Unverified Commit aa2dd2b5 authored by Fengzhe Zhou's avatar Fengzhe Zhou Committed by GitHub
Browse files

[Format] Add config lints (#892)

parent 3dbba119
......@@ -14,5 +14,5 @@ summarizer = dict(
['mathbench-middle-single_choice_cn', 'perf_4'],
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith("_summary_groups")], [])
[v for k, v in locals().items() if k.endswith('_summary_groups')], [])
)
......@@ -37,5 +37,5 @@ summarizer = dict(
['mathbench-primary_knowledge-single_choice_en', 'acc_1'],
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith("_summary_groups")], [])
[v for k, v in locals().items() if k.endswith('_summary_groups')], [])
)
......@@ -16,10 +16,10 @@ summarizer = dict(
dataset_abbrs=[
'--------- 考试 Exam ---------', # category
# 'Mixed', # subcategory
"ceval",
'ceval',
'agieval',
'mmlu',
"GaokaoBench",
'GaokaoBench',
'ARC-c',
'--------- 语言 Language ---------', # category
# '字词释义', # subcategory
......@@ -69,7 +69,7 @@ summarizer = dict(
'openai_humaneval',
'mbpp',
# '综合推理', # subcategory
"bbh",
'bbh',
'--------- 理解 Understanding ---------', # category
# '阅读理解', # subcategory
'C3',
......@@ -89,5 +89,5 @@ summarizer = dict(
'tnews-dev',
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith("_summary_groups")], []),
[v for k, v in locals().items() if k.endswith('_summary_groups')], []),
)
......@@ -10,9 +10,9 @@ def create_m_rs_names_list(context_lengths, depths, needle_counts,
for needle_count in needle_counts:
for language in languages:
key = f"{needle_count}-Needle-{language.upper()}-{dataset_size.upper()}"
key = f'{needle_count}-Needle-{language.upper()}-{dataset_size.upper()}'
names_list = [
f"Length{length}Depth{int(depth)}_{needle_count}needle_{language}_{dataset_size}"
f'Length{length}Depth{int(depth)}_{needle_count}needle_{language}_{dataset_size}'
for length in context_lengths
for depth in depths
]
......@@ -31,8 +31,8 @@ def create_m_rs_names_list(context_lengths, depths, needle_counts,
def create_summarizer(context_lengths, depths, dataset_size,
sparse_depths=None):
needle_counts = ["2", "3", "4", "5"]
languages = ["en", "zh"]
needle_counts = ['2', '3', '4', '5']
languages = ['en', 'zh']
if sparse_depths:
depths = sparse_depths
names_dict = {}
......@@ -47,7 +47,7 @@ def create_summarizer(context_lengths, depths, dataset_size,
for language in languages:
names_list = [
f"Length{length}Depth{int(depth)}_origin_{language}_{dataset_size}"
f'Length{length}Depth{int(depth)}_origin_{language}_{dataset_size}'
for length in context_lengths
for depth in depths
]
......@@ -66,7 +66,7 @@ def create_summarizer(context_lengths, depths, dataset_size,
for language in languages:
names_list = [
f"Length{length}_parallel_{language}_{dataset_size}"
f'Length{length}_parallel_{language}_{dataset_size}'
for length in context_lengths
]
parallel_list.extend(names_list)
......@@ -124,19 +124,19 @@ depths = [0, 5, 10, 15, 21, 26, 31, 36, 42, 47, 52, 57, 63, 68, 73, 78, 84, 89,
depths_list_sparse = [0, 10, 21, 31, 42, 52, 63, 73, 84, 94, 100]
context_lengths_4k = list(range(1000, 5000, 1000))
needlebench_4k_summarizer = create_summarizer(context_lengths_4k, depths, "4k")
needlebench_4k_summarizer = create_summarizer(context_lengths_4k, depths, '4k')
context_lengths_8k = list(range(5000, 9000, 1000))
needlebench_8k_summarizer = create_summarizer(context_lengths_8k, depths, "8k")
needlebench_8k_summarizer = create_summarizer(context_lengths_8k, depths, '8k')
context_lengths_32k = [9000, 13000, 17000, 21000, 25000, 29000, 31000, 32000]
needlebench_32k_summarizer = create_summarizer(context_lengths_32k, depths_list_sparse, "32k")
needlebench_32k_summarizer = create_summarizer(context_lengths_32k, depths_list_sparse, '32k')
context_lengths_128k = list([16000, 32000, 48000, 64000, 80000, 96000, 112000, 128000])
needlebench_128k_summarizer = create_summarizer(context_lengths_128k, depths_list_sparse, "128k")
needlebench_128k_summarizer = create_summarizer(context_lengths_128k, depths_list_sparse, '128k')
context_lengths_200k = list([16000, 48000, 80000, 112000, 128000, 144000, 176000, 200000])
needlebench_200k_summarizer = create_summarizer(context_lengths_200k, depths_list_sparse, "200k")
needlebench_200k_summarizer = create_summarizer(context_lengths_200k, depths_list_sparse, '200k')
context_lengths_256k = list([32000, 128000, 256000])
needlebench_256k_summarizer = create_summarizer(context_lengths_256k, depths_list_sparse, "256k")
needlebench_256k_summarizer = create_summarizer(context_lengths_256k, depths_list_sparse, '256k')
context_lengths_1000k = list([20000, 160000, 300000, 440000, 580000, 720000, 860000, 1000000])
needlebench_1000k_summarizer = create_summarizer(context_lengths_1000k, depths_list_sparse, "1000k")
needlebench_1000k_summarizer = create_summarizer(context_lengths_1000k, depths_list_sparse, '1000k')
_needlebench_8k_parallel_en_batch1 = []
......@@ -169,21 +169,21 @@ _needlebench_8k_parallel_batch15 = _needlebench_8k_parallel_en_batch15 + _needle
_needlebench_8k_parallel_batch20 = _needlebench_8k_parallel_en_batch20 + _needlebench_8k_parallel_zh_batch20
needlebench_summary_groups = [
{'name': 'parallel_version_batch1', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_batch1]},
{'name': 'parallel_version_zh_batch1', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_zh_batch1]},
{'name': 'parallel_version_en_batch1', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_en_batch1]},
{'name': 'parallel_version_batch5', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_batch5]},
{'name': 'parallel_version_zh_batch5', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_zh_batch5]},
{'name': 'parallel_version_en_batch5', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_en_batch5]},
{'name': 'parallel_version_batch10', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_batch10]},
{'name': 'parallel_version_zh_batch10', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_zh_batch10]},
{'name': 'parallel_version_en_batch10', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_en_batch10]},
{'name': 'parallel_version_batch15', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_batch15]},
{'name': 'parallel_version_zh_batch15', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_zh_batch15]},
{'name': 'parallel_version_en_batch15', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_en_batch15]},
{'name': 'parallel_version_batch20', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_batch20]},
{'name': 'parallel_version_zh_batch20', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_zh_batch20]},
{'name': 'parallel_version_en_batch20', 'subsets': [[_dataset, "average_score"] for _dataset in _needlebench_8k_parallel_en_batch20]},
{'name': 'parallel_version_batch1', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_batch1]},
{'name': 'parallel_version_zh_batch1', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_zh_batch1]},
{'name': 'parallel_version_en_batch1', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_en_batch1]},
{'name': 'parallel_version_batch5', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_batch5]},
{'name': 'parallel_version_zh_batch5', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_zh_batch5]},
{'name': 'parallel_version_en_batch5', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_en_batch5]},
{'name': 'parallel_version_batch10', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_batch10]},
{'name': 'parallel_version_zh_batch10', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_zh_batch10]},
{'name': 'parallel_version_en_batch10', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_en_batch10]},
{'name': 'parallel_version_batch15', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_batch15]},
{'name': 'parallel_version_zh_batch15', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_zh_batch15]},
{'name': 'parallel_version_en_batch15', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_en_batch15]},
{'name': 'parallel_version_batch20', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_batch20]},
{'name': 'parallel_version_zh_batch20', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_zh_batch20]},
{'name': 'parallel_version_en_batch20', 'subsets': [[_dataset, 'average_score'] for _dataset in _needlebench_8k_parallel_en_batch20]},
]
needlebench_8k_batch_overall_summarizer = dict(
......@@ -209,21 +209,21 @@ needlebench_8k_batch_overall_summarizer = dict(
)
needlebench_summary_groups = [
{'name': 'parallel_version_batch1', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_batch1]},
{'name': 'parallel_version_zh_batch1', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_zh_batch1]},
{'name': 'parallel_version_en_batch1', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_en_batch1]},
{'name': 'parallel_version_batch5', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_batch5]},
{'name': 'parallel_version_zh_batch5', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_zh_batch5]},
{'name': 'parallel_version_en_batch5', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_en_batch5]},
{'name': 'parallel_version_batch10', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_batch10]},
{'name': 'parallel_version_zh_batch10', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_zh_batch10]},
{'name': 'parallel_version_en_batch10', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_en_batch10]},
{'name': 'parallel_version_batch15', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_batch15]},
{'name': 'parallel_version_zh_batch15', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_zh_batch15]},
{'name': 'parallel_version_en_batch15', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_en_batch15]},
{'name': 'parallel_version_batch20', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_batch20]},
{'name': 'parallel_version_zh_batch20', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_zh_batch20]},
{'name': 'parallel_version_en_batch20', 'subsets': [[_dataset, "Depth0"] for _dataset in _needlebench_8k_parallel_en_batch20]},
{'name': 'parallel_version_batch1', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_batch1]},
{'name': 'parallel_version_zh_batch1', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_zh_batch1]},
{'name': 'parallel_version_en_batch1', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_en_batch1]},
{'name': 'parallel_version_batch5', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_batch5]},
{'name': 'parallel_version_zh_batch5', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_zh_batch5]},
{'name': 'parallel_version_en_batch5', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_en_batch5]},
{'name': 'parallel_version_batch10', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_batch10]},
{'name': 'parallel_version_zh_batch10', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_zh_batch10]},
{'name': 'parallel_version_en_batch10', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_en_batch10]},
{'name': 'parallel_version_batch15', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_batch15]},
{'name': 'parallel_version_zh_batch15', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_zh_batch15]},
{'name': 'parallel_version_en_batch15', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_en_batch15]},
{'name': 'parallel_version_batch20', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_batch20]},
{'name': 'parallel_version_zh_batch20', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_zh_batch20]},
{'name': 'parallel_version_en_batch20', 'subsets': [[_dataset, 'Depth0'] for _dataset in _needlebench_8k_parallel_en_batch20]},
]
needlebench_8k_batch_depth0_summarizer = dict(
......
......@@ -32,5 +32,5 @@ summarizer = dict(
['plugin_eval-review_str_v1_zh', 'review_quality'],
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith("_summary_groups")], [])
[v for k, v in locals().items() if k.endswith('_summary_groups')], [])
)
......@@ -15,8 +15,8 @@ summarizer = dict(
dataset_abbrs = [
'--- Exam ---',
'mmlu',
"ceval",
"bbh",
'ceval',
'bbh',
'--- ChineseUniversal ---',
'CMRC_dev',
'DRCD_dev',
......@@ -57,5 +57,5 @@ summarizer = dict(
'nq',
'triviaqa',
],
summary_groups=sum([v for k, v in locals().items() if k.endswith("_summary_groups")], []),
summary_groups=sum([v for k, v in locals().items() if k.endswith('_summary_groups')], []),
)
......@@ -32,5 +32,5 @@ summarizer = dict(
['teval-review_str_v1_zh', 'review_quality'],
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith("_summary_groups")], [])
[v for k, v in locals().items() if k.endswith('_summary_groups')], [])
)
......@@ -26,5 +26,5 @@ summarizer = dict(
['sanitized_mbpp', 'score'],
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith("_summary_groups")], []),
[v for k, v in locals().items() if k.endswith('_summary_groups')], []),
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment