from mmengine.config import read_base with read_base(): from .datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets from .datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets from .summarizers.example import summarizer datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], []) work_dir = './outputs/qwen-int4-chat/' from opencompass.models import VLLM qwen_meta_template = dict( round=[ dict(role="HUMAN", begin='\n<|im_start|>user\n', end='<|im_end|>'), dict(role="BOT", begin="\n<|im_start|>assistant\n", end='<|im_end|>', generate=True), ], ) models = [ dict( type=VLLM, abbr='qwen-7b-int4-chat-vllm', path="Qwen-7B-Chat-GPTQ-Int4", model_kwargs=dict(tensor_parallel_size=2, quantization="gptq"), meta_template=qwen_meta_template, max_out_len=100, max_seq_len=2048, batch_size=1, generation_kwargs=dict(temperature=0), end_str='<|im_end|>', run_cfg=dict(num_gpus=2, num_procs=1), ) ]