"docs/index.rst" did not exist on "5b279fbd53976731504db075ff7fabde43137d17"
Commit 9a1ce25f authored by huangwb's avatar huangwb
Browse files

Merge branch 'add_tgi' into '0.2.5.rc1'

add tgi eval support

See merge request dcutoolkit/deeplearing/opencompass!1
parents 2337da18 2cee870e
from mmengine.config import read_base
with read_base():
from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets
from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets
# from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from ..summarizers.example import summarizer
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], [])
work_dir = './outputs/llama2_13b/'
from opencompass.models import TGIBASEAPI
models = [
dict(
abbr='llama2_13b_tgi',
path='/models/llama-2-13B',
type=TGIBASEAPI,
url='http://localhost:3001/generate',
meta_template= None,
batch_size=32,
rate_per_worker=32,
retry=4,
generation_kwargs=dict(
do_sample=False,
ignore_eos=False,
max_new_tokens=100,
temperature=1,
top_k=1,
top_n=0.8
),
),
]
\ No newline at end of file
from mmengine.config import read_base
with read_base():
from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets
from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets
from ..datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from ..summarizers.example import summarizer
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], [])
work_dir = './outputs/llama2_7b_chat/'
from opencompass.models import TGICHATAPI
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
)
models = [
dict(abbr='llama2_7b_chat',
type=TGICHATAPI, path='/data/models/Llama-2-7b-chat-hf',
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048, max_seq_len=4096, batch_size=8),
]
\ No newline at end of file
from mmengine.config import read_base
with read_base():
from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets
from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets
# from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from ..summarizers.example import summarizer
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], [])
work_dir = './outputs/llama2_7b/'
from opencompass.models import TGIBASEAPI
models = [
dict(
abbr='llama2_7b_tgi',
type=TGIBASEAPI,
url='http://localhost:3001/generate',
meta_template= None,
batch_size=32,
rate_per_worker=32,
retry=4,
generation_kwargs=dict(
do_sample=False,
ignore_eos=False,
max_new_tokens=100,
temperature=1,
top_k=1,
top_n=0.8
),
),
]
\ No newline at end of file
from mmengine.config import read_base
with read_base():
# from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets
# from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets
from ..datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from ..summarizers.example import summarizer
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], [])
work_dir = './outputs/Meta-Llama-3-8B/'
from opencompass.models import TGIBASEAPI
models = [
dict(
abbr='llama3_8b_tgi',
path='/data/models/Meta-Llama-3-8B',
type=TGIBASEAPI,
url='http://localhost:3001/generate',
meta_template= None,
batch_size=32,
rate_per_worker=32,
retry=4,
generation_kwargs=dict(
do_sample=False,
ignore_eos=False,
max_new_tokens=100,
temperature=1,
top_k=1,
top_n=0.8
),
),
]
\ No newline at end of file
from mmengine.config import read_base
with read_base():
from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets
from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets
from ..datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from ..summarizers.example import summarizer
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], [])
work_dir = './outputs/qwen1.5_14b_chat/'
from opencompass.models import TGICHATAPI
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
)
models = [
dict(abbr='qwen1.5_14b_chat',
type=TGICHATAPI, path='/models/Qwen1.5-14B-Chat',
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048, max_seq_len=4096, batch_size=8),
]
\ No newline at end of file
from mmengine.config import read_base
with read_base():
from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets
from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets
from ..datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from ..summarizers.example import summarizer
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], [])
work_dir = './outputs/qwen1.5_32b_chat/'
from opencompass.models import TGICHATAPI
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
)
models = [
dict(abbr='qwen1.5_32b_chat',
type=TGICHATAPI, path='/models/Qwen1.5-32B-Chat',
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048, max_seq_len=4096, batch_size=8),
]
\ No newline at end of file
from mmengine.config import read_base
with read_base():
from ..datasets.ARC_c.ARC_c_gen_1e0de5 import ARC_c_datasets
from ..datasets.ARC_e.ARC_e_gen_1e0de5 import ARC_e_datasets
from ..datasets.ceval.ceval_gen_5f30c7 import ceval_datasets
from ..summarizers.example import summarizer
datasets = sum([v for k, v in locals().items() if k.endswith("_datasets") or k == 'datasets'], [])
work_dir = './outputs/qwen1.5_7b_chat/'
from opencompass.models import TGICHATAPI
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
)
models = [
dict(abbr='qwen1.5_7b_chat',
type=TGICHATAPI, path='/models/Qwen1.5-7B-Chat',
meta_template=api_meta_template,
query_per_second=1,
max_out_len=2048, max_seq_len=4096, batch_size=8),
]
\ No newline at end of file
......@@ -33,6 +33,8 @@ from .turbomind import TurboMindModel # noqa: F401
from .turbomind_tis import TurboMindTisModel # noqa: F401
from .unigpt_api import UniGPT # noqa: F401
from .vllm import VLLM # noqa: F401
from .tgi_chat_api import TGICHATAPI
from .tgi_base_api import TGIBASEAPI
from .xunfei_api import XunFei # noqa: F401
from .yayi_api import Yayi # noqa: F401
from .zhipuai_api import ZhiPuAI # noqa: F401
......
import json
import os
import re
import time
from concurrent.futures import ThreadPoolExecutor
from threading import Lock
from typing import Dict, List, Optional, Union
import json
import re
from concurrent.futures import ThreadPoolExecutor
from typing import Dict, List, Optional
import numpy as np
import requests
from opencompass.registry import MODELS
from opencompass.utils.logging import get_logger
from .base import BaseModel
from .base_api import TokenBucket
class TGIBASEAPI(BaseModel):
is_api: bool = True
def __init__(
self,
path: str = 'LightllmAPI',
url: str = 'http://localhost:3001/generate',
meta_template: Optional[Dict] = None,
rate_per_worker: int = 2,
retry: int = 2,
generation_kwargs: Optional[Dict] = dict(),
):
super().__init__(path=path,
meta_template=meta_template,
generation_kwargs=generation_kwargs)
self.logger = get_logger()
self.url = url
self.retry = retry
self.generation_kwargs = generation_kwargs
self.max_out_len = self.generation_kwargs.get('max_new_tokens', 1024)
self.meta_template = meta_template
self.token_bucket = TokenBucket(rate_per_worker, False)
def generate(self, inputs: List[str], max_out_len: int,
**kwargs) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[self.max_out_len] * len(inputs)))
return results
def _generate(self, input: str, max_out_len: int) -> str:
max_num_retries = 0
while max_num_retries < self.retry:
self.wait()
header = {'content-type': 'application/json'}
try:
data = dict(inputs=input, parameters=self.generation_kwargs)
raw_response = requests.post(self.url,
headers=header,
data=json.dumps(data))
except requests.ConnectionError:
self.logger.error('Got connection error, retrying...')
continue
try:
response = raw_response.json()
generated_text = response['generated_text']
if isinstance(generated_text, list):
generated_text = generated_text[0]
return generated_text
except requests.JSONDecodeError:
self.logger.error('JsonDecode error, got',
str(raw_response.content))
except KeyError:
self.logger.error(f'KeyError. Response: {str(response)}')
max_num_retries += 1
raise RuntimeError('Calling LightllmAPI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def get_ppl(self, inputs: List[str], max_out_len: int,
**kwargs) -> List[float]:
"""Generate results given a list of inputs.
Args:
inputs (List[str]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
Returns:
List[str]: A list of generated strings.
"""
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._get_ppl, inputs,
[self.max_out_len] * len(inputs)))
return np.array(results)
def _get_ppl(self, input: str, max_out_len: int) -> float:
max_num_retries = 0
if max_out_len is None:
max_out_len = 1
while max_num_retries < self.retry:
self.wait()
header = {'content-type': 'application/json'}
try:
data = dict(inputs=input, parameters=self.generation_kwargs)
raw_response = requests.post(self.url,
headers=header,
data=json.dumps(data))
except requests.ConnectionError:
self.logger.error('Got connection error, retrying...')
continue
try:
response = raw_response.json()
assert ('prompt_token_ids' in response and 'prompt_logprobs'
in response), f'prompt_token_ids and prompt_logprobs \
must be in the output. \
Please consider adding \
--return_all_prompt_logprobs argument \
when starting lightllm service. Response: {str(response)}'
prompt_token_ids = response['prompt_token_ids'][1:]
prompt_logprobs = [
item[1] for item in response['prompt_logprobs']
]
logprobs = [
item[str(token_id)] for token_id, item in zip(
prompt_token_ids, prompt_logprobs)
]
if len(logprobs) == 0:
return 0.0
ce_loss = -sum(logprobs) / len(logprobs)
return ce_loss
except requests.JSONDecodeError:
self.logger.error('JsonDecode error, got',
str(raw_response.content))
max_num_retries += 1
raise RuntimeError('Calling LightllmAPI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def wait(self):
"""Wait till the next query can be sent.
Applicable in both single-thread and multi-thread environments.
"""
return self.token_bucket.get_token()
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized string. Only English and Chinese
characters are counted for now. Users are encouraged to override this
method if more accurate length is needed.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
english_parts = re.findall(r'[A-Za-z0-9]+', prompt)
chinese_parts = re.findall(r'[\u4e00-\u9FFF]+', prompt)
# Count English words
english_count = sum(len(part.split()) for part in english_parts)
# Count Chinese words
chinese_count = sum(len(part) for part in chinese_parts)
return english_count + chinese_count
\ No newline at end of file
import json
import os
import re
import time
from concurrent.futures import ThreadPoolExecutor
from threading import Lock
from typing import Dict, List, Optional, Union
import jieba
import requests
from opencompass.registry import MODELS
from opencompass.utils.prompt import PromptList
from .base_api import BaseAPIModel
from transformers import AutoConfig, AutoTokenizer
from transformers.models.qwen2 import Qwen2Tokenizer
from transformers.models.llama import LlamaTokenizer
PromptType = Union[PromptList, str]
OPENAI_API_BASE = 'http://localhost:3000/v1/chat/completions'
class TGICHATAPI(BaseAPIModel):
"""Model wrapper around OpenAI's models.
Args:
path (str): The name of OpenAI's model.
max_seq_len (int): The maximum allowed sequence length of a model.
Note that the length of prompt + generated tokens shall not exceed
this value. Defaults to 2048.
query_per_second (int): The maximum queries allowed per second
between two consecutive calls of the API. Defaults to 1.
retry (int): Number of retires if the API call fails. Defaults to 2.
key (str or List[str]): OpenAI key(s). In particular, when it
is set to "ENV", the key will be fetched from the environment
variable $OPENAI_API_KEY, as how openai defaults to be. If it's a
list, the keys will be used in round-robin manner. Defaults to
'ENV'.
org (str or List[str], optional): OpenAI organization(s). If not
specified, OpenAI uses the default organization bound to each API
key. If specified, the orgs will be posted with each request in
round-robin manner. Defaults to None.
meta_template (Dict, optional): The model's meta prompt
template if needed, in case the requirement of injecting or
wrapping of any meta instructions.
openai_api_base (str): The base url of OpenAI's API. Defaults to
'https://api.openai.com/v1/chat/completions'.
mode (str, optional): The method of input truncation when input length
exceeds max_seq_len. 'front','mid' and 'rear' represents the part
of input to truncate. Defaults to 'none'.
temperature (float, optional): What sampling temperature to use.
If not None, will override the temperature in the `generate()`
call. Defaults to None.
"""
is_api: bool = True
def __init__(self,
path: str,
max_seq_len: int = 4096,
query_per_second: int = 1,
rpm_verbose: bool = False,
retry: int = 2,
org: Optional[Union[str, List[str]]] = None,
meta_template: Optional[Dict] = None,
openai_api_base: str = OPENAI_API_BASE,
mode: str = 'none',
logprobs: Optional[bool] = False,
top_logprobs: Optional[int] = None,
temperature: Optional[float] = None):
super().__init__(path=path,
max_seq_len=max_seq_len,
meta_template=meta_template,
query_per_second=query_per_second,
rpm_verbose=rpm_verbose,
retry=retry)
self.temperature = temperature
assert mode in ['none', 'front', 'mid', 'rear']
self.mode = mode
self.logprobs = logprobs
self.top_logprobs = top_logprobs
self.url = openai_api_base
self.path = path
# self.tokenizer = AutoTokenizer.from_pretrained(path)
# self.tokenizer = LlamaTokenizer.from_pretrained(path,padding_side="left",truncation_side="left",)
self.tokenizer = AutoTokenizer.from_pretrained(path,padding_side="left",truncation_side="left",)
# self.tokenizer = Qwen2Tokenizer.from_pretrained(path,padding_side="left",truncation_side="left",)
def generate(self,
inputs: List[PromptType],
max_out_len: int = 512,
temperature: float = 0.7,
**kwargs) -> List[str]:
"""Generate results given a list of inputs.
Args:
inputs (List[PromptType]): A list of strings or PromptDicts.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic. Defaults to 0.7.
Returns:
List[str]: A list of generated strings.
"""
if self.temperature is not None:
temperature = self.temperature
with ThreadPoolExecutor() as executor:
results = list(
executor.map(self._generate, inputs,
[max_out_len] * len(inputs),
[temperature] * len(inputs)))
return results
def _generate(self, input: PromptType, max_out_len: int,
temperature: float) -> str:
"""Generate results given a list of inputs.
Args:
inputs (PromptType): A string or PromptDict.
The PromptDict should be organized in OpenCompass'
API format.
max_out_len (int): The maximum length of the output.
temperature (float): What sampling temperature to use,
between 0 and 2. Higher values like 0.8 will make the output
more random, while lower values like 0.2 will make it more
focused and deterministic.
Returns:
str: The generated string.
"""
assert isinstance(input, (str, PromptList))
# max num token for gpt-3.5-turbo is 4097
context_window = 4096
if '32k' in self.path:
context_window = 32768
elif '16k' in self.path:
context_window = 16384
elif 'gpt-4' in self.path:
context_window = 8192
# will leave 100 tokens as prompt buffer, triggered if input is str
if isinstance(input, str) and self.mode != 'none':
context_window = self.max_seq_len
input = self.bin_trim(input, context_window - 100 - max_out_len)
if isinstance(input, str):
messages = [{'role': 'user', 'content': input}]
else:
messages = []
for item in input:
msg = {'content': item['prompt']}
if item['role'] == 'HUMAN':
msg['role'] = 'user'
elif item['role'] == 'BOT':
msg['role'] = 'assistant'
elif item['role'] == 'SYSTEM':
msg['role'] = 'system'
messages.append(msg)
# Hold out 100 tokens due to potential errors in tiktoken calculation
max_out_len = min(
max_out_len, context_window - self.get_token_len(str(input)) - 100)
if max_out_len <= 0:
return ''
max_num_retries = 0
while max_num_retries < self.retry:
self.wait()
header = {'content-type': 'application/json',}
try:
data = dict(
model='tgi',
messages=messages,
max_tokens=max_out_len,
n=1,
logprobs=self.logprobs,
top_logprobs=self.top_logprobs,
stop=None,
temperature=temperature,
)
raw_response = requests.post(self.url,
headers=header,
data=json.dumps(data))
except requests.ConnectionError:
self.logger.error('Got connection error, retrying...')
continue
try:
response = raw_response.json()
except requests.JSONDecodeError:
self.logger.error('JsonDecode error, got',
str(raw_response.content))
continue
self.logger.debug(str(response))
try:
if self.logprobs:
return response['choices']
else:
return response['choices'][0]['message']['content'].strip()
except KeyError:
if 'error' in response:
if response['error']['code'] == 'rate_limit_exceeded':
time.sleep(10)
self.logger.warn('Rate limit exceeded, retrying...')
continue
# elif response['error']['code'] == 'insufficient_quota':
# self.invalid_keys.add(key)
# self.logger.warn(f'insufficient_quota key: {key}')
# continue
elif response['error']['code'] == 'invalid_prompt':
self.logger.warn('Invalid prompt:', str(input))
return ''
self.logger.error('Find error message in response: ',
str(response['error']))
max_num_retries += 1
raise RuntimeError('Calling OpenAI failed after retrying for '
f'{max_num_retries} times. Check the logs for '
'details.')
def get_token_len(self, prompt: str) -> int:
"""Get lengths of the tokenized string. Only English and Chinese
characters are counted for now. Users are encouraged to override this
method if more accurate length is needed.
Args:
prompt (str): Input string.
Returns:
int: Length of the input tokens
"""
# enc = self.tiktoken.encoding_for_model(self.path)
return len(self.tokenizer.encode(prompt))
def bin_trim(self, prompt: str, num_token: int) -> str:
"""Get a suffix of prompt which is no longer than num_token tokens.
Args:
prompt (str): Input string.
num_token (int): The upper bound of token numbers.
Returns:
str: The trimmed prompt.
"""
token_len = self.get_token_len(prompt)
if token_len <= num_token:
return prompt
pattern = re.compile(r'[\u4e00-\u9fa5]')
if pattern.search(prompt):
words = list(jieba.cut(prompt, cut_all=False))
sep = ''
else:
words = prompt.split(' ')
sep = ' '
l, r = 1, len(words)
while l + 2 < r:
mid = (l + r) // 2
if self.mode == 'front':
cur_prompt = sep.join(words[-mid:])
elif self.mode == 'mid':
cur_prompt = sep.join(words[:mid]) + sep.join(words[-mid:])
elif self.mode == 'rear':
cur_prompt = sep.join(words[:mid])
if self.get_token_len(cur_prompt) <= num_token:
l = mid # noqa: E741
else:
r = mid
if self.mode == 'front':
prompt = sep.join(words[-l:])
elif self.mode == 'mid':
prompt = sep.join(words[:l]) + sep.join(words[-l:])
elif self.mode == 'rear':
prompt = sep.join(words[:l])
return prompt
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment