Unverified Commit bf79ff1c authored by Tong Gao's avatar Tong Gao Committed by GitHub
Browse files

[Feature] Add LEval datasets


Co-authored-by: default avatarkennymckormick <dhd@pku.edu.cn>
parent 8d9cee06
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET, TEXT_POSTPROCESSORS
from .base import BaseDataset
@TEXT_POSTPROCESSORS.register_module('gsm100_dataset')
def gsm100_dataset_postprocess(text: str) -> str:
return text.replace(',', '')
@TEXT_POSTPROCESSORS.register_module('gsm100')
def gsm100_postprocess(text: str) -> str:
# text = text.split('\n\n')[0]
segs = text.split('The answer is')
if len(segs) < 2:
return ''
text = segs[1]
text = text.split(' ')
flag = False
ret = ''
for i in range(len(text)):
s = text[i]
for i in range(len(s)):
if s[i].isdigit():
flag = True
ret = s
break
if flag:
break
ret1 = ''
for i in range(len(ret)):
if ret[i].isdigit():
ret1 += ret[i]
return ret1
@LOAD_DATASET.register_module()
class LEvalGSM100Dataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalLegalContractQADataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalMeetingSummDataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalMultidocQADataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalNarrativeQADataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalNaturalQuestionDataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalNewsSummDataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalPaperAssistantDataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalPatentSummDataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalQualityDataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer[1]
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalReviewSummDataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalScientificQADataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalTopicRetrievalDataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalTPODataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
from datasets import Dataset, load_dataset
from opencompass.registry import LOAD_DATASET
from .base import BaseDataset
@LOAD_DATASET.register_module()
class LEvalTVShowSummDataset(BaseDataset):
@staticmethod
def load(**kwargs):
dataset = load_dataset(**kwargs)
split = 'test'
raw_data = []
for i in range(len(dataset[split])):
instructions = dataset[split]['instructions'][i]
outputs = dataset[split]['outputs'][i]
context = dataset[split]['input'][i]
for question, answer in zip(instructions, outputs):
raw_data.append({
'question': question,
'context': context,
'answer': answer
})
dataset[split] = Dataset.from_list(raw_data)
return dataset
......@@ -34,6 +34,24 @@ from .iwslt2017 import * # noqa: F401, F403
from .jigsawmultilingual import * # noqa: F401, F403
from .lambada import * # noqa: F401, F403
from .lcsts import * # noqa: F401, F403
from .LEval_coursera import * # noqa: F401, F403
from .LEval_financial_qa import * # noqa: F401, F403
from .LEval_gov_report_summ import * # noqa: F401, F403
from .LEval_gsm100 import * # noqa: F401, F403
from .LEval_legal_contract_qa import * # noqa: F401, F403
from .LEval_meeting_summ import * # noqa: F401, F403
from .LEval_multidoc_qa import * # noqa: F401, F403
from .LEval_narrattive_qa import * # noqa: F401, F403
from .LEval_natural_question import * # noqa: F401, F403
from .LEval_news_summ import * # noqa: F401, F403
from .LEval_paper_assistant import * # noqa: F401, F403
from .LEval_patent_summ import * # noqa: F401, F403
from .LEval_quality import * # noqa: F401, F403
from .LEval_review_summ import * # noqa: F401, F403
from .LEval_scientific_qa import * # noqa: F401, F403
from .LEval_topic_retrieval import * # noqa: F401, F403
from .LEval_tpo import * # noqa: F401, F403
from .LEval_tvshow_summ import * # noqa: F401, F403
from .math import * # noqa: F401, F403
from .mbpp import * # noqa: F401, F403
from .mmlu import * # noqa: F401, F403
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment