint64_t memory_pool_init_size_mb_{100}; // initial size is 100MB. uint64_t memory_pool_init_size_mb_{100}; // initial size is 100MB.
bool enable_gpu_mixed_{false};
bool thread_local_stream_{false}; bool thread_local_stream_{false};
bool use_cudnn_{false}; bool use_cudnn_{false};
......
...@@ -171,8 +171,9 @@ const std::vector<std::string> kGpuLowerPrecisionPasses{ ...@@ -171,8 +171,9 @@ const std::vector<std::string> kGpuLowerPrecisionPasses{
"multi_devices_fused_multi_transformer_decoder_fuse_qkv_pass", "multi_devices_fused_multi_transformer_decoder_fuse_qkv_pass",
"gpu_cpu_map_matmul_v2_to_mul_pass", "gpu_cpu_map_matmul_v2_to_mul_pass",
"gpu_cpu_map_matmul_v2_to_matmul_pass", "gpu_cpu_map_matmul_v2_to_matmul_pass",
"gpu_cpu_map_matmul_to_mul_pass",
"fc_fuse_pass", "fc_fuse_pass",
"fc_elementwise_layernorm_fuse_pass", // "fc_elementwise_layernorm_fuse_pass",
"embedding_eltwise_layernorm_fuse_pass", "embedding_eltwise_layernorm_fuse_pass",
"runtime_context_cache_pass", "runtime_context_cache_pass",
}; };
...@@ -227,9 +228,10 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) { ...@@ -227,9 +228,10 @@ GpuPassStrategy::GpuPassStrategy() : PassStrategy({}) {
"conv_elementwise_add_fuse_pass", // "conv_elementwise_add_fuse_pass", //
#endif // #endif //
"transpose_flatten_concat_fuse_pass", // "transpose_flatten_concat_fuse_pass", //
"constant_folding_pass", "constant_folding_pass", //
// following pass should be located in the last, since it will // following pass should be located in the last, since it will
// work on all fused ops. // work on all fused ops.
"auto_mixed_precision_pass", //
"runtime_context_cache_pass" "runtime_context_cache_pass"
}); });
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment