set -xe rm -rf /benchmarks cp -r python/oneflow/compatible/single_client/benchmarks /benchmarks cd /benchmarks python3 cnn_benchmark/of_cnn_benchmarks.py \ --gpu_num_per_node=1 \ --model="vgg16" \ --batch_size_per_device=8 \ --iter_num=5 \ --learning_rate=0.01 \ --optimizer="sgd" \ --loss_print_every_n_iter=1 \ --data_dir="/dataset/imagenet_227/train/32" python3 cnn_benchmark/of_cnn_benchmarks.py \ --gpu_num_per_node=1 \ --model="alexnet" \ --batch_size_per_device=8 \ --iter_num=5 \ --learning_rate=0.01 \ --optimizer="sgd" \ --loss_print_every_n_iter=1 \ --data_dir="/dataset/imagenet_227/train/32" python3 cnn_benchmark/of_cnn_benchmarks.py \ --gpu_num_per_node=1 \ --model="resnet50" \ --batch_size_per_device=8 \ --iter_num=5 \ --gpu_image_decoder=True \ --learning_rate=0.01 \ --optimizer="sgd" \ --loss_print_every_n_iter=1 \ --data_dir="/dataset/imagenet_227/train/32" python3 cnn_benchmark/of_cnn_benchmarks.py \ --gpu_num_per_node=1 \ --model="resnet50" \ --batch_size_per_device=8 \ --iter_num=5 \ --learning_rate=0.01 \ --optimizer="sgd" \ --loss_print_every_n_iter=1 python3 bert_benchmark/run_pretraining.py \ --gpu_num_per_node=1 \ --node_num=1 \ --learning_rate=1e-4 \ --weight_decay_rate=0.01 \ --batch_size_per_device=24 \ --iter_num=5 \ --loss_print_every_n_iter=1 \ --data_dir="/dataset/bert/bert_seq_len_128_repeat1024" \ --data_part_num=1 \ --seq_length=128 \ --max_predictions_per_seq=20 \ --num_hidden_layers=12 \ --num_attention_heads=12 \ --max_position_embeddings=512 \ --type_vocab_size=2 \ --vocab_size=30522 \ --attention_probs_dropout_prob=0.1 \ --hidden_dropout_prob=0.1 \ --hidden_size_per_head=64