Unverified Commit aa2dd2b5 authored by Fengzhe Zhou's avatar Fengzhe Zhou Committed by GitHub
Browse files

[Format] Add config lints (#892)

parent 3dbba119
...@@ -6,20 +6,20 @@ from opencompass.datasets import winograndeDataset_V2 ...@@ -6,20 +6,20 @@ from opencompass.datasets import winograndeDataset_V2
from opencompass.utils.text_postprocessors import first_option_postprocess from opencompass.utils.text_postprocessors import first_option_postprocess
winogrande_reader_cfg = dict( winogrande_reader_cfg = dict(
input_columns=["opt1", "opt2"], input_columns=['opt1', 'opt2'],
output_column="answer", output_column='answer',
) )
winogrande_eval_cfg = dict( winogrande_eval_cfg = dict(
evaluator=dict(type=AccEvaluator), evaluator=dict(type=AccEvaluator),
pred_role="BOT", pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='AB'), pred_postprocessor=dict(type=first_option_postprocess, options='AB'),
) )
_winogrande_prompt = dict( _winogrande_prompt = dict(
prompt_1="Which of the following is a good sentence:\nA. {opt1}\nB. {opt2}\nAnswer:", prompt_1='Which of the following is a good sentence:\nA. {opt1}\nB. {opt2}\nAnswer:',
prompt_2="Which is a good sentence out of the following:\nA. {opt1}\nB. {opt2}\nAnswer:", prompt_2='Which is a good sentence out of the following:\nA. {opt1}\nB. {opt2}\nAnswer:',
prompt_3="Can you identify a good sentence from the following:\nA. {opt1}\nB. {opt2}\nAnswer:", prompt_3='Can you identify a good sentence from the following:\nA. {opt1}\nB. {opt2}\nAnswer:',
) )
winogrande_datasets = [] winogrande_datasets = []
...@@ -28,14 +28,14 @@ for _choice in _winogrande_prompt: ...@@ -28,14 +28,14 @@ for _choice in _winogrande_prompt:
dict( dict(
abbr='winogrande_'+_choice, abbr='winogrande_'+_choice,
type=winograndeDataset_V2, type=winograndeDataset_V2,
path="./data/winogrande", path='./data/winogrande',
reader_cfg=winogrande_reader_cfg, reader_cfg=winogrande_reader_cfg,
infer_cfg=dict( infer_cfg=dict(
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
template=dict(round=[ template=dict(round=[
dict( dict(
role="HUMAN", role='HUMAN',
prompt=_winogrande_prompt[_choice] prompt=_winogrande_prompt[_choice]
), ),
]), ]),
...@@ -46,4 +46,4 @@ for _choice in _winogrande_prompt: ...@@ -46,4 +46,4 @@ for _choice in _winogrande_prompt:
eval_cfg=winogrande_eval_cfg), eval_cfg=winogrande_eval_cfg),
) )
del _choice del _choice
\ No newline at end of file
...@@ -13,8 +13,8 @@ winogrande_infer_cfg = dict( ...@@ -13,8 +13,8 @@ winogrande_infer_cfg = dict(
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
template={ template={
1: "{opt1}", 1: '{opt1}',
2: "{opt2}", 2: '{opt2}',
} }
), ),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
......
...@@ -18,7 +18,7 @@ winogrande_infer_cfg = dict( ...@@ -18,7 +18,7 @@ winogrande_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template={ template={
i: dict(round=[ i: dict(round=[
dict(role="HUMAN", prompt=f"Good sentence: {{opt{i}}}"), dict(role='HUMAN', prompt=f'Good sentence: {{opt{i}}}'),
]) ])
for i in range(1, 3) for i in range(1, 3)
}), }),
......
...@@ -17,8 +17,8 @@ winogrande_infer_cfg = dict( ...@@ -17,8 +17,8 @@ winogrande_infer_cfg = dict(
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
template={ template={
1: "Good sentence: {opt1}", 1: 'Good sentence: {opt1}',
2: "Good sentence: {opt2}", 2: 'Good sentence: {opt2}',
}), }),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=PPLInferencer)) inferencer=dict(type=PPLInferencer))
......
...@@ -6,44 +6,44 @@ from opencompass.utils.text_postprocessors import first_capital_postprocess ...@@ -6,44 +6,44 @@ from opencompass.utils.text_postprocessors import first_capital_postprocess
xiezhi_datasets = [] xiezhi_datasets = []
for split in ["spec_eng", "spec_chn", "inter_eng", "inter_chn"]: for split in ['spec_eng', 'spec_chn', 'inter_eng', 'inter_chn']:
if 'chn' in split: if 'chn' in split:
q_hint, a_hint = "题目", "答案" q_hint, a_hint = '题目', '答案'
else: else:
q_hint, a_hint = "Question", "Answer" q_hint, a_hint = 'Question', 'Answer'
xiezhi_reader_cfg = dict( xiezhi_reader_cfg = dict(
input_columns=["question", "A", "B", "C", "D", "labels"], input_columns=['question', 'A', 'B', 'C', 'D', 'labels'],
output_column="answer", output_column='answer',
train_split="train", train_split='train',
test_split='test', test_split='test',
) )
xiezhi_infer_cfg = dict( xiezhi_infer_cfg = dict(
ice_template=dict( ice_template=dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
begin="</E>", begin='</E>',
round=[ round=[
dict(role="HUMAN", prompt=f"{q_hint}: {{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n{a_hint}: "), dict(role='HUMAN', prompt=f'{q_hint}: {{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}\n{a_hint}: '),
dict(role="BOT", prompt="{answer}"), dict(role='BOT', prompt='{answer}'),
] ]
), ),
ice_token="</E>", ice_token='</E>',
), ),
retriever=dict(type=XiezhiRetriever, ice_num=3), retriever=dict(type=XiezhiRetriever, ice_num=3),
inferencer=dict(type=GenInferencer), inferencer=dict(type=GenInferencer),
) )
xiezhi_eval_cfg = dict(evaluator=dict(type=AccEvaluator), xiezhi_eval_cfg = dict(evaluator=dict(type=AccEvaluator),
pred_role="BOT", pred_role='BOT',
pred_postprocessor=dict(type=first_capital_postprocess)) pred_postprocessor=dict(type=first_capital_postprocess))
xiezhi_datasets.append( xiezhi_datasets.append(
dict( dict(
type=XiezhiDataset, type=XiezhiDataset,
abbr=f"xiezhi-{split}", abbr=f'xiezhi-{split}',
path="./data/xiezhi/", path='./data/xiezhi/',
name="xiezhi_" + split, name='xiezhi_' + split,
reader_cfg=xiezhi_reader_cfg, reader_cfg=xiezhi_reader_cfg,
infer_cfg=xiezhi_infer_cfg, infer_cfg=xiezhi_infer_cfg,
eval_cfg=xiezhi_eval_cfg, eval_cfg=xiezhi_eval_cfg,
......
...@@ -5,16 +5,16 @@ from opencompass.datasets import XiezhiDataset, XiezhiRetriever ...@@ -5,16 +5,16 @@ from opencompass.datasets import XiezhiDataset, XiezhiRetriever
xiezhi_datasets = [] xiezhi_datasets = []
for split in ["spec_eng", "spec_chn", "inter_eng", "inter_chn"]: for split in ['spec_eng', 'spec_chn', 'inter_eng', 'inter_chn']:
if 'chn' in split: if 'chn' in split:
q_hint, a_hint = "题目", "答案" q_hint, a_hint = '题目', '答案'
else: else:
q_hint, a_hint = "Question", "Answer" q_hint, a_hint = 'Question', 'Answer'
xiezhi_reader_cfg = dict( xiezhi_reader_cfg = dict(
input_columns=["question", "A", "B", "C", "D", "labels"], input_columns=['question', 'A', 'B', 'C', 'D', 'labels'],
output_column="answer", output_column='answer',
train_split="train", train_split='train',
test_split='test', test_split='test',
) )
xiezhi_infer_cfg = dict( xiezhi_infer_cfg = dict(
...@@ -22,14 +22,14 @@ for split in ["spec_eng", "spec_chn", "inter_eng", "inter_chn"]: ...@@ -22,14 +22,14 @@ for split in ["spec_eng", "spec_chn", "inter_eng", "inter_chn"]:
type=PromptTemplate, type=PromptTemplate,
template={ template={
answer: dict( answer: dict(
begin="</E>", begin='</E>',
round=[ round=[
dict(role="HUMAN", prompt=f"{q_hint}: {{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}"), dict(role='HUMAN', prompt=f'{q_hint}: {{question}}\nA. {{A}}\nB. {{B}}\nC. {{C}}\nD. {{D}}'),
dict(role="BOT", prompt=f"{a_hint}: {answer}"), dict(role='BOT', prompt=f'{a_hint}: {answer}'),
]) ])
for answer in ["A", "B", "C", "D"] for answer in ['A', 'B', 'C', 'D']
}, },
ice_token="</E>", ice_token='</E>',
), ),
retriever=dict(type=XiezhiRetriever, ice_num=3), retriever=dict(type=XiezhiRetriever, ice_num=3),
inferencer=dict(type=PPLInferencer), inferencer=dict(type=PPLInferencer),
...@@ -40,9 +40,9 @@ for split in ["spec_eng", "spec_chn", "inter_eng", "inter_chn"]: ...@@ -40,9 +40,9 @@ for split in ["spec_eng", "spec_chn", "inter_eng", "inter_chn"]:
xiezhi_datasets.append( xiezhi_datasets.append(
dict( dict(
type=XiezhiDataset, type=XiezhiDataset,
abbr=f"xiezhi-{split}", abbr=f'xiezhi-{split}',
path="./data/xiezhi/", path='./data/xiezhi/',
name="xiezhi_" + split, name='xiezhi_' + split,
reader_cfg=xiezhi_reader_cfg, reader_cfg=xiezhi_reader_cfg,
infer_cfg=xiezhi_infer_cfg, infer_cfg=xiezhi_infer_cfg,
eval_cfg=xiezhi_eval_cfg, eval_cfg=xiezhi_eval_cfg,
......
...@@ -12,7 +12,7 @@ z_bench_reader_cfg = dict( ...@@ -12,7 +12,7 @@ z_bench_reader_cfg = dict(
z_bench_infer_cfg = dict( z_bench_infer_cfg = dict(
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
template=dict(round=[dict(role="HUMAN", prompt="{text}")]), template=dict(round=[dict(role='HUMAN', prompt='{text}')]),
), ),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)) inferencer=dict(type=GenInferencer))
......
...@@ -8,7 +8,7 @@ with read_base(): ...@@ -8,7 +8,7 @@ with read_base():
from .datasets.TheoremQA.TheoremQA_5shot_gen_6f0af8 import TheoremQA_datasets as datasets from .datasets.TheoremQA.TheoremQA_5shot_gen_6f0af8 import TheoremQA_datasets as datasets
models = sum([v for k, v in locals().items() if k.endswith("_model")], []) models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
work_dir = 'outputs/TheoremQA-5shot' work_dir = 'outputs/TheoremQA-5shot'
......
...@@ -6,11 +6,11 @@ with read_base(): ...@@ -6,11 +6,11 @@ with read_base():
from .summarizers.lveval import summarizer from .summarizers.lveval import summarizer
models[0][ models[0][
"path" 'path'
] = "/path/to/your/huggingface_models/BlueLM-7B-Chat-32K" ] = '/path/to/your/huggingface_models/BlueLM-7B-Chat-32K'
models[0][ models[0][
"tokenizer_path" 'tokenizer_path'
] = "/path/to/your/huggingface_models/BlueLM-7B-Chat-32K" ] = '/path/to/your/huggingface_models/BlueLM-7B-Chat-32K'
models[0]["max_seq_len"] = 32768 models[0]['max_seq_len'] = 32768
models[0]["generation_kwargs"] = dict(do_sample=False) models[0]['generation_kwargs'] = dict(do_sample=False)
models[0]["mode"] = "mid" # truncate in the middle models[0]['mode'] = 'mid' # truncate in the middle
...@@ -28,9 +28,9 @@ def solution(): ...@@ -28,9 +28,9 @@ def solution():
protocol = dict( protocol = dict(
type=ReActProtocol, type=ReActProtocol,
action=dict(role="ACTION", begin="Tool:", end="\n"), action=dict(role='ACTION', begin='Tool:', end='\n'),
action_input=dict(role="ARGS", begin="Tool Input:", end="\n"), action_input=dict(role='ARGS', begin='Tool Input:', end='\n'),
finish=dict(role="FINISH", begin="FinalAnswer:", end="\n"), finish=dict(role='FINISH', begin='FinalAnswer:', end='\n'),
call_protocol=system_prompt, call_protocol=system_prompt,
) )
...@@ -61,4 +61,4 @@ infer = dict( ...@@ -61,4 +61,4 @@ infer = dict(
type=LocalRunner, type=LocalRunner,
max_num_workers=16, max_num_workers=16,
task=dict(type=OpenICLInferTask)), task=dict(type=OpenICLInferTask)),
) )
\ No newline at end of file
...@@ -34,4 +34,4 @@ infer = dict( ...@@ -34,4 +34,4 @@ infer = dict(
type=LocalRunner, type=LocalRunner,
max_num_workers=16, max_num_workers=16,
task=dict(type=OpenICLInferTask)), task=dict(type=OpenICLInferTask)),
) )
\ No newline at end of file
...@@ -90,4 +90,4 @@ infer = dict( ...@@ -90,4 +90,4 @@ infer = dict(
type=LocalRunner, type=LocalRunner,
max_num_workers=16, max_num_workers=16,
task=dict(type=OpenICLInferTask)), task=dict(type=OpenICLInferTask)),
) )
\ No newline at end of file
...@@ -93,4 +93,4 @@ infer = dict( ...@@ -93,4 +93,4 @@ infer = dict(
type=LocalRunner, type=LocalRunner,
max_num_workers=16, max_num_workers=16,
task=dict(type=OpenICLInferTask)), task=dict(type=OpenICLInferTask)),
) )
\ No newline at end of file
...@@ -10,7 +10,7 @@ from lagent.agents.react import ReActProtocol ...@@ -10,7 +10,7 @@ from lagent.agents.react import ReActProtocol
with read_base(): with read_base():
from .datasets.CIBench.CIBench_gen_eb42f9 import cibench_datasets as datasets from .datasets.CIBench.CIBench_gen_eb42f9 import cibench_datasets as datasets
FORCE_STOP_PROMPT_EN = """You should directly give results based on history information.""" FORCE_STOP_PROMPT_EN = """You should directly give results based on history information."""
FEWSHOT_INSTRUCTION = """\ FEWSHOT_INSTRUCTION = """\
...@@ -75,6 +75,6 @@ models = [ ...@@ -75,6 +75,6 @@ models = [
infer = dict( infer = dict(
partitioner=dict(type=SizePartitioner, max_task_size=50, gen_task_coef=1), partitioner=dict(type=SizePartitioner, max_task_size=50, gen_task_coef=1),
runner=dict( runner=dict(
type=SlurmRunner, max_num_workers=8, retry=2, type=SlurmRunner, max_num_workers=8, retry=2,
task=dict(type=OpenICLInferTask)), task=dict(type=OpenICLInferTask)),
) )
...@@ -41,15 +41,15 @@ for ds, t in [ ...@@ -41,15 +41,15 @@ for ds, t in [
d['circular_patterns'] = 'circular' d['circular_patterns'] = 'circular'
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], []) datasets = sum([v for k, v in locals().items() if k.endswith('_datasets') or k == 'datasets'], [])
models = sum([v for k, v in locals().items() if k.endswith("_model")], []) models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
# config summarizer # config summarizer
other_summary_groups = [ other_summary_groups = [
{'name': 'average', {'name': 'average',
'subsets': ['ceval', 'mmlu', 'cmmlu', 'hellaswag', 'ARC-e', 'ARC-c', 'commonsense_qa', 'openbookqa_fact', 'race-middle', 'race-high']}, 'subsets': ['ceval', 'mmlu', 'cmmlu', 'hellaswag', 'ARC-e', 'ARC-c', 'commonsense_qa', 'openbookqa_fact', 'race-middle', 'race-high']},
] ]
origin_summary_groups = sum([v for k, v in locals().items() if k.endswith("_summary_groups")], []) origin_summary_groups = sum([v for k, v in locals().items() if k.endswith('_summary_groups')], [])
new_summary_groups = [] new_summary_groups = []
for item in origin_summary_groups: for item in origin_summary_groups:
new_summary_groups.append( new_summary_groups.append(
......
...@@ -21,7 +21,7 @@ models = [ ...@@ -21,7 +21,7 @@ models = [
dict( dict(
type=HuggingFaceCausalLM, type=HuggingFaceCausalLM,
abbr='CodeLlama-7b-Python', abbr='CodeLlama-7b-Python',
path="codellama/CodeLlama-7b-Python-hf", path='codellama/CodeLlama-7b-Python-hf',
tokenizer_path='codellama/CodeLlama-7b-Python-hf', tokenizer_path='codellama/CodeLlama-7b-Python-hf',
tokenizer_kwargs=dict( tokenizer_kwargs=dict(
padding_side='left', padding_side='left',
......
...@@ -19,26 +19,26 @@ datasets += sanitized_mbpp_datasets ...@@ -19,26 +19,26 @@ datasets += sanitized_mbpp_datasets
_meta_template = dict( _meta_template = dict(
round=[ round=[
dict(role="HUMAN", begin="<|User|>:", end="\n"), dict(role='HUMAN', begin='<|User|>:', end='\n'),
dict(role="BOT", begin="<|Bot|>:", end="<eoa>\n", generate=True), dict(role='BOT', begin='<|Bot|>:', end='<eoa>\n', generate=True),
], ],
) )
models = [ models = [
dict( dict(
abbr="internlm-chat-7b-hf-v11", abbr='internlm-chat-7b-hf-v11',
type=HuggingFaceCausalLM, type=HuggingFaceCausalLM,
path="internlm/internlm-chat-7b-v1_1", path='internlm/internlm-chat-7b-v1_1',
tokenizer_path="internlm/internlm-chat-7b-v1_1", tokenizer_path='internlm/internlm-chat-7b-v1_1',
tokenizer_kwargs=dict( tokenizer_kwargs=dict(
padding_side="left", padding_side='left',
truncation_side="left", truncation_side='left',
use_fast=False, use_fast=False,
trust_remote_code=True, trust_remote_code=True,
), ),
max_seq_len=2048, max_seq_len=2048,
meta_template=_meta_template, meta_template=_meta_template,
model_kwargs=dict(trust_remote_code=True, device_map="auto"), model_kwargs=dict(trust_remote_code=True, device_map='auto'),
generation_kwargs=dict( generation_kwargs=dict(
do_sample=True, do_sample=True,
top_p=0.95, top_p=0.95,
......
...@@ -30,7 +30,7 @@ models = [ ...@@ -30,7 +30,7 @@ models = [
type=CodeAgent, type=CodeAgent,
llm=dict( llm=dict(
type=HuggingFaceCausalLM, type=HuggingFaceCausalLM,
path="WizardLM/WizardCoder-Python-13B-V1.0", path='WizardLM/WizardCoder-Python-13B-V1.0',
tokenizer_path='WizardLM/WizardCoder-Python-13B-V1.0', tokenizer_path='WizardLM/WizardCoder-Python-13B-V1.0',
tokenizer_kwargs=dict( tokenizer_kwargs=dict(
padding_side='left', padding_side='left',
......
...@@ -41,4 +41,4 @@ infer = dict( ...@@ -41,4 +41,4 @@ infer = dict(
runner=dict( runner=dict(
type=LocalRunner, max_num_workers=16, type=LocalRunner, max_num_workers=16,
task=dict(type=OpenICLInferTask)), task=dict(type=OpenICLInferTask)),
) )
\ No newline at end of file
...@@ -14,5 +14,5 @@ with read_base(): ...@@ -14,5 +14,5 @@ with read_base():
from .models.hf_llama.hf_llama2_7b import models from .models.hf_llama.hf_llama2_7b import models
from .summarizers.example import summarizer from .summarizers.example import summarizer
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], []) datasets = sum([v for k, v in locals().items() if k.endswith('_datasets') or k == 'datasets'], [])
work_dir = './outputs/llama2/' work_dir = './outputs/llama2/'
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment