Unverified Commit aa2dd2b5 authored by Fengzhe Zhou's avatar Fengzhe Zhou Committed by GitHub
Browse files

[Format] Add config lints (#892)

parent 3dbba119
......@@ -24,7 +24,7 @@ sycophancy_infer_cfg = dict(
sycophancy_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='ABCDEFG'),
)
......
......@@ -3,23 +3,23 @@ from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import APPSDataset, APPSEvaluator
APPS_reader_cfg = dict(input_columns=["question", "starter"], output_column="problem_id", train_split='test')
APPS_reader_cfg = dict(input_columns=['question', 'starter'], output_column='problem_id', train_split='test')
APPS_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="Please write a python program to address the following QUESTION. Your ANSWER should be in a code block format like this: ```python # Write your code here ```. \nQUESTION:\n{question} {starter}\nANSWER:\n"),
template='Please write a python program to address the following QUESTION. Your ANSWER should be in a code block format like this: ```python # Write your code here ```. \nQUESTION:\n{question} {starter}\nANSWER:\n'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
APPS_eval_cfg = dict(evaluator=dict(type=APPSEvaluator), pred_role="BOT")
APPS_eval_cfg = dict(evaluator=dict(type=APPSEvaluator), pred_role='BOT')
APPS_datasets = [
dict(
type=APPSDataset,
abbr="apps",
path="codeparrot/apps",
abbr='apps',
path='codeparrot/apps',
num_repeats=1,
reader_cfg=APPS_reader_cfg,
infer_cfg=APPS_infer_cfg,
......
......@@ -3,23 +3,23 @@ from opencompass.openicl.icl_retriever import ZeroRetriever
from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import APPS_miniDataset, APPSEvaluator
APPS_reader_cfg = dict(input_columns=["question", "starter"], output_column="problem_id", train_split='test')
APPS_reader_cfg = dict(input_columns=['question', 'starter'], output_column='problem_id', train_split='test')
APPS_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="Please write a python program to address the following QUESTION. Your ANSWER should be in a code block format like this: ```python # Write your code here ```. \nQUESTION:\n{question} {starter}\nANSWER:\n"),
template='Please write a python program to address the following QUESTION. Your ANSWER should be in a code block format like this: ```python # Write your code here ```. \nQUESTION:\n{question} {starter}\nANSWER:\n'),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512),
)
APPS_eval_cfg = dict(evaluator=dict(type=APPSEvaluator), pred_role="BOT")
APPS_eval_cfg = dict(evaluator=dict(type=APPSEvaluator), pred_role='BOT')
APPS_mini_datasets = [
dict(
type=APPS_miniDataset,
abbr="apps_mini",
path="./data/apps_mini",
abbr='apps_mini',
path='./data/apps_mini',
num_repeats=1,
reader_cfg=APPS_reader_cfg,
infer_cfg=APPS_infer_cfg,
......
......@@ -5,7 +5,7 @@ from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BBHDataset, BBHEvaluator, bbh_mcq_postprocess, BBHEvaluator_mcq
bbh_reader_cfg = dict(input_columns=["input"], output_column="target")
bbh_reader_cfg = dict(input_columns=['input'], output_column='target')
bbh_multiple_choice_sets = [
'temporal_sequences',
......@@ -52,14 +52,14 @@ for _name in bbh_multiple_choice_sets:
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(
evaluator=dict(type=BBHEvaluator_mcq),
pred_role="BOT",
pred_role='BOT',
pred_postprocessor=dict(type=bbh_mcq_postprocess),
dataset_postprocessor=dict(type=bbh_mcq_postprocess))
bbh_datasets.append(
dict(
type=BBHDataset,
path=f"./data/BBH/data",
path=f'./data/BBH/data',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
......@@ -76,12 +76,12 @@ for _name in bbh_free_form_sets:
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role="BOT")
bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role='BOT')
bbh_datasets.append(
dict(
type=BBHDataset,
path=f"./data/BBH/data",
path=f'./data/BBH/data',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
......
......@@ -23,11 +23,11 @@ for name, test_type in settings:
desc = task_prompt.strip() + '\n'
else:
desc = ''
prompt_rounds.append(dict(role="HUMAN", prompt=f"{desc}{question.strip()}"))
prompt_rounds.append(dict(role="BOT", prompt=answer.strip()))
prompt_rounds.append(dict(role="HUMAN", prompt="Q: {input}"))
prompt_rounds.append(dict(role='HUMAN', prompt=f'{desc}{question.strip()}'))
prompt_rounds.append(dict(role='BOT', prompt=answer.strip()))
prompt_rounds.append(dict(role='HUMAN', prompt='Q: {input}'))
bbh_reader_cfg = dict(input_columns=["input"], output_column="target")
bbh_reader_cfg = dict(input_columns=['input'], output_column='target')
bbh_infer_cfg = dict(
prompt_template=dict(type=PromptTemplate, template=dict(round=prompt_rounds)),
......@@ -37,18 +37,18 @@ for name, test_type in settings:
if test_type == 'mcq':
bbh_eval_cfg = dict(
evaluator=dict(type=BBHEvaluator_mcq),
pred_role="BOT",
pred_role='BOT',
pred_postprocessor=dict(type=bbh_mcq_postprocess),
dataset_postprocessor=dict(type=bbh_mcq_postprocess))
else:
bbh_eval_cfg = dict(
evaluator=dict(type=BBHEvaluator),
pred_role="BOT")
pred_role='BOT')
bbh_datasets.append(
dict(
type=BBHDataset,
path="./data/BBH/data",
path='./data/BBH/data',
name=name,
abbr='bbh-' + name,
reader_cfg=bbh_reader_cfg.copy(),
......
......@@ -5,7 +5,7 @@ from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BBHDataset, BBHEvaluator, bbh_mcq_postprocess, BBHEvaluator_mcq
bbh_reader_cfg = dict(input_columns=["input"], output_column="target")
bbh_reader_cfg = dict(input_columns=['input'], output_column='target')
bbh_multiple_choice_sets = [
'temporal_sequences',
......@@ -48,7 +48,7 @@ for _name in bbh_multiple_choice_sets:
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
role='HUMAN',
prompt=
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
)
......@@ -57,14 +57,14 @@ for _name in bbh_multiple_choice_sets:
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(
evaluator=dict(type=BBHEvaluator_mcq),
pred_role="BOT",
pred_role='BOT',
pred_postprocessor=dict(type=bbh_mcq_postprocess),
dataset_postprocessor=dict(type=bbh_mcq_postprocess))
bbh_datasets.append(
dict(
type=BBHDataset,
path=f"./data/BBH/data",
path=f'./data/BBH/data',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
......@@ -79,19 +79,19 @@ for _name in bbh_free_form_sets:
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
role='HUMAN',
prompt=
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: Let's think step by step."
)
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role="BOT")
bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role='BOT')
bbh_datasets.append(
dict(
type=BBHDataset,
path=f"./data/BBH/data",
path=f'./data/BBH/data',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
......
......@@ -5,7 +5,7 @@ from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.openicl.icl_evaluator import AccEvaluator
from opencompass.datasets import BBHDataset, BBHEvaluator, bbh_mcq_postprocess, BBHEvaluator_mcq
bbh_reader_cfg = dict(input_columns=["input"], output_column="target")
bbh_reader_cfg = dict(input_columns=['input'], output_column='target')
bbh_multiple_choice_sets = [
'temporal_sequences',
......@@ -48,23 +48,23 @@ for _name in bbh_multiple_choice_sets:
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
role='HUMAN',
prompt=
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: "
f'Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: '
)
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(
evaluator=dict(type=BBHEvaluator_mcq),
pred_role="BOT",
pred_role='BOT',
pred_postprocessor=dict(type=bbh_mcq_postprocess),
dataset_postprocessor=dict(type=bbh_mcq_postprocess))
bbh_datasets.append(
dict(
type=BBHDataset,
path=f"./data/BBH/data",
path=f'./data/BBH/data',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
......@@ -79,19 +79,19 @@ for _name in bbh_free_form_sets:
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
role='HUMAN',
prompt=
f"Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: "
f'Follow the given examples and answer the question.\n{_hint}\n\nQ: {{input}}\nA: '
)
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=512))
bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role="BOT")
bbh_eval_cfg = dict(evaluator=dict(type=BBHEvaluator), pred_role='BOT')
bbh_datasets.append(
dict(
type=BBHDataset,
path=f"./data/BBH/data",
path=f'./data/BBH/data',
name=_name,
abbr='bbh-' + _name,
reader_cfg=bbh_reader_cfg,
......
......@@ -62,7 +62,7 @@ ceval_subject_mapping = {
ceval_all_sets = list(ceval_subject_mapping.keys())
ceval_datasets = []
for _split in ["val"]:
for _split in ['val']:
for _name in ceval_all_sets:
_ch_name = ceval_subject_mapping[_name][1]
ceval_infer_cfg = dict(
......@@ -70,18 +70,18 @@ for _split in ["val"]:
type=PromptTemplate,
template={
answer: dict(
begin="</E>",
begin='</E>',
round=[
dict(
role="HUMAN",
role='HUMAN',
prompt=
f"以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: "
f'以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: '
),
dict(role="BOT", prompt=answer),
dict(role='BOT', prompt=answer),
])
for answer in ["A", "B", "C", "D"]
for answer in ['A', 'B', 'C', 'D']
},
ice_token="</E>",
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=PPLInferencer),
......@@ -92,13 +92,13 @@ for _split in ["val"]:
ceval_datasets.append(
dict(
type=CEvalDataset,
path="./data/ceval/formal_ceval",
path='./data/ceval/formal_ceval',
name=_name,
abbr="ceval-" + _name if _split == "val" else "ceval-test-" + _name,
abbr='ceval-' + _name if _split == 'val' else 'ceval-test-' + _name,
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split='dev',
test_split=_split),
infer_cfg=ceval_infer_cfg,
eval_cfg=ceval_eval_cfg,
......
......@@ -62,23 +62,23 @@ ceval_subject_mapping = {
ceval_all_sets = list(ceval_subject_mapping.keys())
ceval_datasets = []
for _split in ["val", "test"]:
for _split in ['val', 'test']:
for _name in ceval_all_sets:
_ch_name = ceval_subject_mapping[_name][1]
ceval_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(
begin="</E>",
begin='</E>',
round=[
dict(
role="HUMAN",
role='HUMAN',
prompt=
f"以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: "
f'以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: '
),
dict(role="BOT", prompt="{answer}"),
dict(role='BOT', prompt='{answer}'),
]),
ice_token="</E>",
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=GenInferencer),
......@@ -91,14 +91,14 @@ for _split in ["val", "test"]:
ceval_datasets.append(
dict(
type=CEvalDataset,
path="./data/ceval/formal_ceval",
path='./data/ceval/formal_ceval',
name=_name,
abbr="ceval-" + _name if _split == "val" else "ceval-test-" +
abbr='ceval-' + _name if _split == 'val' else 'ceval-test-' +
_name,
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split='dev',
test_split=_split),
infer_cfg=ceval_infer_cfg,
eval_cfg=ceval_eval_cfg,
......
......@@ -62,23 +62,23 @@ ceval_subject_mapping = {
ceval_all_sets = list(ceval_subject_mapping.keys())
ceval_datasets = []
for _split in ["val"]:
for _split in ['val']:
for _name in ceval_all_sets:
_ch_name = ceval_subject_mapping[_name][1]
ceval_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(
begin="</E>",
begin='</E>',
round=[
dict(
role="HUMAN",
role='HUMAN',
prompt=
f"以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: "
f'以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: '
),
dict(role="BOT", prompt="{answer}"),
dict(role='BOT', prompt='{answer}'),
]),
ice_token="</E>",
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=GenInferencer),
......@@ -91,14 +91,14 @@ for _split in ["val"]:
ceval_datasets.append(
dict(
type=CEvalDataset,
path="./data/ceval/formal_ceval",
path='./data/ceval/formal_ceval',
name=_name,
abbr="ceval-" + _name if _split == "val" else "ceval-test-" +
abbr='ceval-' + _name if _split == 'val' else 'ceval-test-' +
_name,
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split='dev',
test_split=_split),
infer_cfg=ceval_infer_cfg,
eval_cfg=ceval_eval_cfg,
......
......@@ -61,28 +61,28 @@ ceval_subject_mapping = {
ceval_all_sets = list(ceval_subject_mapping.keys())
ceval_datasets = []
for _split in ["val", "test"]:
for _split in ['val', 'test']:
for _name in ceval_all_sets:
ceval_reader_cfg = dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split='dev',
test_split=_split,
)
_ch_name = ceval_subject_mapping[_name][1]
hint = f"以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。"
question_and_options = "{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}"
hint = f'以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。'
question_and_options = '{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}'
ceval_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template={answer: f"{question_and_options}\n答案: {answer}\n" for answer in ["A", "B", "C", "D"]},
template={answer: f'{question_and_options}\n答案: {answer}\n' for answer in ['A', 'B', 'C', 'D']},
),
prompt_template=dict(
type=PromptTemplate,
template={answer: f"{hint}\n</E>{question_and_options}\n答案: {answer}" for answer in ["A", "B", "C", "D"]},
ice_token="</E>",
template={answer: f'{hint}\n</E>{question_and_options}\n答案: {answer}' for answer in ['A', 'B', 'C', 'D']},
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=PPLInferencer),
......@@ -93,9 +93,9 @@ for _split in ["val", "test"]:
ceval_datasets.append(
dict(
type=CEvalDataset,
path="./data/ceval_internal/formal_ceval",
path='./data/ceval_internal/formal_ceval',
name=_name,
abbr="ceval-" + _name if _split == "val" else "ceval-test-" + _name,
abbr='ceval-' + _name if _split == 'val' else 'ceval-test-' + _name,
reader_cfg=ceval_reader_cfg,
infer_cfg=ceval_infer_cfg,
eval_cfg=ceval_eval_cfg,
......
......@@ -61,28 +61,28 @@ ceval_subject_mapping = {
ceval_all_sets = list(ceval_subject_mapping.keys())
ceval_datasets = []
for _split in ["val", "test"]:
for _split in ['val', 'test']:
for _name in ceval_all_sets:
ceval_reader_cfg = dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split='dev',
test_split=_split,
)
_ch_name = ceval_subject_mapping[_name][1]
hint = f"以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。"
question_and_options = "{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}"
hint = f'以下是关于{_ch_name}的单项选择题,请直接给出正确答案的选项。'
question_and_options = '{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}'
ceval_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template={answer: f"{question_and_options}\n答案: {answer}\n" for answer in ["A", "B", "C", "D"]},
template={answer: f'{question_and_options}\n答案: {answer}\n' for answer in ['A', 'B', 'C', 'D']},
),
prompt_template=dict(
type=PromptTemplate,
template={answer: f"{hint}\n</E>{question_and_options}\n答案: {answer}" for answer in ["A", "B", "C", "D"]},
ice_token="</E>",
template={answer: f'{hint}\n</E>{question_and_options}\n答案: {answer}' for answer in ['A', 'B', 'C', 'D']},
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=PPLInferencer),
......@@ -93,9 +93,9 @@ for _split in ["val", "test"]:
ceval_datasets.append(
dict(
type=CEvalDataset,
path="./data/ceval/formal_ceval",
path='./data/ceval/formal_ceval',
name=_name,
abbr="ceval-" + _name if _split == "val" else "ceval-test-" + _name,
abbr='ceval-' + _name if _split == 'val' else 'ceval-test-' + _name,
reader_cfg=ceval_reader_cfg,
infer_cfg=ceval_infer_cfg,
eval_cfg=ceval_eval_cfg,
......
......@@ -61,7 +61,7 @@ ceval_subject_mapping = {
ceval_all_sets = list(ceval_subject_mapping.keys())
ceval_datasets = []
for _split in ["val"]:
for _split in ['val']:
for _name in ceval_all_sets:
_ch_name = ceval_subject_mapping[_name][1]
ceval_infer_cfg = dict(
......@@ -69,18 +69,18 @@ for _split in ["val"]:
type=PromptTemplate,
template={
answer: dict(
begin="</E>",
begin='</E>',
round=[
dict(
role="HUMAN",
role='HUMAN',
prompt=
f"以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: "
f'以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: '
),
dict(role="BOT", prompt=answer),
dict(role='BOT', prompt=answer),
])
for answer in ["A", "B", "C", "D"]
for answer in ['A', 'B', 'C', 'D']
},
ice_token="</E>",
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=PPLInferencer),
......@@ -91,14 +91,14 @@ for _split in ["val"]:
ceval_datasets.append(
dict(
type=CEvalDataset,
path="./data/ceval/formal_ceval",
path='./data/ceval/formal_ceval',
name=_name,
abbr="ceval-" + _name if _split == "val" else "ceval-test-" +
abbr='ceval-' + _name if _split == 'val' else 'ceval-test-' +
_name,
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split='dev',
test_split=_split),
infer_cfg=ceval_infer_cfg,
eval_cfg=ceval_eval_cfg,
......
......@@ -61,7 +61,7 @@ ceval_subject_mapping = {
ceval_all_sets = list(ceval_subject_mapping.keys())
ceval_datasets = []
for _split in ["val", "test"]:
for _split in ['val', 'test']:
for _name in ceval_all_sets:
_ch_name = ceval_subject_mapping[_name][1]
ceval_infer_cfg = dict(
......@@ -69,18 +69,18 @@ for _split in ["val", "test"]:
type=PromptTemplate,
template={
answer: dict(
begin="</E>",
begin='</E>',
round=[
dict(
role="HUMAN",
role='HUMAN',
prompt=
f"以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: "
f'以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n答案: '
),
dict(role="BOT", prompt=answer),
dict(role='BOT', prompt=answer),
])
for answer in ["A", "B", "C", "D"]
for answer in ['A', 'B', 'C', 'D']
},
ice_token="</E>",
ice_token='</E>',
),
retriever=dict(type=FixKRetriever, fix_id_list=[0, 1, 2, 3, 4]),
inferencer=dict(type=PPLInferencer),
......@@ -91,14 +91,14 @@ for _split in ["val", "test"]:
ceval_datasets.append(
dict(
type=CEvalDataset,
path="./data/ceval/formal_ceval",
path='./data/ceval/formal_ceval',
name=_name,
abbr="ceval-" + _name if _split == "val" else "ceval-test-" +
abbr='ceval-' + _name if _split == 'val' else 'ceval-test-' +
_name,
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split='dev',
test_split=_split),
infer_cfg=ceval_infer_cfg,
eval_cfg=ceval_eval_cfg,
......
......@@ -62,23 +62,23 @@ ceval_subject_mapping = {
ceval_all_sets = list(ceval_subject_mapping.keys())
ceval_datasets = []
for _split in ["val"]:
for _split in ['val']:
for _name in ceval_all_sets:
_ch_name = ceval_subject_mapping[_name][1]
ceval_infer_cfg = dict(
ice_template=dict(
type=PromptTemplate,
template=dict(
begin="</E>",
begin='</E>',
round=[
dict(
role="HUMAN",
role='HUMAN',
prompt=
f"以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n让我们一步一步思考。答案: "
f'以下是中国关于{_ch_name}考试的单项选择题,请选出其中的正确答案。\n{{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n让我们一步一步思考。答案: '
),
dict(role="BOT", prompt="{answer}"),
dict(role='BOT', prompt='{answer}'),
]),
ice_token="</E>",
ice_token='</E>',
),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer, max_out_len=256),
......@@ -91,14 +91,14 @@ for _split in ["val"]:
ceval_datasets.append(
dict(
type=CEvalDataset,
path="./data/ceval/formal_ceval",
path='./data/ceval/formal_ceval',
name=_name,
abbr="ceval-" + _name if _split == "val" else "ceval-test-" +
abbr='ceval-' + _name if _split == 'val' else 'ceval-test-' +
_name,
reader_cfg=dict(
input_columns=["question", "A", "B", "C", "D"],
output_column="answer",
train_split="dev",
input_columns=['question', 'A', 'B', 'C', 'D'],
output_column='answer',
train_split='dev',
test_split=_split),
infer_cfg=ceval_infer_cfg,
eval_cfg=ceval_eval_cfg,
......
......@@ -15,10 +15,10 @@ civilcomments_infer_cfg = dict(
type=PromptTemplate,
template=dict(round=[
dict(
role="HUMAN",
prompt="Text: {text}\nQuestion: Does the above text contain "
"rude, hateful, aggressive, disrespectful or unreasonable "
"language?\nAnswer:")
role='HUMAN',
prompt='Text: {text}\nQuestion: Does the above text contain '
'rude, hateful, aggressive, disrespectful or unreasonable '
'language?\nAnswer:')
])),
retriever=dict(type=ZeroRetriever),
inferencer=dict(type=CLPInferencer))
......
......@@ -7,8 +7,8 @@ from opencompass.utils.text_postprocessors import first_capital_postprocess
maxmin_reader_cfg = dict(
input_columns=["nl_tokens", "pl_tokens"],
output_column="answer",
input_columns=['nl_tokens', 'pl_tokens'],
output_column='answer',
)
maxmin_infer_cfg = dict(
......@@ -16,8 +16,8 @@ maxmin_infer_cfg = dict(
type=PromptTemplate,
template=dict(
round=[
dict(role="HUMAN", prompt="Code:{pl_tokens}\nThe aim of the code: {nl_tokens}\nQuestion: Please tell me what \"<mask>\" in the code should be replaced with and you must response to me only A or B.\nA. max\nB. min\nAnswer:"),
dict(role="BOT", prompt="{answer}"),
dict(role='HUMAN', prompt="Code:{pl_tokens}\nThe aim of the code: {nl_tokens}\nQuestion: Please tell me what \"<mask>\" in the code should be replaced with and you must response to me only A or B.\nA. max\nB. min\nAnswer:"),
dict(role='BOT', prompt='{answer}'),
]
),
),
......@@ -26,15 +26,15 @@ maxmin_infer_cfg = dict(
)
maxmin_eval_cfg = dict(evaluator=dict(type=AccEvaluator),
pred_role="BOT",
pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess))
maxmin_datasets = [
dict(
type=MaxminDataset,
abbr=f"maxmin",
test_path=f"data/clozeTest-maxmin/python/clozeTest.json",
answer_path=f"data/clozeTest-maxmin/python/answers.txt",
abbr=f'maxmin',
test_path=f'data/clozeTest-maxmin/python/clozeTest.json',
answer_path=f'data/clozeTest-maxmin/python/answers.txt',
reader_cfg=maxmin_reader_cfg,
infer_cfg=maxmin_infer_cfg,
eval_cfg=maxmin_eval_cfg,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment