Just like a compass guides us on our journey, OpenCompass will guide you through the complex landscape of evaluating large language models. With its powerful algorithms and intuitive interface, OpenCompass makes it easy to assess the quality and effectiveness of your NLP models.
> **🔥 Attention**<br />
🔥🔥🔥 We are delighted to announce that **the OpenCompass has been recommended by the Meta AI**, click [Get Started](https://ai.meta.com/llama/get-started/#validation) of Llama for more information.
> **Attention**<br />
> We launch the OpenCompass Collaboration project, welcome to support diverse evaluation benchmarks into OpenCompass!
> Clike [Issue](https://github.com/open-compass/opencompass/issues/248) for more information.
> Let's work together to build a more powerful OpenCompass toolkit!
## 🚀 What's New <a><img width="35" height="20" src="https://user-images.githubusercontent.com/12782558/212848161-5e783dd6-11e8-4fe0-bbba-39ffb77730be.png"></a>
-**\[2023.10.24\]** We release a new benchmark for evaluating LLMs’ capabilities of having multi-turn dialogues. Welcome to [BotChat](https://github.com/open-compass/BotChat) for more details. 🔥🔥🔥.
-**\[2023.09.26\]** We update the leaderboard with [Qwen](https://github.com/QwenLM/Qwen), one of the best-performing open-source models currently available, welcome to our [homepage](https://opencompass.org.cn) for more details. 🔥🔥🔥.
-**\[2023.09.20\]** We update the leaderboard with [InternLM-20B](https://github.com/InternLM/InternLM), welcome to our [homepage](https://opencompass.org.cn) for more details. 🔥🔥🔥.
-**\[2023.09.19\]** We update the leaderboard with WeMix-LLaMA2-70B/Phi-1.5-1.3B, welcome to our [homepage](https://opencompass.org.cn) for more details.
...
...
@@ -42,7 +45,6 @@ Just like a compass guides us on our journey, OpenCompass will guide you through
-**\[2023.09.06\]**[**Baichuan2**](https://github.com/baichuan-inc/Baichuan2) team adpots OpenCompass to evaluate their models systematically. We deeply appreciate the community's dedication to transparency and reproducibility in LLM evaluation.
-**\[2023.09.02\]** We have supported the evaluation of [Qwen-VL](https://github.com/QwenLM/Qwen-VL) in OpenCompass.
-**\[2023.08.25\]**[**TigerBot**](https://github.com/TigerResearch/TigerBot) team adpots OpenCompass to evaluate their models systematically. We deeply appreciate the community's dedication to transparency and reproducibility in LLM evaluation.
-**\[2023.08.21\]**[**Lagent**](https://github.com/InternLM/lagent) has been released, which is a lightweight framework for building LLM-based agents. We are working with the Lagent team to support the evaluation of general tool-use capability, stay tuned!
> [More](docs/en/notes/news.md)
...
...
@@ -385,6 +387,8 @@ Through the command line or configuration files, OpenCompass also supports evalu
</tbody>
</table>
## OpenCompass Ecosystem
<palign="right"><ahref="#top">🔝Back to top</a></p>
@@ -58,3 +58,22 @@ Each task in OpenCompass represents a combination of specific model(s) and porti
There is a tradeoff between the number of tasks and the time to load the model. For example, if we partition an request that evaluates a model against a dataset into 100 tasks, the model will be loaded 100 times in total. When resources are abundant, these 100 tasks can be executed in parallel, so the additional time spent on model loading can be ignored. However, if resources are limited, these 100 tasks will operate more sequentially, and repeated loadings can become a bottleneck in execution time.
Hence, if users find that the number of tasks greatly exceeds the available GPUs, we advise setting the `--max-partition-size` to a larger value.
## Model
### How to use the downloaded huggingface models?
If you have already download the checkpoints of the model, you can specify the local path of the model and tokenizer, and add `trust_remote_code=True` for `--model-kwargs` and `--tokenizer-kwargs`. For example
-**\[2023.08.21\]**[**Lagent**](https://github.com/InternLM/lagent) has been released, which is a lightweight framework for building LLM-based agents. We are working with Lagent team to support the evaluation of general tool-use capability, stay tuned!
-**\[2023.08.18\]** We have supported evaluation for **multi-modality learning**, include **MMBench, SEED-Bench, COCO-Caption, Flickr-30K, OCR-VQA, ScienceQA** and so on. Leaderboard is on the road. Feel free to try multi-modality evaluation with OpenCompass !
-**\[2023.08.18\]**[Dataset card](https://opencompass.org.cn/dataset-detail/MMLU) is now online. Welcome new evaluation benchmark OpenCompass !
-**\[2023.08.11\]**[Model comparison](https://opencompass.org.cn/model-compare/GPT-4,ChatGPT,LLaMA-2-70B,LLaMA-65B) is now online. We hope this feature offers deeper insights!