from mmengine.config import read_base with read_base(): from .datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets from .datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets from .summarizers.example import summarizer datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], []) work_dir = './outputs/qwen1.5-chat/' from opencompass.models import VLLM qwen2_meta_template = dict( round=[ dict(role="HUMAN", begin='<|im_start|>user\n', end='<|im_end|>\n'), dict(role="BOT", begin="<|im_start|>assistant\n", end='<|im_end|>\n', generate=True), ], eos_token_id=151645, ) models = [ dict( type=VLLM, abbr='qwen1.5-7b-chat-vllm', path="Qwen1.5-7B-Chat", model_kwargs=dict(tensor_parallel_size=1), meta_template=qwen2_meta_template, max_out_len=100, max_seq_len=2048, batch_size=1, generation_kwargs=dict(temperature=0), end_str='<|im_end|>', run_cfg=dict(num_gpus=1, num_procs=1), ) ]