Commit fb111087 authored by yingfhu's avatar yingfhu
Browse files

[Feat] support opencompass

parent 7d346000
from mmengine.config import read_base
with read_base():
from .narrativeqa_gen_5786a7 import narrativeqa_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import NaturalQuestionDataset, NQEvaluator
nq_reader_cfg = dict(
input_columns=['question'], output_column='answer', train_split='test')
nq_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(role='HUMAN', prompt='Question: {question}?\nAnswer: '),
], )),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT")
nq_datasets = [
dict(
type=NaturalQuestionDataset,
abbr='nq',
path='./data/nq/',
reader_cfg=nq_reader_cfg,
infer_cfg=nq_infer_cfg,
eval_cfg=nq_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .piqa_gen_8287ae import piqa_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import HFDataset
piqa_reader_cfg = dict(
input_columns=['goal', 'sol1', 'sol2'],
output_column='label',
test_split='validation')
piqa_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
0: 'The following makes sense: \nQ: {goal}\nA: {sol1}\n',
1: 'The following makes sense: \nQ: {goal}\nA: {sol2}\n'
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
piqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
piqa_datasets = [
dict(
type=HFDataset,
path='piqa',
reader_cfg=piqa_reader_cfg,
infer_cfg=piqa_infer_cfg,
eval_cfg=piqa_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .qabench_gen_0d5967 import qabench_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import RaceDataset
race_reader_cfg = dict(
input_columns=['article', 'question', 'A', 'B', 'C', 'D'],
output_column='answer')
race_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
"Read the article, and answer the question by replying A, B, C or D.\n\nArticle:\n{article}\n\nQ: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}"
),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
race_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type='first-capital'),
pred_role='BOT')
race_datasets = [
dict(
type=RaceDataset,
abbr='race-middle',
path='race',
name='middle',
reader_cfg=race_reader_cfg,
infer_cfg=race_infer_cfg,
eval_cfg=race_eval_cfg),
dict(
type=RaceDataset,
abbr='race-high',
path='race',
name='high',
reader_cfg=race_reader_cfg,
infer_cfg=race_infer_cfg,
eval_cfg=race_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import RaceDataset
race_reader_cfg = dict(
input_columns=['article', 'question', 'A', 'B', 'C', 'D'],
output_column='answer')
race_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=
'Read the article, and answer the question by replying A, B, C or D.\n\n{article}\n\nQ: {question}\n\nA. {A}\nB. {B}\nC. {C}\nD. {D}'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
race_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type='first-capital'))
race_datasets = [
dict(
type=RaceDataset,
abbr='race-middle',
path='race',
name='middle',
reader_cfg=race_reader_cfg,
infer_cfg=race_infer_cfg,
eval_cfg=race_eval_cfg),
dict(
type=RaceDataset,
abbr='race-high',
path='race',
name='high',
reader_cfg=race_reader_cfg,
infer_cfg=race_infer_cfg,
eval_cfg=race_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .race_ppl_04e06a import race_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .realtoxicprompts_gen_3ea730 import realtoxicprompts_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .safety_gen_c0a5b8 import safety_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import siqaDataset_V2
siqa_reader_cfg = dict(
input_columns=["context", "question", "answerA", "answerB", "answerC"],
output_column="label",
test_split="validation")
siqa_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(
round=[
dict(
role="HUMAN",
prompt=
"{context}\nQuestion: {question}\nA. {answerA}\nB. {answerB}\nC. {answerC}\nAnswer:"
)
], ),
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer),
)
siqa_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type="first-capital"),
)
siqa_datasets = [
dict(
abbr="siqa",
type=siqaDataset_V2,
path="social_i_qa",
reader_cfg=siqa_reader_cfg,
infer_cfg=siqa_infer_cfg,
eval_cfg=siqa_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .siqa_ppl_049da0 import siqa_datasets # noqa: F401, F403
from mmengine.config import read_base
with read_base():
from .storycloze_ppl_c1912d import storycloze_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import PPLInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import storyclozeDataset
storycloze_reader_cfg = dict(
input_columns=['context', 'sentence_quiz1', 'sentence_quiz2'],
output_column='answer_right_ending',
train_split='test',
test_split='test')
storycloze_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template={
1: "{context}{sentence_quiz1}",
2: "{context}{sentence_quiz2}",
}),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer))
storycloze_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
# The original story cloze dataset and repo are not long maintaining.
# Using multilingual version of this dataset.
storycloze_datasets = [
dict(
abbr='story_cloze',
type=storyclozeDataset,
path='juletxara/xstory_cloze',
name='en',
reader_cfg=storycloze_reader_cfg,
infer_cfg=storycloze_infer_cfg,
eval_cfg=storycloze_eval_cfg)
]
from mmengine.config import read_base
with read_base():
from .summedits_gen_4f35b5 import summedits_datasets # noqa: F401, F403
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import SummeditsDataset_V2
summedits_reader_cfg = dict(
input_columns=['doc', 'summary'], output_column='label')
summedits_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt=
'Document:\n{doc}Summary:\n{summary}\nQuestion:\nIs the summary factually consistent with the document?\nA. Yes\nB. No\nAnswer:'
),
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer))
summedits_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_postprocessor=dict(type="first-capital"),
)
summedits_datasets = [
dict(
abbr='summedits',
type=SummeditsDataset_V2,
path='./data/summedits/summedits.jsonl',
reader_cfg=summedits_reader_cfg,
infer_cfg=summedits_infer_cfg,
eval_cfg=summedits_eval_cfg)
]
from opencompass.openicl.icl_prompt_template import PromptTemplate
from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import TriviaQArcDataset, TriviaQAEvaluator
triviaqarc_reader_cfg = dict(
input_columns=['question', 'evidence'],
output_column='answer',
train_split='dev',
test_split='dev')
triviaqarc_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="{evidence}\nAnswer these questions:\nQ: {question}?\nA:"),
retriever=dict(type=ZeroRetriever),
inferencer=dict(
type=GenInferencer, max_out_len=50, max_seq_len=8192, batch_size=4))
triviaqarc_eval_cfg = dict(evaluator=dict(type=TriviaQAEvaluator))
triviaqarc_datasets = [
dict(
type=TriviaQArcDataset,
abbr='triviaqarc',
path='./data/triviaqa-rc/',
reader_cfg=triviaqarc_reader_cfg,
infer_cfg=triviaqarc_infer_cfg,
eval_cfg=triviaqarc_eval_cfg)
]
from opencompass.models import HuggingFaceCausalLM
_meta_template = dict(
round=[
dict(role='HUMAN', begin='\n\n### Instruction:\n:'),
dict(role='BOT', begin='\n\n### Response:\n:', generate=True),
],
)
models = [
dict(
type=HuggingFaceCausalLM,
abbr='TigerBot-SFT',
path="TigerResearch/tigerbot-7b-sft",
tokenizer_path='TigerResearch/tigerbot-7b-sft',
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
max_out_len=100,
max_seq_len=2048,
batch_size=8,
meta_template=_meta_template,
model_kwargs=dict(trust_remote_code=True, device_map='auto', revision='0ba4d6fc479bdedd6a3f8d4d3425025c5f501800'),
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
bbh_summary_groups = []
# bbh
_bbh = ['temporal_sequences', 'disambiguation_qa', 'date_understanding', 'tracking_shuffled_objects_three_objects', 'penguins_in_a_table','geometric_shapes', 'snarks', 'ruin_names', 'tracking_shuffled_objects_seven_objects', 'tracking_shuffled_objects_five_objects','logical_deduction_three_objects', 'hyperbaton', 'logical_deduction_five_objects', 'logical_deduction_seven_objects', 'movie_recommendation','salient_translation_error_detection', 'reasoning_about_colored_objects', 'multistep_arithmetic_two', 'navigate', 'dyck_languages', 'word_sorting', 'sports_understanding','boolean_expressions', 'object_counting', 'formal_fallacies', 'causal_judgement', 'web_of_lies']
_bbh = ['bbh-' + s for s in _bbh]
bbh_summary_groups.append({'name': 'bbh', 'subsets': _bbh})
{% extends "layout.html" %}
{% block body %}
<h1>Page Not Found</h1>
<p>
The page you are looking for cannot be found.
</p>
<p>
If you just switched documentation versions, it is likely that the page you were on is moved. You can look for it in
the content table left, or go to <a href="{{ pathto(root_doc) }}">the homepage</a>.
</p>
<!-- <p>
If you cannot find documentation you want, please <a
href="">open an issue</a> to tell us!
</p> -->
{% endblock %}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment