""" Copyright 2020 The OneFlow Authors. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ """ This file is mostly copied from PyTorch v1.8.1 torch/distributed/launch.py """ import asyncio import os import random import sys from argparse import REMAINDER, ArgumentParser from typing import IO, Any, List, Optional import glob import hashlib from math import ceil stdout_filename = "stdout" stderr_filename = "stderr" global PARALLEL_NUM global SUCCESS_NUM PARALLEL_NUM = 0 SUCCESS_NUM = 0 def parse_args(): """ Helper function parsing the command line options @retval ArgumentParser """ parser = ArgumentParser( description="helper to start multiple distributed launches in parallel" ) parser.add_argument( "--files", type=str, help="files to run, support pattern", required=True, nargs="+", ) parser.add_argument( "--group_size", type=int, help="for one command, how many duplications to run", required=True, ) parser.add_argument( "--device_num", type=int, help="how many devices to run on", required=True, ) parser.add_argument( "-n", "--parallel_num", type=str, help="how many launches, could be a number, or 'master_port'", required=True, ) parser.add_argument( "--auto_cuda_visible_devices", action="store_true", required=False, default=False, ) parser.add_argument( "--shuffle", action="store_true", required=False, default=False, ) parser.add_argument( "--verbose", action="store_true", required=False, default=False, ) parser.add_argument( "--master_port", default=[], action="append", help="Master node (rank 0)'s free port, pass this multiple `--master_port` to launch more instances", ) parser.add_argument( "-m", "--module", default=False, action="store_true", help="Changes each process to interpret the launch script as a python module, executing with the same behavior as'python -m'.", ) parser.add_argument( "training_script", type=str, help="The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script", ) parser.add_argument("training_script_args", nargs=REMAINDER) return parser.parse_args() async def run_and_capture(cmd=None, prefix=None, **kwargs): proc = await asyncio.create_subprocess_exec( *cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.STDOUT, **kwargs ) while True: line = await proc.stdout.readline() print(prefix, line.decode(), end="") if not line: break await proc.wait() assert proc.returncode == 0, prefix global PARALLEL_NUM global SUCCESS_NUM SUCCESS_NUM += 1 print(f"{prefix} succeed ({SUCCESS_NUM}/{PARALLEL_NUM})") async def launch_multiple( cmds=None, group_size=None, auto_cuda_env=False, device_num=None ): visible_groups = [ [str(x) for x in range(device_num)[i : i + group_size]] # to get ["0", "1"] for i in range(0, device_num, group_size) ] spawns = [] for i, cmd in enumerate(cmds): group_idx = i % len(visible_groups) cuda_visible_devices = ",".join(visible_groups[group_idx]) print(cuda_visible_devices, cmd, "\n") env = os.environ if auto_cuda_env: env = dict(env, CUDA_VISIBLE_DEVICES=cuda_visible_devices) process = run_and_capture( cmd=cmd, prefix=f"[wg={i}][device={cuda_visible_devices}]", env=env, ) spawns.append(process) await asyncio.gather(*spawns) def main(): args = parse_args() # find files and chuck them files = [] for f in args.files: files += list(glob.glob(f, recursive=True)) print("total files:", len(files)) files = sorted( files, key=lambda x: hashlib.md5(os.path.basename(x.encode("ascii"))).hexdigest(), ) if args.shuffle: random.shuffle(files) files_hash = hashlib.md5( "".join([os.path.basename(x) for x in files]).encode() ).hexdigest()[:8] if args.verbose: print( f"::warning file=testFilesHash,line={len(files)},col=0,endColumn=0::shuffle-{args.shuffle}-group_size-{args.group_size}-md5-{files_hash}" ) if args.parallel_num == "master_port": parallel_num = len(args.master_port) master_ports = args.master_port else: parallel_num = int(args.parallel_num) if parallel_num != len(args.master_port): print( "warning", "parallel_num != len(args.master_port)", "will auto generate" ) default_master_port = 29500 master_ports = list( range(default_master_port, default_master_port + parallel_num) ) assert parallel_num > 0 assert len(master_ports) == parallel_num chunk_size = ceil(len(files) / parallel_num) global PARALLEL_NUM PARALLEL_NUM = parallel_num chunks = [files[i : i + chunk_size] for i in range(0, len(files), chunk_size)] # check args assert args.training_script == "oneflow.distributed.launch" # generate commands cmds = [ [sys.executable, "-m", args.training_script, "--master_port", str(master_port)] + args.training_script_args + chunck for (master_port, chunck) in zip(master_ports, chunks) ] loop = asyncio.get_event_loop() processes = launch_multiple( cmds=cmds, auto_cuda_env=args.auto_cuda_visible_devices, group_size=args.group_size, device_num=args.device_num, ) loop.run_until_complete(processes) if __name__ == "__main__": main()