Commit ca73620b authored by yuguo960516yuguo's avatar yuguo960516yuguo
Browse files

readme

parent 7c211e8e
......@@ -4,93 +4,152 @@
--------------------------------------------------------------------------------
English | [简体中文](./README_cn.md)
# 飞桨框架 ROCm 版安装说明
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](https://paddlepaddle.org.cn/documentation/docs/en/guides/index_en.html)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](https://paddlepaddle.org.cn/documentation/docs/zh/guides/index_cn.html)
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
飞桨框架 ROCm 版支持基于海光 CPU 和海光 DCU 的训练和预测,不仅支持 AMD ROCm,同样支持海光 DCUToolkit(DTK),当前支持的 ROCm 版本为 4.0.1,支持的 DTK 有多个版本。提供两种安装方式:
Welcome to the PaddlePaddle GitHub.
- 通过预编译的 wheel 包安装
- 通过源代码编译安装
PaddlePaddle, as the first independent R&D deep learning platform in China, has been officially open-sourced to professional communities since 2016. It is an industrial platform with advanced technologies and rich features that cover core deep learning frameworks, basic model libraries, end-to-end development kits, tools & components as well as service platforms.
PaddlePaddle is originated from industrial practices with dedication and commitments to industrialization. It has been widely adopted by a wide range of sectors including manufacturing, agriculture, enterprise service, and so on while serving more than 4.7 million developers, 180,000 companies and generating 560,000 models. With such advantages, PaddlePaddle has helped an increasing number of partners commercialize AI.
**说明**:基于对应 DTK 版本的飞桨 wheel 包可在[光合开发者社区 ](https://developer.hpccube.com/tool/#sdk) AI 生态包中进行下载
## 安装方式一:通过 wheel 包安装
## Installation
**注意**:当前提供基于 CentOS 7.8 & ROCm 4.0.1 的 docker 镜像,与 Python 3.7 的 wheel 安装包。同时提供基于 CentOS 7.6 & DTK 22.10.1 的 docker 镜像,镜像中包含 Python 3.7 的飞浆 2.3.2 wheel 安装包( image.sourcefind.cn:5000/dcu/admin/base/paddlepaddle:2.3.2-centos7.6-dtk-22.10.1-py37-latest )
### Latest PaddlePaddle Release: [v2.3](https://github.com/PaddlePaddle/Paddle/tree/release/2.3)
**第一步**:准备 CentOS 7.6 & DTK 22.10.1 运行环境 (推荐使用 Paddle 镜像)
Our vision is to enable deep learning for everyone via PaddlePaddle.
Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest features of PaddlePaddle.
### Install Latest Stable Release:
可以直接从 Paddle 的官方镜像库拉取预先装有 CentOS 7.6 & DTK 22.10.1 的 docker 镜像
```bash
# 拉取镜像
docker pull image.sourcefind.cn:5000/dcu/admin/base/paddlepaddle:2.3.2-centos7.6-dtk-22.10.1-py37-latest
# 启动容器,注意这里的参数,例如 shm-size, device 等都需要配置
docker run -it --network=host --name=oneflow_compile --privileged --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size=16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root --ulimit stack=-1:-1 --ulimit memlock=-1:-1 -v /public/home/xxx:/home image.sourcefind.cn:5000/dcu/admin/base/paddlepaddle:2.3.2-centos7.6-dtk-22.10.1-py37-latest /bin/bash
# 检查容器是否可以正确识别海光 DCU 设备
rocm-smi
# 预期得到以下结果:
======================= ROCm System Management Interface =======================
================================= Concise Info =================================
GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%
0 50.0c 23.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
1 48.0c 25.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
2 48.0c 24.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
3 49.0c 27.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
================================================================================
============================= End of ROCm SMI Log ==============================
```
# CPU
pip install paddlepaddle
# GPU
pip install paddlepaddle-gpu
**第二步**:此镜像中已经集成 Python 3.7 的飞浆 2.3.2 版本,如果重新安装需要
```bash
pip3 uninstall paddlepaddle-rocm
pip3 install paddlepaddle-2.3.2_dtk2210_git0195561-cp37-cp37m-manylinux2014_x86_64.whl
```
For more information about installation, please view [Quick Install](https://www.paddlepaddle.org.cn/install/quick)
Now our developers can acquire Tesla V100 online computing resources for free. If you create a program by AI Studio, you will obtain 8 hours to train models online per day. [Click here to start](https://aistudio.baidu.com/aistudio/index).
**第三步**:验证安装包
## FOUR LEADING TECHNOLOGIES
安装完成之后,运行如下命令。如果出现 PaddlePaddle is installed successfully!,说明已经安装成功
- **Agile Framework for Industrial Development of Deep Neural Networks**
```bash
python -c "import paddle; paddle.utils.run_check()"
```
The PaddlePaddle deep learning framework facilitates the development while lowering the technical burden, through leveraging a programmable scheme to architect the neural networks. It supports both declarative programming and imperative programming with both development flexibility and high runtime performance preserved. The neural architectures could be automatically designed by algorithms with better performance than the ones designed by human experts.
## 安装方式二:通过源码编译安装
**注意**:可使用 Paddle 支持的 CentOS 7.8 & ROCm 4.0.1 编译镜像,且根据 ROCm 4.0.1 的需求,支持的编译器为 devtoolset-7
- **Support Ultra-Large-Scale Training of Deep Neural Networks**
**第一步**:准备 ROCm 4.0.1 编译环境 (推荐使用 Paddle 镜像)
PaddlePaddle has made breakthroughs in ultra-large-scale deep neural networks training. It launched the world's first large-scale open-source training platform that supports the training of deep networks with 100 billion features and trillions of parameters using data sources distributed over hundreds of nodes. PaddlePaddle overcomes the online deep learning challenges for ultra-large-scale deep learning models, and further achieved real-time model updating with more than 1 trillion parameters.
[Click here to learn more](https://github.com/PaddlePaddle/Fleet)
可以直接从 Paddle 的官方镜像库拉取预先装有 ROCm 4.0.1 的 docker 镜像,在[开发者社区](https://developer.hpccube.com/tool/#sdk) DCU Toolkit 中下载 DTK-22.10.1 解压至 /opt/ 路径下,更换/opt下的原有的 ROCm 4.0.1 文件夹。
```bash
# 拉取镜像
docker pull paddlepaddle/paddle:latest-dev-rocm4.0-miopen2.11
- **High-Performance Inference Engines for Comprehensive Deployment Environments**
# 启动容器,注意这里的参数,例如 shm-size, device 等都需要配置
docker run -it --name paddle-rocm-dev --shm-size=128G \
--device=/dev/kfd --device=/dev/dri --group-add video \
--cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
paddlepaddle/paddle:latest-dev-rocm4.0-miopen2.11 /bin/bash
PaddlePaddle is not only compatible with models trained in 3rd party open-source frameworks , but also offers complete inference products for various production scenarios. Our inference product line includes [Paddle Inference](https://paddle-inference.readthedocs.io/en/master/guides/introduction/index_intro.html): Native inference library for high-performance server and cloud inference; [Paddle Serving](https://github.com/PaddlePaddle/Serving): A service-oriented framework suitable for distributed and pipeline productions; [Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite): Ultra-Lightweight inference engine for mobile and IoT environments; [Paddle.js](https://www.paddlepaddle.org.cn/paddle/paddlejs): A frontend inference engine for browser and mini-apps. Furthermore, by great amounts of optimization with leading hardware in each scenario, Paddle inference engines outperform most of the other mainstream frameworks.
# 替换DTK
# 检查容器是否可以正确识别海光 DCU 设备
rocm-smi
- **Industry-Oriented Models and Libraries with Open Source Repositories**
# 预期得到以下结果:
======================= ROCm System Management Interface =======================
================================= Concise Info =================================
GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%
0 50.0c 23.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
1 48.0c 25.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
2 48.0c 24.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
3 49.0c 27.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
================================================================================
============================= End of ROCm SMI Log ==============================
```
PaddlePaddle includes and maintains more than 100 mainstream models that have been practiced and polished for a long time in the industry. Some of these models have won major prizes from key international competitions. In the meanwhile, PaddlePaddle has further more than 200 pre-training models (some of them with source codes) to facilitate the rapid development of industrial applications.
[Click here to learn more](https://github.com/PaddlePaddle/models)
请在编译之前,检查如下的环境变量是否正确,如果没有则需要安装相应的依赖库,并导出相应的环境变量。以 Paddle 官方的镜像举例,环境变量如下:
```bash
# PATH 与 LD_LIBRARY_PATH 中存在 devtoolset-7,如果没有运行以下命令
source /opt/rh/devtoolset-7/enable
## Documentation
# PATH 中存在 cmake 3.16.0
export PATH=/opt/cmake-3.16/bin:${PATH}
We provide [English](https://www.paddlepaddle.org.cn/documentation/docs/en/guides/index_en.html) and
[Chinese](https://www.paddlepaddle.org.cn/documentation/docs/zh/guide/index_cn.html) documentation.
# PATH 与 LD_LIBRARY_PATH 中存在 rocm 4.0.1
export PATH=/opt/rocm/opencl/bin:/opt/rocm/bin:${PATH}
export LD_LIBRARY_PATH=/opt/rocm/lib:${LD_LIBRARY_PATH}
- [Guides](https://www.paddlepaddle.org.cn/documentation/docs/en/guides/index_en.html)
# PATH 中存在 Python 3.7
# 注意:镜像中的 python 3.7 通过 miniconda 安装,请通过 conda activate base 命令加载 Python 3.7 环境
export PATH=/opt/conda/bin:${PATH}
```
You might want to start from how to implement deep learning basics with PaddlePaddle.
**第二步**:下载 Paddle 源码并编译,CMAKE 编译选项含义请参见[编译选项表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#Compile),如果指定 Paddle 版本,需要在编译前指定环境变量 PADDLE_VERSION
- [Practice](https://www.paddlepaddle.org.cn/documentation/docs/zh/tutorial/index_cn.html)
```bash
# 下载源码,默认 develop 分支
git clone -b 2.3.2-dtk-22.10.1 http://developer.hpccube.com/codes/aicomponent/paddle.git
cd Paddle
So far you have already been familiar with Fluid. And the next step should be building a more efficient model or inventing your original Operator.
# 创建编译目录
mkdir build && cd build
- [API Reference](https://www.paddlepaddle.org.cn/documentation/docs/en/api/index_en.html)
# 指定 Paddle 版本
export PADDLE_VERSION=2.3.2
Our new API enables much shorter programs.
# 执行 cmake
export ROCM_PATH=/opt/rocm
- [How to Contribute](https://www.paddlepaddle.org.cn/documentation/docs/en/guides/08_contribution/index_en.html)
cmake .. -DPY_VERSION=3.7 -DWITH_GPU=OFF -DWITH_ROCM=ON -DWITH_RCCL=ON -DWITH_NCCL=OFF -DWITH_TESTING=ON -DWITH_DISTRIBUTE=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_EXPORT_COMPILE_COMMANDS=ON -DCMAKE_VERBOSE_MAKEFILE=OFF -DWITH_TP_CACHE=ON -DROCM_PATH=${ROCM_PATH} -DWITH_MKLDNN=OFF
We appreciate your contributions!
# 使用以下命令来编译
make -j$(nproc)
```
**第三步**:安装与验证编译生成的 wheel 包
## Communication
编译完成之后进入`Paddle/build/python/dist`目录即可找到编译生成的.whl 安装包,安装与验证命令如下:
- [Github Issues](https://github.com/PaddlePaddle/Paddle/issues): bug reports, feature requests, install issues, usage issues, etc.
- QQ discussion group: 441226485 (PaddlePaddle).
- [Forums](https://aistudio.baidu.com/paddle/forum): discuss implementations, research, etc.
```bash
# 安装命令
python -m pip install -U paddlepaddle_rocm-2.3.2-cp37-cp37m-linux_x86_64.whl
# 验证命令
python -c "import paddle; paddle.utils.run_check()"
```
## Courses
## 如何卸载
- [Server Deployments](https://aistudio.baidu.com/aistudio/course/introduce/19084): Courses introducing high performance server deployments via local and remote services.
- [Edge Deployments](https://aistudio.baidu.com/aistudio/course/introduce/22690): Courses introducing edge deployments from mobile, IoT to web and applets.
请使用以下命令卸载 Paddle:
```
pip3 uninstall paddlepaddle-rocm
```
## Copyright and License
PaddlePaddle is provided under the [Apache-2.0 license](LICENSE).
<p align="center">
<img align="center" src="doc/imgs/logo.png", width=1600>
<p>
--------------------------------------------------------------------------------
# 飞桨框架 ROCm 版安装说明
飞桨框架 ROCm 版支持基于海光 CPU 和海光 DCU 的训练和预测,不仅支持 AMD ROCm,同样支持海光 DCUToolkit(DTK),当前支持的 ROCm 版本为 4.0.1,支持的 DTK 有多个版本。提供两种安装方式:
- 通过预编译的 wheel 包安装
- 通过源代码编译安装
**说明**:基于对应 DTK 版本的飞桨 wheel 包可在[光合开发者社区 ](https://developer.hpccube.com/tool/#sdk) AI 生态包中进行下载
## 安装方式一:通过 wheel 包安装
**注意**:当前提供基于 CentOS 7.8 & ROCm 4.0.1 的 docker 镜像,与 Python 3.7 的 wheel 安装包。同时提供基于 CentOS 7.6 & DTK 22.10.1 的 docker 镜像,镜像中包含 Python 3.7 的飞浆 2.3.2 wheel 安装包( image.sourcefind.cn:5000/dcu/admin/base/paddlepaddle:2.3.2-centos7.6-dtk-22.10.1-py37-latest )
**第一步**:准备 CentOS 7.6 & DTK 22.10.1 运行环境 (推荐使用 Paddle 镜像)
可以直接从 Paddle 的官方镜像库拉取预先装有 CentOS 7.6 & DTK 22.10.1 的 docker 镜像
```bash
# 拉取镜像
docker pull image.sourcefind.cn:5000/dcu/admin/base/paddlepaddle:2.3.2-centos7.6-dtk-22.10.1-py37-latest
# 启动容器,注意这里的参数,例如 shm-size, device 等都需要配置
docker run -it --network=host --name=oneflow_compile --privileged --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size=16G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root --ulimit stack=-1:-1 --ulimit memlock=-1:-1 -v /public/home/xxx:/home image.sourcefind.cn:5000/dcu/admin/base/paddlepaddle:2.3.2-centos7.6-dtk-22.10.1-py37-latest /bin/bash
# 检查容器是否可以正确识别海光 DCU 设备
rocm-smi
# 预期得到以下结果:
======================= ROCm System Management Interface =======================
================================= Concise Info =================================
GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%
0 50.0c 23.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
1 48.0c 25.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
2 48.0c 24.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
3 49.0c 27.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
================================================================================
============================= End of ROCm SMI Log ==============================
```
**第二步**:此镜像中已经集成 Python 3.7 的飞浆 2.3.2 版本,如果重新安装需要
```bash
pip3 uninstall paddlepaddle-rocm
pip3 install paddlepaddle-2.3.2_dtk2210_git0195561-cp37-cp37m-manylinux2014_x86_64.whl
```
**第三步**:验证安装包
安装完成之后,运行如下命令。如果出现 PaddlePaddle is installed successfully!,说明已经安装成功
```bash
python -c "import paddle; paddle.utils.run_check()"
```
## 安装方式二:通过源码编译安装
**注意**:可使用 Paddle 支持的 CentOS 7.8 & ROCm 4.0.1 编译镜像,且根据 ROCm 4.0.1 的需求,支持的编译器为 devtoolset-7
**第一步**:准备 ROCm 4.0.1 编译环境 (推荐使用 Paddle 镜像)
可以直接从 Paddle 的官方镜像库拉取预先装有 ROCm 4.0.1 的 docker 镜像,在[开发者社区](https://developer.hpccube.com/tool/#sdk) DCU Toolkit 中下载 DTK-22.10.1 解压至 /opt/ 路径下,更换/opt下的原有的 ROCm 4.0.1 文件夹。
```bash
# 拉取镜像
docker pull paddlepaddle/paddle:latest-dev-rocm4.0-miopen2.11
# 启动容器,注意这里的参数,例如 shm-size, device 等都需要配置
docker run -it --name paddle-rocm-dev --shm-size=128G \
--device=/dev/kfd --device=/dev/dri --group-add video \
--cap-add=SYS_PTRACE --security-opt seccomp=unconfined \
paddlepaddle/paddle:latest-dev-rocm4.0-miopen2.11 /bin/bash
# 替换DTK
# 检查容器是否可以正确识别海光 DCU 设备
rocm-smi
# 预期得到以下结果:
======================= ROCm System Management Interface =======================
================================= Concise Info =================================
GPU Temp AvgPwr SCLK MCLK Fan Perf PwrCap VRAM% GPU%
0 50.0c 23.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
1 48.0c 25.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
2 48.0c 24.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
3 49.0c 27.0W 1319Mhz 800Mhz 0.0% auto 300.0W 0% 0%
================================================================================
============================= End of ROCm SMI Log ==============================
```
请在编译之前,检查如下的环境变量是否正确,如果没有则需要安装相应的依赖库,并导出相应的环境变量。以 Paddle 官方的镜像举例,环境变量如下:
```bash
# PATH 与 LD_LIBRARY_PATH 中存在 devtoolset-7,如果没有运行以下命令
source /opt/rh/devtoolset-7/enable
# PATH 中存在 cmake 3.16.0
export PATH=/opt/cmake-3.16/bin:${PATH}
# PATH 与 LD_LIBRARY_PATH 中存在 rocm 4.0.1
export PATH=/opt/rocm/opencl/bin:/opt/rocm/bin:${PATH}
export LD_LIBRARY_PATH=/opt/rocm/lib:${LD_LIBRARY_PATH}
# PATH 中存在 Python 3.7
# 注意:镜像中的 python 3.7 通过 miniconda 安装,请通过 conda activate base 命令加载 Python 3.7 环境
export PATH=/opt/conda/bin:${PATH}
```
**第二步**:下载 Paddle 源码并编译,CMAKE 编译选项含义请参见[编译选项表](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#Compile),如果指定 Paddle 版本,需要在编译前指定环境变量 PADDLE_VERSION
```bash
# 下载源码,默认 develop 分支
git clone -b 2.3.2-dtk-22.10.1 http://developer.hpccube.com/codes/aicomponent/paddle.git
cd Paddle
# 创建编译目录
mkdir build && cd build
# 指定 Paddle 版本
export PADDLE_VERSION=2.3.2
# 执行 cmake
export ROCM_PATH=/opt/rocm
cmake .. -DPY_VERSION=3.7 -DWITH_GPU=OFF -DWITH_ROCM=ON -DWITH_RCCL=ON -DWITH_NCCL=OFF -DWITH_TESTING=ON -DWITH_DISTRIBUTE=ON -DCMAKE_BUILD_TYPE=Release -DCMAKE_EXPORT_COMPILE_COMMANDS=ON -DCMAKE_VERBOSE_MAKEFILE=OFF -DWITH_TP_CACHE=ON -DROCM_PATH=${ROCM_PATH} -DWITH_MKLDNN=OFF
# 使用以下命令来编译
make -j$(nproc)
```
**第三步**:安装与验证编译生成的 wheel 包
编译完成之后进入`Paddle/build/python/dist`目录即可找到编译生成的.whl 安装包,安装与验证命令如下:
```bash
# 安装命令
python -m pip install -U paddlepaddle_rocm-2.3.2-cp37-cp37m-linux_x86_64.whl
# 验证命令
python -c "import paddle; paddle.utils.run_check()"
```
## 如何卸载
请使用以下命令卸载 Paddle:
```
pip3 uninstall paddlepaddle-rocm
```
<p align="center">
<img align="center" src="doc/imgs/logo.png", width=1600>
<p>
--------------------------------------------------------------------------------
English | [简体中文](./README_cn.md)
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](https://paddlepaddle.org.cn/documentation/docs/en/guides/index_en.html)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](https://paddlepaddle.org.cn/documentation/docs/zh/guides/index_cn.html)
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
Welcome to the PaddlePaddle GitHub.
PaddlePaddle, as the first independent R&D deep learning platform in China, has been officially open-sourced to professional communities since 2016. It is an industrial platform with advanced technologies and rich features that cover core deep learning frameworks, basic model libraries, end-to-end development kits, tools & components as well as service platforms.
PaddlePaddle is originated from industrial practices with dedication and commitments to industrialization. It has been widely adopted by a wide range of sectors including manufacturing, agriculture, enterprise service, and so on while serving more than 4.7 million developers, 180,000 companies and generating 560,000 models. With such advantages, PaddlePaddle has helped an increasing number of partners commercialize AI.
## Installation
### Latest PaddlePaddle Release: [v2.3](https://github.com/PaddlePaddle/Paddle/tree/release/2.3)
Our vision is to enable deep learning for everyone via PaddlePaddle.
Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest features of PaddlePaddle.
### Install Latest Stable Release:
```
# CPU
pip install paddlepaddle
# GPU
pip install paddlepaddle-gpu
```
For more information about installation, please view [Quick Install](https://www.paddlepaddle.org.cn/install/quick)
Now our developers can acquire Tesla V100 online computing resources for free. If you create a program by AI Studio, you will obtain 8 hours to train models online per day. [Click here to start](https://aistudio.baidu.com/aistudio/index).
## FOUR LEADING TECHNOLOGIES
- **Agile Framework for Industrial Development of Deep Neural Networks**
The PaddlePaddle deep learning framework facilitates the development while lowering the technical burden, through leveraging a programmable scheme to architect the neural networks. It supports both declarative programming and imperative programming with both development flexibility and high runtime performance preserved. The neural architectures could be automatically designed by algorithms with better performance than the ones designed by human experts.
- **Support Ultra-Large-Scale Training of Deep Neural Networks**
PaddlePaddle has made breakthroughs in ultra-large-scale deep neural networks training. It launched the world's first large-scale open-source training platform that supports the training of deep networks with 100 billion features and trillions of parameters using data sources distributed over hundreds of nodes. PaddlePaddle overcomes the online deep learning challenges for ultra-large-scale deep learning models, and further achieved real-time model updating with more than 1 trillion parameters.
[Click here to learn more](https://github.com/PaddlePaddle/Fleet)
- **High-Performance Inference Engines for Comprehensive Deployment Environments**
PaddlePaddle is not only compatible with models trained in 3rd party open-source frameworks , but also offers complete inference products for various production scenarios. Our inference product line includes [Paddle Inference](https://paddle-inference.readthedocs.io/en/master/guides/introduction/index_intro.html): Native inference library for high-performance server and cloud inference; [Paddle Serving](https://github.com/PaddlePaddle/Serving): A service-oriented framework suitable for distributed and pipeline productions; [Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite): Ultra-Lightweight inference engine for mobile and IoT environments; [Paddle.js](https://www.paddlepaddle.org.cn/paddle/paddlejs): A frontend inference engine for browser and mini-apps. Furthermore, by great amounts of optimization with leading hardware in each scenario, Paddle inference engines outperform most of the other mainstream frameworks.
- **Industry-Oriented Models and Libraries with Open Source Repositories**
PaddlePaddle includes and maintains more than 100 mainstream models that have been practiced and polished for a long time in the industry. Some of these models have won major prizes from key international competitions. In the meanwhile, PaddlePaddle has further more than 200 pre-training models (some of them with source codes) to facilitate the rapid development of industrial applications.
[Click here to learn more](https://github.com/PaddlePaddle/models)
## Documentation
We provide [English](https://www.paddlepaddle.org.cn/documentation/docs/en/guides/index_en.html) and
[Chinese](https://www.paddlepaddle.org.cn/documentation/docs/zh/guide/index_cn.html) documentation.
- [Guides](https://www.paddlepaddle.org.cn/documentation/docs/en/guides/index_en.html)
You might want to start from how to implement deep learning basics with PaddlePaddle.
- [Practice](https://www.paddlepaddle.org.cn/documentation/docs/zh/tutorial/index_cn.html)
So far you have already been familiar with Fluid. And the next step should be building a more efficient model or inventing your original Operator.
- [API Reference](https://www.paddlepaddle.org.cn/documentation/docs/en/api/index_en.html)
Our new API enables much shorter programs.
- [How to Contribute](https://www.paddlepaddle.org.cn/documentation/docs/en/guides/08_contribution/index_en.html)
We appreciate your contributions!
## Communication
- [Github Issues](https://github.com/PaddlePaddle/Paddle/issues): bug reports, feature requests, install issues, usage issues, etc.
- QQ discussion group: 441226485 (PaddlePaddle).
- [Forums](https://aistudio.baidu.com/paddle/forum): discuss implementations, research, etc.
## Courses
- [Server Deployments](https://aistudio.baidu.com/aistudio/course/introduce/19084): Courses introducing high performance server deployments via local and remote services.
- [Edge Deployments](https://aistudio.baidu.com/aistudio/course/introduce/22690): Courses introducing edge deployments from mobile, IoT to web and applets.
## Copyright and License
PaddlePaddle is provided under the [Apache-2.0 license](LICENSE).
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment