Unverified Commit aa2dd2b5 authored by Fengzhe Zhou's avatar Fengzhe Zhou Committed by GitHub
Browse files

[Format] Add config lints (#892)

parent 3dbba119
...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num): ...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num):
if num == 1: if num == 1:
return [start] return [start]
elif num < 1: elif num < 1:
raise ValueError("num must be at least 1.") raise ValueError('num must be at least 1.')
step = (end - start) / (num - 1) step = (end - start) / (num - 1)
return [start + step * i for i in range(num)] return [start + step * i for i in range(num)]
...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict( ...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict(
context_lengths = list(range(1000, 5000, 1000)) context_lengths = list(range(1000, 5000, 1000))
document_depth_percent_intervals = 20 document_depth_percent_intervals = 20
document_depth_percent_interval_type = "linear" document_depth_percent_interval_type = 'linear'
# ----------English Version---------- # ----------English Version----------
base_path = './data/needlebench' base_path = './data/needlebench'
......
...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num): ...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num):
if num == 1: if num == 1:
return [start] return [start]
elif num < 1: elif num < 1:
raise ValueError("num must be at least 1.") raise ValueError('num must be at least 1.')
step = (end - start) / (num - 1) step = (end - start) / (num - 1)
return [start + step * i for i in range(num)] return [start + step * i for i in range(num)]
...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict( ...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict(
context_lengths = list(range(1000, 5000, 1000)) context_lengths = list(range(1000, 5000, 1000))
document_depth_percent_intervals = 20 document_depth_percent_intervals = 20
document_depth_percent_interval_type = "linear" document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench' base_path = './data/needlebench'
file_list = ['PaulGrahamEssays.jsonl'] file_list = ['PaulGrahamEssays.jsonl']
......
...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num): ...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num):
if num == 1: if num == 1:
return [start] return [start]
elif num < 1: elif num < 1:
raise ValueError("num must be at least 1.") raise ValueError('num must be at least 1.')
step = (end - start) / (num - 1) step = (end - start) / (num - 1)
return [start + step * i for i in range(num)] return [start + step * i for i in range(num)]
...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict( ...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict(
context_lengths = list(range(1000, 5000, 1000)) context_lengths = list(range(1000, 5000, 1000))
document_depth_percent_intervals = 20 document_depth_percent_intervals = 20
document_depth_percent_interval_type = "linear" document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench' base_path = './data/needlebench'
file_list = ['PaulGrahamEssays.jsonl'] file_list = ['PaulGrahamEssays.jsonl']
......
...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num): ...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num):
if num == 1: if num == 1:
return [start] return [start]
elif num < 1: elif num < 1:
raise ValueError("num must be at least 1.") raise ValueError('num must be at least 1.')
step = (end - start) / (num - 1) step = (end - start) / (num - 1)
return [start + step * i for i in range(num)] return [start + step * i for i in range(num)]
...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict( ...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict(
context_lengths = list(range(5000, 9000, 1000)) context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals = 20 document_depth_percent_intervals = 20
document_depth_percent_interval_type = "linear" document_depth_percent_interval_type = 'linear'
# ----------English Version---------- # ----------English Version----------
base_path = './data/needlebench' base_path = './data/needlebench'
......
...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num): ...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num):
if num == 1: if num == 1:
return [start] return [start]
elif num < 1: elif num < 1:
raise ValueError("num must be at least 1.") raise ValueError('num must be at least 1.')
step = (end - start) / (num - 1) step = (end - start) / (num - 1)
return [start + step * i for i in range(num)] return [start + step * i for i in range(num)]
...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict( ...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict(
context_lengths = list(range(5000, 9000, 1000)) context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals = 20 document_depth_percent_intervals = 20
document_depth_percent_interval_type = "linear" document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench' base_path = './data/needlebench'
file_list = ['PaulGrahamEssays.jsonl'] file_list = ['PaulGrahamEssays.jsonl']
......
...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num): ...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num):
if num == 1: if num == 1:
return [start] return [start]
elif num < 1: elif num < 1:
raise ValueError("num must be at least 1.") raise ValueError('num must be at least 1.')
step = (end - start) / (num - 1) step = (end - start) / (num - 1)
return [start + step * i for i in range(num)] return [start + step * i for i in range(num)]
...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict( ...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict(
context_lengths = list(range(5000, 9000, 1000)) context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals_list = [1, 5, 10, 15, 20] document_depth_percent_intervals_list = [1, 5, 10, 15, 20]
document_depth_percent_interval_type = "linear" document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench' base_path = './data/needlebench'
file_list = ['PaulGrahamEssays.jsonl'] file_list = ['PaulGrahamEssays.jsonl']
......
...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num): ...@@ -16,7 +16,7 @@ def generate_linear_space(start, end, num):
if num == 1: if num == 1:
return [start] return [start]
elif num < 1: elif num < 1:
raise ValueError("num must be at least 1.") raise ValueError('num must be at least 1.')
step = (end - start) / (num - 1) step = (end - start) / (num - 1)
return [start + step * i for i in range(num)] return [start + step * i for i in range(num)]
...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict( ...@@ -54,7 +54,7 @@ needlebench_eval_cfg = dict(
context_lengths = list(range(5000, 9000, 1000)) context_lengths = list(range(5000, 9000, 1000))
document_depth_percent_intervals = 20 document_depth_percent_intervals = 20
document_depth_percent_interval_type = "linear" document_depth_percent_interval_type = 'linear'
base_path = './data/needlebench' base_path = './data/needlebench'
file_list = ['PaulGrahamEssays.jsonl'] file_list = ['PaulGrahamEssays.jsonl']
......
...@@ -36,19 +36,19 @@ for k in [0, 1, 5]: ...@@ -36,19 +36,19 @@ for k in [0, 1, 5]:
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
begin="</E>", begin='</E>',
round=[ round=[
dict(role='HUMAN', prompt='Answer the question, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'), dict(role='HUMAN', prompt='Answer the question, your answer should be as simple as possible, start your answer with the prompt \'The answer is \'.\nQ: {question}?'),
dict(role='BOT', prompt='A:'), dict(role='BOT', prompt='A:'),
] ]
), ),
ice_token="</E>", ice_token='</E>',
), ),
retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))), retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))),
inferencer=dict(type=GenInferencer, max_out_len=50), inferencer=dict(type=GenInferencer, max_out_len=50),
) )
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT") nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role='BOT')
nq_datasets.append( nq_datasets.append(
dict( dict(
......
...@@ -9,12 +9,12 @@ nq_reader_cfg = dict( ...@@ -9,12 +9,12 @@ nq_reader_cfg = dict(
nq_infer_cfg = dict( nq_infer_cfg = dict(
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
template="Answer these questions:\nQ: {question}?\nA:{answer}", template='Answer these questions:\nQ: {question}?\nA:{answer}',
), ),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)) inferencer=dict(type=GenInferencer))
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT") nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role='BOT')
nq_datasets = [ nq_datasets = [
dict( dict(
......
...@@ -16,7 +16,7 @@ nq_infer_cfg = dict( ...@@ -16,7 +16,7 @@ nq_infer_cfg = dict(
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)) inferencer=dict(type=GenInferencer))
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT") nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role='BOT')
nq_datasets = [ nq_datasets = [
dict( dict(
......
...@@ -17,7 +17,7 @@ nq_infer_cfg = dict( ...@@ -17,7 +17,7 @@ nq_infer_cfg = dict(
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)) inferencer=dict(type=GenInferencer))
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT") nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role='BOT')
nq_datasets = [ nq_datasets = [
dict( dict(
......
...@@ -17,7 +17,7 @@ nq_infer_cfg = dict( ...@@ -17,7 +17,7 @@ nq_infer_cfg = dict(
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
inferencer=dict(type=GenInferencer)) inferencer=dict(type=GenInferencer))
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT") nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role='BOT')
nq_datasets = [ nq_datasets = [
dict( dict(
......
...@@ -36,19 +36,19 @@ for k in [1]: ...@@ -36,19 +36,19 @@ for k in [1]:
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
begin="</E>", begin='</E>',
round=[ round=[
dict(role='HUMAN', prompt='Q: {question}?'), dict(role='HUMAN', prompt='Q: {question}?'),
dict(role='BOT', prompt='A:'), dict(role='BOT', prompt='A:'),
] ]
), ),
ice_token="</E>", ice_token='</E>',
), ),
retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))), retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))),
inferencer=dict(type=GenInferencer, max_out_len=50, stopping_criteria=["Q:", "\n"]), inferencer=dict(type=GenInferencer, max_out_len=50, stopping_criteria=['Q:', '\n']),
) )
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT") nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role='BOT')
nq_datasets.append( nq_datasets.append(
dict( dict(
......
...@@ -26,13 +26,13 @@ for k in [1]: ...@@ -26,13 +26,13 @@ for k in [1]:
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
template='</E>Q: {question}\nA: ', template='</E>Q: {question}\nA: ',
ice_token="</E>", ice_token='</E>',
), ),
retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))), retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))),
inferencer=dict(type=GenInferencer, max_out_len=50, stopping_criteria=["Q:", "\n"]), inferencer=dict(type=GenInferencer, max_out_len=50, stopping_criteria=['Q:', '\n']),
) )
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT") nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role='BOT')
nq_datasets.append( nq_datasets.append(
dict( dict(
......
...@@ -36,19 +36,19 @@ for k in [0, 1, 5, 25]: ...@@ -36,19 +36,19 @@ for k in [0, 1, 5, 25]:
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
begin="</E>", begin='</E>',
round=[ round=[
dict(role='HUMAN', prompt='Q: {question}?'), dict(role='HUMAN', prompt='Q: {question}?'),
dict(role='BOT', prompt='A:'), dict(role='BOT', prompt='A:'),
] ]
), ),
ice_token="</E>", ice_token='</E>',
), ),
retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))), retriever=dict(type=FixKRetriever, fix_id_list=list(range(k))),
inferencer=dict(type=GenInferencer, max_out_len=50, stopping_criteria=["Q:", "\n"]), inferencer=dict(type=GenInferencer, max_out_len=50, stopping_criteria=['Q:', '\n']),
) )
nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role="BOT") nq_eval_cfg = dict(evaluator=dict(type=NQEvaluator), pred_role='BOT')
nq_datasets.append( nq_datasets.append(
dict( dict(
......
...@@ -4,7 +4,7 @@ from opencompass.openicl.icl_inferencer import GenInferencer ...@@ -4,7 +4,7 @@ from opencompass.openicl.icl_inferencer import GenInferencer
from opencompass.datasets import NaturalQuestionDataset_CN, NQEvaluator_CN from opencompass.datasets import NaturalQuestionDataset_CN, NQEvaluator_CN
nqcn_reader_cfg = dict( nqcn_reader_cfg = dict(
input_columns=["question"], output_column="answer", train_split="test" input_columns=['question'], output_column='answer', train_split='test'
) )
nqcn_infer_cfg = dict( nqcn_infer_cfg = dict(
...@@ -12,7 +12,7 @@ nqcn_infer_cfg = dict( ...@@ -12,7 +12,7 @@ nqcn_infer_cfg = dict(
type=PromptTemplate, type=PromptTemplate,
template=dict( template=dict(
round=[ round=[
dict(role="HUMAN", prompt="问题: {question}?\n答案是:"), dict(role='HUMAN', prompt='问题: {question}?\n答案是:'),
], ],
), ),
), ),
...@@ -20,13 +20,13 @@ nqcn_infer_cfg = dict( ...@@ -20,13 +20,13 @@ nqcn_infer_cfg = dict(
inferencer=dict(type=GenInferencer), inferencer=dict(type=GenInferencer),
) )
nqcn_eval_cfg = dict(evaluator=dict(type=NQEvaluator_CN), pred_role="BOT") nqcn_eval_cfg = dict(evaluator=dict(type=NQEvaluator_CN), pred_role='BOT')
nqcn_datasets = [ nqcn_datasets = [
dict( dict(
abbr="nq_cn", abbr='nq_cn',
type=NaturalQuestionDataset_CN, type=NaturalQuestionDataset_CN,
path="./data/nq_cn", path='./data/nq_cn',
reader_cfg=nqcn_reader_cfg, reader_cfg=nqcn_reader_cfg,
infer_cfg=nqcn_infer_cfg, infer_cfg=nqcn_infer_cfg,
eval_cfg=nqcn_eval_cfg, eval_cfg=nqcn_eval_cfg,
......
...@@ -6,36 +6,36 @@ from opencompass.datasets import OBQADataset ...@@ -6,36 +6,36 @@ from opencompass.datasets import OBQADataset
from opencompass.utils.text_postprocessors import first_option_postprocess from opencompass.utils.text_postprocessors import first_option_postprocess
_input_columns = [ _input_columns = [
["question_stem", "A", "B", "C", "D"], ['question_stem', 'A', 'B', 'C', 'D'],
["question_stem", "A", "B", "C", "D", "fact1"], ['question_stem', 'A', 'B', 'C', 'D', 'fact1'],
] ]
_template = [ _template = [
dict( dict(
round=[ round=[
dict( dict(
role="HUMAN", role='HUMAN',
prompt= prompt=
"Question: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:" 'Question: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:'
), ),
], ), ], ),
dict( dict(
round=[ round=[
dict( dict(
role="HUMAN", role='HUMAN',
prompt= prompt=
"Given the fact: {fact1}\nQuestion: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:", 'Given the fact: {fact1}\nQuestion: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:',
), ),
], ), ], ),
] ]
obqa_datasets = [ obqa_datasets = [
dict( dict(
abbr="openbookqa", abbr='openbookqa',
type=OBQADataset, type=OBQADataset,
path='./data/openbookqa/Main/test.jsonl', path='./data/openbookqa/Main/test.jsonl',
), ),
dict( dict(
abbr="openbookqa_fact", abbr='openbookqa_fact',
type=OBQADataset, type=OBQADataset,
path='./data/openbookqa/Additional/test_complete.jsonl', path='./data/openbookqa/Additional/test_complete.jsonl',
), ),
...@@ -43,7 +43,7 @@ obqa_datasets = [ ...@@ -43,7 +43,7 @@ obqa_datasets = [
for _i in range(2): for _i in range(2):
obqa_reader_cfg = dict( obqa_reader_cfg = dict(
input_columns=_input_columns[_i], output_column="answerKey") input_columns=_input_columns[_i], output_column='answerKey')
obqa_infer_cfg = dict( obqa_infer_cfg = dict(
prompt_template=dict(type=PromptTemplate, template=_template[_i]), prompt_template=dict(type=PromptTemplate, template=_template[_i]),
retriever=dict(type=ZeroRetriever), retriever=dict(type=ZeroRetriever),
...@@ -51,10 +51,10 @@ for _i in range(2): ...@@ -51,10 +51,10 @@ for _i in range(2):
) )
obqa_eval_cfg = dict( obqa_eval_cfg = dict(
evaluator=dict(type=AccEvaluator), evaluator=dict(type=AccEvaluator),
pred_role="BOT", pred_role='BOT',
pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'), pred_postprocessor=dict(type=first_option_postprocess, options='ABCD'),
) )
obqa_datasets[_i]["reader_cfg"] = obqa_reader_cfg obqa_datasets[_i]['reader_cfg'] = obqa_reader_cfg
obqa_datasets[_i]["infer_cfg"] = obqa_infer_cfg obqa_datasets[_i]['infer_cfg'] = obqa_infer_cfg
obqa_datasets[_i]["eval_cfg"] = obqa_eval_cfg obqa_datasets[_i]['eval_cfg'] = obqa_eval_cfg
...@@ -9,32 +9,32 @@ _input_columns = [ ...@@ -9,32 +9,32 @@ _input_columns = [
['question_stem', 'A', 'B', 'C', 'D', 'fact1'], ['question_stem', 'A', 'B', 'C', 'D', 'fact1'],
] ]
_template = [{ _template = [{
'A': "{question_stem} {A}", 'A': '{question_stem} {A}',
'B': "{question_stem} {B}", 'B': '{question_stem} {B}',
'C': "{question_stem} {C}", 'C': '{question_stem} {C}',
'D': "{question_stem} {D}", 'D': '{question_stem} {D}',
}, { }, {
'A': "Given the fact {fact1}, we know that {question_stem} {A}", 'A': 'Given the fact {fact1}, we know that {question_stem} {A}',
'B': "Given the fact {fact1}, we know that {question_stem} {B}", 'B': 'Given the fact {fact1}, we know that {question_stem} {B}',
'C': "Given the fact {fact1}, we know that {question_stem} {C}", 'C': 'Given the fact {fact1}, we know that {question_stem} {C}',
'D': "Given the fact {fact1}, we know that {question_stem} {D}", 'D': 'Given the fact {fact1}, we know that {question_stem} {D}',
}] }]
obqa_datasets = [ obqa_datasets = [
dict( dict(
abbr="openbookqa", abbr='openbookqa',
type=OBQADataset, type=OBQADataset,
path='./data/openbookqa/Main/test.jsonl', path='./data/openbookqa/Main/test.jsonl',
), ),
dict( dict(
abbr="openbookqa_fact", abbr='openbookqa_fact',
type=OBQADataset, type=OBQADataset,
path='./data/openbookqa/Additional/test_complete.jsonl', path='./data/openbookqa/Additional/test_complete.jsonl',
), ),
] ]
for _i in range(2): for _i in range(2):
obqa_reader_cfg = dict( obqa_reader_cfg = dict(
input_columns=_input_columns[_i], output_column="answerKey") input_columns=_input_columns[_i], output_column='answerKey')
obqa_infer_cfg = dict( obqa_infer_cfg = dict(
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
...@@ -44,6 +44,6 @@ for _i in range(2): ...@@ -44,6 +44,6 @@ for _i in range(2):
) )
obqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator)) obqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator))
obqa_datasets[_i]["reader_cfg"] = obqa_reader_cfg obqa_datasets[_i]['reader_cfg'] = obqa_reader_cfg
obqa_datasets[_i]["infer_cfg"] = obqa_infer_cfg obqa_datasets[_i]['infer_cfg'] = obqa_infer_cfg
obqa_datasets[_i]["eval_cfg"] = obqa_eval_cfg obqa_datasets[_i]['eval_cfg'] = obqa_eval_cfg
...@@ -6,7 +6,7 @@ from opencompass.datasets import OBQADataset_V2 ...@@ -6,7 +6,7 @@ from opencompass.datasets import OBQADataset_V2
obqa_reader_cfg = dict( obqa_reader_cfg = dict(
input_columns=['question_stem', 'A', 'B', 'C', 'D', 'fact1'], input_columns=['question_stem', 'A', 'B', 'C', 'D', 'fact1'],
output_column="answerKey" output_column='answerKey'
) )
obqa_infer_cfg = dict( obqa_infer_cfg = dict(
prompt_template=dict( prompt_template=dict(
...@@ -15,10 +15,10 @@ obqa_infer_cfg = dict( ...@@ -15,10 +15,10 @@ obqa_infer_cfg = dict(
ans: dict( ans: dict(
round=[ round=[
dict( dict(
role="HUMAN", role='HUMAN',
prompt="We know the fact that {fact1}.\nQuestion: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n" prompt='We know the fact that {fact1}.\nQuestion: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\n'
), ),
dict(role="BOT", prompt=f"Answer: {ans}"), dict(role='BOT', prompt=f'Answer: {ans}'),
], ) ], )
for ans in ['A', 'B', 'C', 'D'] for ans in ['A', 'B', 'C', 'D']
} }
......
...@@ -13,11 +13,11 @@ _template = [ ...@@ -13,11 +13,11 @@ _template = [
ans: dict( ans: dict(
round=[ round=[
dict( dict(
role="HUMAN", role='HUMAN',
prompt= prompt=
"Question: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:" 'Question: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:'
), ),
dict(role="BOT", prompt=ans), dict(role='BOT', prompt=ans),
], ) ], )
for ans in ['A', 'B', 'C', 'D'] for ans in ['A', 'B', 'C', 'D']
}, },
...@@ -25,11 +25,11 @@ _template = [ ...@@ -25,11 +25,11 @@ _template = [
ans: dict( ans: dict(
round=[ round=[
dict( dict(
role="HUMAN", role='HUMAN',
prompt= prompt=
"Given the fact: {fact1}\nQuestion: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:" 'Given the fact: {fact1}\nQuestion: {question_stem}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:'
), ),
dict(role="BOT", prompt=ans), dict(role='BOT', prompt=ans),
], ) ], )
for ans in ['A', 'B', 'C', 'D'] for ans in ['A', 'B', 'C', 'D']
} }
...@@ -37,7 +37,7 @@ _template = [ ...@@ -37,7 +37,7 @@ _template = [
obqa_datasets = [ obqa_datasets = [
dict( dict(
abbr="openbookqa", abbr='openbookqa',
type=OBQADataset, type=OBQADataset,
path='./data/openbookqa/Main/test.jsonl', path='./data/openbookqa/Main/test.jsonl',
), ),
...@@ -49,7 +49,7 @@ obqa_datasets = [ ...@@ -49,7 +49,7 @@ obqa_datasets = [
] ]
for _i in range(2): for _i in range(2):
obqa_reader_cfg = dict( obqa_reader_cfg = dict(
input_columns=_input_columns[_i], output_column="answerKey") input_columns=_input_columns[_i], output_column='answerKey')
obqa_infer_cfg = dict( obqa_infer_cfg = dict(
prompt_template=dict( prompt_template=dict(
type=PromptTemplate, type=PromptTemplate,
...@@ -59,6 +59,6 @@ for _i in range(2): ...@@ -59,6 +59,6 @@ for _i in range(2):
) )
obqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator), ) obqa_eval_cfg = dict(evaluator=dict(type=AccEvaluator), )
obqa_datasets[_i]["reader_cfg"] = obqa_reader_cfg obqa_datasets[_i]['reader_cfg'] = obqa_reader_cfg
obqa_datasets[_i]["infer_cfg"] = obqa_infer_cfg obqa_datasets[_i]['infer_cfg'] = obqa_infer_cfg
obqa_datasets[_i]["eval_cfg"] = obqa_eval_cfg obqa_datasets[_i]['eval_cfg'] = obqa_eval_cfg
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment