"sgl-kernel/csrc/vscode:/vscode.git/clone" did not exist on "13bf565d60f894acf6a496591c2f2fc0eecc4a98"
Unverified Commit aa2dd2b5 authored by Fengzhe Zhou's avatar Fengzhe Zhou Committed by GitHub
Browse files

[Format] Add config lints (#892)

parent 3dbba119
......@@ -27,7 +27,7 @@ LEval_govreport_summ_infer_cfg = dict(
)
LEval_govreport_summ_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -27,7 +27,7 @@ LEval_legalqa_infer_cfg = dict(
)
LEval_legalqa_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -27,7 +27,7 @@ LEval_meetingsumm_infer_cfg = dict(
)
LEval_meetingsumm_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -27,7 +27,7 @@ LEval_multidocqa_infer_cfg = dict(
)
LEval_multidocqa_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -27,7 +27,7 @@ LEval_narrativeqa_infer_cfg = dict(
)
LEval_narrativeqa_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -27,7 +27,7 @@ LEval_nq_infer_cfg = dict(
)
LEval_nq_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -27,7 +27,7 @@ LEval_newssumm_infer_cfg = dict(
)
LEval_newssumm_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -27,7 +27,7 @@ LEval_ps_summ_infer_cfg = dict(
)
LEval_ps_summ_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -27,7 +27,7 @@ LEval_patent_summ_infer_cfg = dict(
)
LEval_patent_summ_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -28,7 +28,7 @@ LEval_quality_infer_cfg = dict(
)
LEval_quality_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_capital_postprocess),
pred_role='BOT'
)
......
......@@ -27,7 +27,7 @@ LEval_review_summ_infer_cfg = dict(
)
LEval_review_summ_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -27,7 +27,7 @@ LEval_scientificqa_infer_cfg = dict(
)
LEval_scientificqa_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -28,7 +28,7 @@ LEval_tr_infer_cfg = dict(
)
LEval_tr_eval_cfg = dict(
evaluator=dict(type=LEvalEMEvaluator),
evaluator=dict(type=LEvalEMEvaluator),
pred_postprocessor=dict(type=general_postprocess),
pred_role='BOT'
)
......
......@@ -28,7 +28,7 @@ LEval_tpo_infer_cfg = dict(
)
LEval_tpo_eval_cfg = dict(
evaluator=dict(type=AccEvaluator),
evaluator=dict(type=AccEvaluator),
pred_postprocessor=dict(type=first_capital_postprocess),
pred_role='BOT'
)
......
......@@ -27,7 +27,7 @@ LEval_tvshow_summ_infer_cfg = dict(
)
LEval_tvshow_summ_eval_cfg = dict(
evaluator=dict(type=RougeEvaluator),
evaluator=dict(type=RougeEvaluator),
pred_role='BOT'
)
......
......@@ -4,7 +4,7 @@
The following introduction comes from the abstract of [Compression Represents Intelligence Linearly](https://arxiv.org/abs/2404.09937):
>There is a belief that learning to compress well will lead to intelligence. Recently, language modeling has been shown to be equivalent to compression, which offers a compelling rationale for the success of large language models (LLMs): the development of more advanced language models is essentially enhancing compression which facilitates intelligence. ...our findings suggest that compression efficiency, as an unsupervised metric derived from raw text corpora, serves as a reliable evaluation measure that is linearly associated with the model capabilities. We open-source our compression datasets as well as our data collection pipelines to facilitate future researchers to assess compression properly.
>There is a belief that learning to compress well will lead to intelligence. Recently, language modeling has been shown to be equivalent to compression, which offers a compelling rationale for the success of large language models (LLMs): the development of more advanced language models is essentially enhancing compression which facilitates intelligence. ...our findings suggest that compression efficiency, as an unsupervised metric derived from raw text corpora, serves as a reliable evaluation measure that is linearly associated with the model capabilities. We open-source our compression datasets as well as our data collection pipelines to facilitate future researchers to assess compression properly.
## Official Links
......@@ -13,7 +13,7 @@ The following introduction comes from the abstract of [Compression Represents In
- GitHub Repository: [llm-compression-intelligence](https://github.com/hkust-nlp/llm-compression-intelligence)
## Overview and Usage
## Overview and Usage
### Dataset
The dataset, which consists of three external corpora, can be downloaded using the following python script:
......@@ -95,11 +95,11 @@ Token indices sequence length is longer than the specified maximum sequence leng
## Reference
```
@misc{huang2024compression,
title={Compression Represents Intelligence Linearly},
title={Compression Represents Intelligence Linearly},
author={Yuzhen Huang and Jinghan Zhang and Zifei Shan and Junxian He},
year={2024},
eprint={2404.09937},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
\ No newline at end of file
```
......@@ -20,10 +20,10 @@ for _name in subset_mapping.keys():
llm_cmp_infer_cfg = dict(
prompt_template=dict(
type=PromptTemplate,
template="{content}",
template='{content}',
),
# No in-context example, using ZeroRetriever
retriever=dict(type=ZeroRetriever),
retriever=dict(type=ZeroRetriever),
# Calculates cross entropy loss for each batch based on a sliding context window
# Setting block_size=1900 and stride=512 according to the original paper
inferencer=dict(type=SWCELossInferencer, block_size=1900, stride=512),
......@@ -34,13 +34,13 @@ for _name in subset_mapping.keys():
llm_compression_datasets.append(
dict(
abbr=f"llm_compression-{_name}",
abbr=f'llm_compression-{_name}',
type=LLMCompressionDataset,
path="./data/llm-compression",
path='./data/llm-compression',
name=_name,
samples=None, # Set small samples for testing
reader_cfg=dict(
input_columns=["content"],
input_columns=['content'],
output_column=None,
),
infer_cfg=llm_cmp_infer_cfg,
......
......@@ -22,5 +22,5 @@ with read_base():
from .longbenchlsht.longbench_lsht_gen import LongBench_lsht_datasets
from .longbenchmulti_news.longbench_multi_news_gen import LongBench_multi_news_datasets
from .longbenchsamsum.longbench_samsum_gen import LongBench_samsum_datasets
longbench_datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
\ No newline at end of file
longbench_datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
......@@ -162,4 +162,4 @@ LVEval_factrecall_zh_32k ef3320 f1 gen 38.
LVEval_factrecall_zh_64k ef3320 f1 gen 20.50
LVEval_factrecall_zh_128k ef3320 f1 gen 11.00
LVEval_factrecall_zh_256k ef3320 f1 gen 5.00
```
\ No newline at end of file
```
......@@ -34,5 +34,5 @@ with read_base():
)
LVEval_datasets = sum(
(v for k, v in locals().items() if k.endswith("_datasets")), []
(v for k, v in locals().items() if k.endswith('_datasets')), []
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment