Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Oneflow
Commits
8f7de847
"vscode:/vscode.git/clone" did not exist on "af2f072e911a8797231ce92406d3e0c7e4d00163"
Commit
8f7de847
authored
Apr 25, 2023
by
yuguo960516yuguo
Browse files
dtk
parent
f262efc9
Pipeline
#248
failed with stages
in 0 seconds
Changes
121
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
292 additions
and
292 deletions
+292
-292
oneflow/user/kernels/fused_self_attention_query_mul_key_and_value_kernel.hip.cpp
...sed_self_attention_query_mul_key_and_value_kernel.hip.cpp
+292
-292
No files found.
Too many changes to show.
To preserve performance only
121 of 121+
files are displayed.
Plain diff
Email patch
oneflow/user/kernels/fused_self_attention_query_mul_key_and_value_kernel.hip.cpp
View file @
8f7de847
/*
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "oneflow/core/framework/framework.h"
#include "oneflow/user/kernels/slice_util.h"
#include "oneflow/core/kernel/new_kernel_util.h"
#include "oneflow/core/ep/include/primitive/permute.h"
#include "oneflow/core/ep/rocm/cuda_stream.h"
namespace
oneflow
{
namespace
{
inline
hipblasOperation_t
GetCublasOp
(
char
op
)
{
switch
(
op
)
{
case
'n'
:
case
'N'
:
{
return
HIPBLAS_OP_N
;
}
case
't'
:
case
'T'
:
{
return
HIPBLAS_OP_T
;
}
case
'c'
:
case
'C'
:
{
return
HIPBLAS_OP_C
;
}
default:
{
UNIMPLEMENTED
();
}
}
return
HIPBLAS_OP_N
;
}
template
<
typename
T
>
struct
CudaDataTypeTrait
;
template
<
>
struct
CudaDataTypeTrait
<
float
>
{
const
static
hipblasDatatype_t
value
=
HIPBLAS_R_32F
;
};
template
<
>
struct
CudaDataTypeTrait
<
half
>
{
const
static
hipblasDatatype_t
value
=
HIPBLAS_R_16F
;
};
template
<
typename
T
>
void
CublasBatchGemm
(
hipblasHandle_t
handle
,
char
transa
,
char
transb
,
int64_t
m
,
int64_t
n
,
int64_t
k
,
T
alpha
,
const
T
*
a
,
int64_t
lda
,
int64_t
stridea
,
const
T
*
b
,
int64_t
ldb
,
int64_t
strideb
,
T
beta
,
T
*
c
,
int64_t
ldc
,
int64_t
stridec
,
int64_t
batch_size
)
{
hipblasOperation_t
opa
=
GetCublasOp
(
transa
);
hipblasOperation_t
opb
=
GetCublasOp
(
transb
);
hipblasDatatype_t
data_type
=
CudaDataTypeTrait
<
T
>::
value
;
OF_CUBLAS_CHECK
(
hipblasGemmStridedBatchedEx
(
handle
,
opa
,
opb
,
m
,
n
,
k
,
reinterpret_cast
<
const
void
*>
(
&
alpha
),
reinterpret_cast
<
const
void
*>
(
a
),
data_type
,
lda
,
stridea
,
reinterpret_cast
<
const
void
*>
(
b
),
data_type
,
ldb
,
strideb
,
reinterpret_cast
<
const
void
*>
(
&
beta
),
reinterpret_cast
<
void
*>
(
c
),
data_type
,
ldc
,
stridec
,
batch_size
,
data_type
,
HIPBLAS_GEMM_DEFAULT
));
}
template
<
>
void
CublasBatchGemm
<
half
>
(
hipblasHandle_t
handle
,
char
transa
,
char
transb
,
int64_t
m
,
int64_t
n
,
int64_t
k
,
half
alpha
,
const
half
*
a
,
int64_t
lda
,
int64_t
stridea
,
const
half
*
b
,
int64_t
ldb
,
int64_t
strideb
,
half
beta
,
half
*
c
,
int64_t
ldc
,
int64_t
stridec
,
int64_t
batch_size
)
{
using
comp_t
=
float
;
hipblasOperation_t
opa
=
GetCublasOp
(
transa
);
hipblasOperation_t
opb
=
GetCublasOp
(
transb
);
float
alpha_f
=
static_cast
<
comp_t
>
(
alpha
);
float
beta_f
=
static_cast
<
comp_t
>
(
beta
);
hipblasGemmAlgo_t
algo
=
HIPBLAS_GEMM_DEFAULT
;
hipblasDatatype_t
data_type
=
CudaDataTypeTrait
<
half
>::
value
;
hipblasDatatype_t
comp_type
=
CudaDataTypeTrait
<
comp_t
>::
value
;
OF_CUBLAS_CHECK
(
hipblasGemmStridedBatchedEx
(
handle
,
opa
,
opb
,
m
,
n
,
k
,
&
alpha_f
,
reinterpret_cast
<
const
void
*>
(
a
),
data_type
,
lda
,
stridea
,
reinterpret_cast
<
const
void
*>
(
b
),
data_type
,
ldb
,
strideb
,
&
beta_f
,
reinterpret_cast
<
void
*>
(
c
),
data_type
,
ldc
,
stridec
,
batch_size
,
comp_type
,
algo
));
}
template
<
>
void
CublasBatchGemm
<
float16
>
(
hipblasHandle_t
handle
,
char
transa
,
char
transb
,
int64_t
m
,
int64_t
n
,
int64_t
k
,
float16
alpha
,
const
float16
*
a
,
int64_t
lda
,
int64_t
stridea
,
const
float16
*
b
,
int64_t
ldb
,
int64_t
strideb
,
float16
beta
,
float16
*
c
,
int64_t
ldc
,
int64_t
stridec
,
int64_t
batch_size
)
{
CublasBatchGemm
<
half
>
(
handle
,
transa
,
transb
,
m
,
n
,
k
,
static_cast
<
half
>
(
alpha
),
reinterpret_cast
<
const
half
*>
(
a
),
lda
,
stridea
,
reinterpret_cast
<
const
half
*>
(
b
),
ldb
,
strideb
,
static_cast
<
half
>
(
beta
),
reinterpret_cast
<
half
*>
(
c
),
ldc
,
stridec
,
batch_size
);
}
template
<
typename
T
>
void
BatchedGemm
(
ep
::
Stream
*
stream
,
char
opa
,
char
opb
,
int64_t
m
,
int64_t
n
,
int64_t
k
,
float
alpha
,
const
T
*
a
,
int64_t
lda
,
int64_t
stridea
,
const
T
*
b
,
int64_t
ldb
,
int64_t
strideb
,
float
beta
,
T
*
c
,
int64_t
ldc
,
int64_t
stridec
,
int64_t
batch_size
)
{
// swap m and n, a and b to convert from row-major to col-major
CublasBatchGemm
<
T
>
(
stream
->
As
<
ep
::
CudaStream
>
()
->
cublas_handle
(),
opb
,
opa
,
n
,
m
,
k
,
static_cast
<
T
>
(
alpha
),
b
,
ldb
,
strideb
,
a
,
lda
,
stridea
,
static_cast
<
T
>
(
beta
),
c
,
ldc
,
stridec
,
batch_size
);
}
SliceParams
ConstructSliceParams4Value
(
int64_t
seq_len
,
int64_t
batch_size
,
int64_t
num_heads
,
int64_t
head_size
)
{
// slice (s, b, n, 3, h) to (s, b, n, 1, h)
SliceParams
params
;
params
.
ndim
=
4
;
params
.
dims
[
0
]
=
seq_len
;
params
.
dims
[
1
]
=
batch_size
;
params
.
dims
[
2
]
=
num_heads
;
params
.
dims
[
3
]
=
3
*
head_size
;
params
.
start
[
0
]
=
0
;
params
.
start
[
1
]
=
0
;
params
.
start
[
2
]
=
0
;
params
.
start
[
3
]
=
2
*
head_size
;
params
.
step
[
0
]
=
1
;
params
.
step
[
1
]
=
1
;
params
.
step
[
2
]
=
1
;
params
.
step
[
3
]
=
1
;
params
.
size
[
0
]
=
seq_len
;
params
.
size
[
1
]
=
batch_size
;
params
.
size
[
2
]
=
num_heads
;
params
.
size
[
3
]
=
head_size
;
return
params
;
}
template
<
typename
T
>
void
TransposeGpu
(
ep
::
Stream
*
stream
,
DataType
data_type
,
const
ShapeView
&
in_shape
,
const
ShapeView
&
out_shape
,
const
std
::
vector
<
int32_t
>&
perm
,
const
T
*
in
,
T
*
out
)
{
CHECK_EQ
(
in_shape
.
NumAxes
(),
out_shape
.
NumAxes
());
int32_t
num_axes
=
in_shape
.
NumAxes
();
CHECK_EQ
(
num_axes
,
perm
.
size
());
for
(
int
i
=
0
;
i
<
perm
.
size
();
++
i
)
{
CHECK_EQ
(
in_shape
.
At
(
perm
[
i
]),
out_shape
.
At
(
i
));
}
auto
transpose
=
ep
::
primitive
::
NewPrimitive
<
ep
::
primitive
::
PermuteFactory
>
(
stream
->
device_type
(),
in_shape
.
NumAxes
());
CHECK
(
transpose
);
transpose
->
Launch
(
stream
,
data_type
,
in_shape
.
NumAxes
(),
in_shape
.
ptr
(),
in
,
perm
.
data
(),
out
);
}
template
<
typename
T
>
class
FusedSelfAttentionQueryMulKeyAndValueGpuKernel
final
:
public
user_op
::
OpKernel
{
public:
FusedSelfAttentionQueryMulKeyAndValueGpuKernel
()
=
default
;
~
FusedSelfAttentionQueryMulKeyAndValueGpuKernel
()
override
=
default
;
private:
using
user_op
::
OpKernel
::
Compute
;
void
Compute
(
user_op
::
KernelComputeContext
*
ctx
)
const
override
{
const
user_op
::
Tensor
*
h_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"hidden_states"
,
0
);
int64_t
seq_len
=
h_tensor
->
shape_view
().
At
(
0
);
int64_t
batch_size
=
h_tensor
->
shape_view
().
At
(
1
);
int64_t
hidden_size
=
h_tensor
->
shape_view
().
At
(
2
);
int64_t
head_size
=
ctx
->
Attr
<
int64_t
>
(
"head_size"
);
int64_t
num_heads
=
hidden_size
/
(
3
*
head_size
);
int64_t
ld
=
batch_size
*
hidden_size
;
int64_t
stride
=
3
*
head_size
;
int64_t
k_offset
=
head_size
;
// q * k: (sq, b, n, h) x (sk, b, n, h) => (b, n, sq, h) x (b, n, sk, h)
// => (b, n, sq, h) x (b, n, h, sk) -> (b, n, sq, sk)
float
alpha
=
ctx
->
Attr
<
float
>
(
"alpha"
);
user_op
::
Tensor
*
qmk_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"query_mul_key"
,
0
);
const
T
*
q_dptr
=
h_tensor
->
dptr
<
T
>
();
const
T
*
k_dptr
=
h_tensor
->
dptr
<
T
>
()
+
k_offset
;
BatchedGemm
<
T
>
(
ctx
->
stream
(),
'N'
,
'T'
,
seq_len
,
seq_len
,
head_size
,
alpha
,
q_dptr
,
ld
,
stride
,
k_dptr
,
ld
,
stride
,
0.0
f
,
qmk_tensor
->
mut_dptr
<
T
>
(),
seq_len
,
seq_len
*
seq_len
,
batch_size
*
num_heads
);
// slice v
user_op
::
Tensor
*
tmp_v_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"tmp_buffer"
,
0
);
user_op
::
Tensor
*
v_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"value"
,
0
);
SliceParams
params
=
ConstructSliceParams4Value
(
seq_len
,
batch_size
,
num_heads
,
head_size
);
SliceKernelUtil
<
DeviceType
::
kCUDA
,
T
>::
Forward
(
ctx
->
stream
(),
params
,
h_tensor
->
dptr
<
T
>
(),
tmp_v_tensor
->
mut_dptr
<
T
>
());
// v from (s, b, n, h) transpose to (b, n, s, h)
Shape
value_shape
({
seq_len
,
batch_size
,
num_heads
,
head_size
});
TransposeGpu
<
T
>
(
ctx
->
stream
(),
h_tensor
->
data_type
(),
value_shape
,
v_tensor
->
shape_view
(),
{
1
,
2
,
0
,
3
},
tmp_v_tensor
->
dptr
<
T
>
(),
v_tensor
->
mut_dptr
<
T
>
());
}
bool
AlwaysComputeWhenAllOutputsEmpty
()
const
override
{
return
false
;
}
};
template
<
typename
T
>
class
FusedSelfAttentionQueryMulKeyAndValueGradGpuKernel
final
:
public
user_op
::
OpKernel
{
public:
FusedSelfAttentionQueryMulKeyAndValueGradGpuKernel
()
=
default
;
~
FusedSelfAttentionQueryMulKeyAndValueGradGpuKernel
()
override
=
default
;
private:
using
user_op
::
OpKernel
::
Compute
;
void
Compute
(
user_op
::
KernelComputeContext
*
ctx
)
const
override
{
const
user_op
::
Tensor
*
v_grad_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"value_grad"
,
0
);
const
user_op
::
Tensor
*
qmk_grad_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"query_mul_key_grad"
,
0
);
const
user_op
::
Tensor
*
h_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"hidden_states"
,
0
);
user_op
::
Tensor
*
tmp_v_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"tmp_buffer"
,
0
);
user_op
::
Tensor
*
h_grad_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"hidden_states_grad"
,
0
);
float
alpha
=
ctx
->
Attr
<
float
>
(
"alpha"
);
int64_t
seq_len
=
h_grad_tensor
->
shape_view
().
At
(
0
);
int64_t
batch_size
=
h_grad_tensor
->
shape_view
().
At
(
1
);
int64_t
hidden_size
=
h_grad_tensor
->
shape_view
().
At
(
2
);
int64_t
num_heads
=
v_grad_tensor
->
shape_view
().
At
(
1
);
int64_t
head_size
=
v_grad_tensor
->
shape_view
().
At
(
3
);
int64_t
ld
=
batch_size
*
hidden_size
;
int64_t
stride
=
3
*
head_size
;
CHECK_EQ
(
hidden_size
,
num_heads
*
stride
);
// transpose from (b, n, s, h) to (s, b, n, h)
Shape
value_shape
({
seq_len
,
batch_size
,
num_heads
,
head_size
});
TransposeGpu
<
T
>
(
ctx
->
stream
(),
v_grad_tensor
->
data_type
(),
v_grad_tensor
->
shape_view
(),
value_shape
,
{
2
,
0
,
1
,
3
},
v_grad_tensor
->
dptr
<
T
>
(),
tmp_v_tensor
->
mut_dptr
<
T
>
());
// slice v grad
SliceParams
params
=
ConstructSliceParams4Value
(
seq_len
,
batch_size
,
num_heads
,
head_size
);
SliceKernelUtil
<
DeviceType
::
kCUDA
,
T
>::
Backward
(
ctx
->
stream
(),
params
,
tmp_v_tensor
->
dptr
<
T
>
(),
h_grad_tensor
->
mut_dptr
<
T
>
());
// grad_q = grad_qmk * k
// (b, n, sq, sk) x (b, n, sk, h) -> (b, n, s, h) <= (s, b, n, h) <= (s, b, n, 3, h)
const
T
*
qmk_grad_dptr
=
qmk_grad_tensor
->
dptr
<
T
>
();
const
T
*
k_dptr
=
h_tensor
->
dptr
<
T
>
()
+
head_size
;
T
*
grad_q_dptr
=
h_grad_tensor
->
mut_dptr
<
T
>
();
BatchedGemm
<
T
>
(
ctx
->
stream
(),
'N'
,
'N'
,
seq_len
,
head_size
,
seq_len
,
alpha
,
qmk_grad_dptr
,
seq_len
,
seq_len
*
seq_len
,
k_dptr
,
ld
,
stride
,
0.0
f
,
grad_q_dptr
,
ld
,
stride
,
batch_size
*
num_heads
);
// grad_k = grad_qmk * q
// (b, n, sk, sq) x (b, n, sq, h) -> (b, n, sk, h) <= (s, b, n, h) <= (s, b, n, 3, h)
const
T
*
q_dptr
=
h_tensor
->
dptr
<
T
>
();
T
*
grad_k_dptr
=
h_grad_tensor
->
mut_dptr
<
T
>
()
+
head_size
;
BatchedGemm
<
T
>
(
ctx
->
stream
(),
'T'
,
'N'
,
seq_len
,
head_size
,
seq_len
,
alpha
,
qmk_grad_dptr
,
seq_len
,
seq_len
*
seq_len
,
q_dptr
,
ld
,
stride
,
0.0
f
,
grad_k_dptr
,
ld
,
stride
,
batch_size
*
num_heads
);
}
bool
AlwaysComputeWhenAllOutputsEmpty
()
const
override
{
return
false
;
}
};
size_t
InferTmpBufferSize
(
user_op
::
InferContext
*
ctx
)
{
const
Shape
*
value_shape
=
ctx
->
OutputShape
(
"value"
,
0
);
DataType
value_dtype
=
*
ctx
->
OutputDType
(
"value"
,
0
);
return
value_shape
->
elem_cnt
()
*
GetSizeOfDataType
(
value_dtype
);
}
size_t
InferGradTmpBufferSize
(
user_op
::
InferContext
*
ctx
)
{
const
Shape
&
value_shape
=
ctx
->
InputShape
(
"value_grad"
,
0
);
const
DataType
&
value_dtype
=
ctx
->
InputDType
(
"value_grad"
,
0
);
return
value_shape
.
elem_cnt
()
*
GetSizeOfDataType
(
value_dtype
);
}
}
// namespace
#define REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_CUDA_KERNEL(dtype) \
REGISTER_USER_KERNEL
(
"fused_self_attention_query_mul_key_and_value"
)
\
.
SetCreateFn
<
FusedSelfAttentionQueryMulKeyAndValueGpuKernel
<
dtype
>>
()
\
.
SetIsMatchedHob
((
user_op
::
HobDeviceType
()
==
DeviceType
::
kCUDA
)
\
&&
(
user_op
::
HobDataType
(
"hidden_states"
,
0
)
==
GetDataType
<
dtype
>::
value
))
\
.
SetInferTmpSizeFn
(
InferTmpBufferSize
);
#define REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_GRAD_CUDA_KERNEL(dtype) \
REGISTER_USER_KERNEL
(
"fused_self_attention_query_mul_key_and_value_grad"
)
\
.
SetCreateFn
<
FusedSelfAttentionQueryMulKeyAndValueGradGpuKernel
<
dtype
>>
()
\
.
SetIsMatchedHob
((
user_op
::
HobDeviceType
()
==
DeviceType
::
kCUDA
)
\
&&
(
user_op
::
HobDataType
(
"hidden_states"
,
0
)
==
GetDataType
<
dtype
>::
value
))
\
.
SetInferTmpSizeFn
(
InferGradTmpBufferSize
);
REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_CUDA_KERNEL
(
float
)
REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_CUDA_KERNEL
(
float16
)
REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_GRAD_CUDA_KERNEL
(
float
)
REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_GRAD_CUDA_KERNEL
(
float16
)
/*
Copyright 2020 The OneFlow Authors. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
#include "oneflow/core/framework/framework.h"
#include "oneflow/user/kernels/slice_util.h"
#include "oneflow/core/kernel/new_kernel_util.h"
#include "oneflow/core/ep/include/primitive/permute.h"
#include "oneflow/core/ep/rocm/cuda_stream.h"
namespace
oneflow
{
namespace
{
inline
hipblasOperation_t
GetCublasOp
(
char
op
)
{
switch
(
op
)
{
case
'n'
:
case
'N'
:
{
return
HIPBLAS_OP_N
;
}
case
't'
:
case
'T'
:
{
return
HIPBLAS_OP_T
;
}
case
'c'
:
case
'C'
:
{
return
HIPBLAS_OP_C
;
}
default:
{
UNIMPLEMENTED
();
}
}
return
HIPBLAS_OP_N
;
}
template
<
typename
T
>
struct
CudaDataTypeTrait
;
template
<
>
struct
CudaDataTypeTrait
<
float
>
{
const
static
hipblasDatatype_t
value
=
HIPBLAS_R_32F
;
};
template
<
>
struct
CudaDataTypeTrait
<
half
>
{
const
static
hipblasDatatype_t
value
=
HIPBLAS_R_16F
;
};
template
<
typename
T
>
void
CublasBatchGemm
(
hipblasHandle_t
handle
,
char
transa
,
char
transb
,
int64_t
m
,
int64_t
n
,
int64_t
k
,
T
alpha
,
const
T
*
a
,
int64_t
lda
,
int64_t
stridea
,
const
T
*
b
,
int64_t
ldb
,
int64_t
strideb
,
T
beta
,
T
*
c
,
int64_t
ldc
,
int64_t
stridec
,
int64_t
batch_size
)
{
hipblasOperation_t
opa
=
GetCublasOp
(
transa
);
hipblasOperation_t
opb
=
GetCublasOp
(
transb
);
hipblasDatatype_t
data_type
=
CudaDataTypeTrait
<
T
>::
value
;
OF_CUBLAS_CHECK
(
hipblasGemmStridedBatchedEx
(
handle
,
opa
,
opb
,
m
,
n
,
k
,
reinterpret_cast
<
const
void
*>
(
&
alpha
),
reinterpret_cast
<
const
void
*>
(
a
),
data_type
,
lda
,
stridea
,
reinterpret_cast
<
const
void
*>
(
b
),
data_type
,
ldb
,
strideb
,
reinterpret_cast
<
const
void
*>
(
&
beta
),
reinterpret_cast
<
void
*>
(
c
),
data_type
,
ldc
,
stridec
,
batch_size
,
data_type
,
HIPBLAS_GEMM_DEFAULT
));
}
template
<
>
void
CublasBatchGemm
<
half
>
(
hipblasHandle_t
handle
,
char
transa
,
char
transb
,
int64_t
m
,
int64_t
n
,
int64_t
k
,
half
alpha
,
const
half
*
a
,
int64_t
lda
,
int64_t
stridea
,
const
half
*
b
,
int64_t
ldb
,
int64_t
strideb
,
half
beta
,
half
*
c
,
int64_t
ldc
,
int64_t
stridec
,
int64_t
batch_size
)
{
using
comp_t
=
float
;
hipblasOperation_t
opa
=
GetCublasOp
(
transa
);
hipblasOperation_t
opb
=
GetCublasOp
(
transb
);
float
alpha_f
=
static_cast
<
comp_t
>
(
alpha
);
float
beta_f
=
static_cast
<
comp_t
>
(
beta
);
hipblasGemmAlgo_t
algo
=
HIPBLAS_GEMM_DEFAULT
;
hipblasDatatype_t
data_type
=
CudaDataTypeTrait
<
half
>::
value
;
hipblasDatatype_t
comp_type
=
CudaDataTypeTrait
<
comp_t
>::
value
;
OF_CUBLAS_CHECK
(
hipblasGemmStridedBatchedEx
(
handle
,
opa
,
opb
,
m
,
n
,
k
,
&
alpha_f
,
reinterpret_cast
<
const
void
*>
(
a
),
data_type
,
lda
,
stridea
,
reinterpret_cast
<
const
void
*>
(
b
),
data_type
,
ldb
,
strideb
,
&
beta_f
,
reinterpret_cast
<
void
*>
(
c
),
data_type
,
ldc
,
stridec
,
batch_size
,
comp_type
,
algo
));
}
template
<
>
void
CublasBatchGemm
<
float16
>
(
hipblasHandle_t
handle
,
char
transa
,
char
transb
,
int64_t
m
,
int64_t
n
,
int64_t
k
,
float16
alpha
,
const
float16
*
a
,
int64_t
lda
,
int64_t
stridea
,
const
float16
*
b
,
int64_t
ldb
,
int64_t
strideb
,
float16
beta
,
float16
*
c
,
int64_t
ldc
,
int64_t
stridec
,
int64_t
batch_size
)
{
CublasBatchGemm
<
half
>
(
handle
,
transa
,
transb
,
m
,
n
,
k
,
static_cast
<
half
>
(
alpha
),
reinterpret_cast
<
const
half
*>
(
a
),
lda
,
stridea
,
reinterpret_cast
<
const
half
*>
(
b
),
ldb
,
strideb
,
static_cast
<
half
>
(
beta
),
reinterpret_cast
<
half
*>
(
c
),
ldc
,
stridec
,
batch_size
);
}
template
<
typename
T
>
void
BatchedGemm
(
ep
::
Stream
*
stream
,
char
opa
,
char
opb
,
int64_t
m
,
int64_t
n
,
int64_t
k
,
float
alpha
,
const
T
*
a
,
int64_t
lda
,
int64_t
stridea
,
const
T
*
b
,
int64_t
ldb
,
int64_t
strideb
,
float
beta
,
T
*
c
,
int64_t
ldc
,
int64_t
stridec
,
int64_t
batch_size
)
{
// swap m and n, a and b to convert from row-major to col-major
CublasBatchGemm
<
T
>
(
stream
->
As
<
ep
::
CudaStream
>
()
->
cublas_handle
(),
opb
,
opa
,
n
,
m
,
k
,
static_cast
<
T
>
(
alpha
),
b
,
ldb
,
strideb
,
a
,
lda
,
stridea
,
static_cast
<
T
>
(
beta
),
c
,
ldc
,
stridec
,
batch_size
);
}
SliceParams
ConstructSliceParams4Value
(
int64_t
seq_len
,
int64_t
batch_size
,
int64_t
num_heads
,
int64_t
head_size
)
{
// slice (s, b, n, 3, h) to (s, b, n, 1, h)
SliceParams
params
;
params
.
ndim
=
4
;
params
.
dims
[
0
]
=
seq_len
;
params
.
dims
[
1
]
=
batch_size
;
params
.
dims
[
2
]
=
num_heads
;
params
.
dims
[
3
]
=
3
*
head_size
;
params
.
start
[
0
]
=
0
;
params
.
start
[
1
]
=
0
;
params
.
start
[
2
]
=
0
;
params
.
start
[
3
]
=
2
*
head_size
;
params
.
step
[
0
]
=
1
;
params
.
step
[
1
]
=
1
;
params
.
step
[
2
]
=
1
;
params
.
step
[
3
]
=
1
;
params
.
size
[
0
]
=
seq_len
;
params
.
size
[
1
]
=
batch_size
;
params
.
size
[
2
]
=
num_heads
;
params
.
size
[
3
]
=
head_size
;
return
params
;
}
template
<
typename
T
>
void
TransposeGpu
(
ep
::
Stream
*
stream
,
DataType
data_type
,
const
ShapeView
&
in_shape
,
const
ShapeView
&
out_shape
,
const
std
::
vector
<
int32_t
>&
perm
,
const
T
*
in
,
T
*
out
)
{
CHECK_EQ
(
in_shape
.
NumAxes
(),
out_shape
.
NumAxes
());
int32_t
num_axes
=
in_shape
.
NumAxes
();
CHECK_EQ
(
num_axes
,
perm
.
size
());
for
(
int
i
=
0
;
i
<
perm
.
size
();
++
i
)
{
CHECK_EQ
(
in_shape
.
At
(
perm
[
i
]),
out_shape
.
At
(
i
));
}
auto
transpose
=
ep
::
primitive
::
NewPrimitive
<
ep
::
primitive
::
PermuteFactory
>
(
stream
->
device_type
(),
in_shape
.
NumAxes
());
CHECK
(
transpose
);
transpose
->
Launch
(
stream
,
data_type
,
in_shape
.
NumAxes
(),
in_shape
.
ptr
(),
in
,
perm
.
data
(),
out
);
}
template
<
typename
T
>
class
FusedSelfAttentionQueryMulKeyAndValueGpuKernel
final
:
public
user_op
::
OpKernel
{
public:
FusedSelfAttentionQueryMulKeyAndValueGpuKernel
()
=
default
;
~
FusedSelfAttentionQueryMulKeyAndValueGpuKernel
()
override
=
default
;
private:
using
user_op
::
OpKernel
::
Compute
;
void
Compute
(
user_op
::
KernelComputeContext
*
ctx
)
const
override
{
const
user_op
::
Tensor
*
h_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"hidden_states"
,
0
);
int64_t
seq_len
=
h_tensor
->
shape_view
().
At
(
0
);
int64_t
batch_size
=
h_tensor
->
shape_view
().
At
(
1
);
int64_t
hidden_size
=
h_tensor
->
shape_view
().
At
(
2
);
int64_t
head_size
=
ctx
->
Attr
<
int64_t
>
(
"head_size"
);
int64_t
num_heads
=
hidden_size
/
(
3
*
head_size
);
int64_t
ld
=
batch_size
*
hidden_size
;
int64_t
stride
=
3
*
head_size
;
int64_t
k_offset
=
head_size
;
// q * k: (sq, b, n, h) x (sk, b, n, h) => (b, n, sq, h) x (b, n, sk, h)
// => (b, n, sq, h) x (b, n, h, sk) -> (b, n, sq, sk)
float
alpha
=
ctx
->
Attr
<
float
>
(
"alpha"
);
user_op
::
Tensor
*
qmk_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"query_mul_key"
,
0
);
const
T
*
q_dptr
=
h_tensor
->
dptr
<
T
>
();
const
T
*
k_dptr
=
h_tensor
->
dptr
<
T
>
()
+
k_offset
;
BatchedGemm
<
T
>
(
ctx
->
stream
(),
'N'
,
'T'
,
seq_len
,
seq_len
,
head_size
,
alpha
,
q_dptr
,
ld
,
stride
,
k_dptr
,
ld
,
stride
,
0.0
f
,
qmk_tensor
->
mut_dptr
<
T
>
(),
seq_len
,
seq_len
*
seq_len
,
batch_size
*
num_heads
);
// slice v
user_op
::
Tensor
*
tmp_v_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"tmp_buffer"
,
0
);
user_op
::
Tensor
*
v_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"value"
,
0
);
SliceParams
params
=
ConstructSliceParams4Value
(
seq_len
,
batch_size
,
num_heads
,
head_size
);
SliceKernelUtil
<
DeviceType
::
kCUDA
,
T
>::
Forward
(
ctx
->
stream
(),
params
,
h_tensor
->
dptr
<
T
>
(),
tmp_v_tensor
->
mut_dptr
<
T
>
());
// v from (s, b, n, h) transpose to (b, n, s, h)
Shape
value_shape
({
seq_len
,
batch_size
,
num_heads
,
head_size
});
TransposeGpu
<
T
>
(
ctx
->
stream
(),
h_tensor
->
data_type
(),
value_shape
,
v_tensor
->
shape_view
(),
{
1
,
2
,
0
,
3
},
tmp_v_tensor
->
dptr
<
T
>
(),
v_tensor
->
mut_dptr
<
T
>
());
}
bool
AlwaysComputeWhenAllOutputsEmpty
()
const
override
{
return
false
;
}
};
template
<
typename
T
>
class
FusedSelfAttentionQueryMulKeyAndValueGradGpuKernel
final
:
public
user_op
::
OpKernel
{
public:
FusedSelfAttentionQueryMulKeyAndValueGradGpuKernel
()
=
default
;
~
FusedSelfAttentionQueryMulKeyAndValueGradGpuKernel
()
override
=
default
;
private:
using
user_op
::
OpKernel
::
Compute
;
void
Compute
(
user_op
::
KernelComputeContext
*
ctx
)
const
override
{
const
user_op
::
Tensor
*
v_grad_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"value_grad"
,
0
);
const
user_op
::
Tensor
*
qmk_grad_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"query_mul_key_grad"
,
0
);
const
user_op
::
Tensor
*
h_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"hidden_states"
,
0
);
user_op
::
Tensor
*
tmp_v_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"tmp_buffer"
,
0
);
user_op
::
Tensor
*
h_grad_tensor
=
ctx
->
Tensor4ArgNameAndIndex
(
"hidden_states_grad"
,
0
);
float
alpha
=
ctx
->
Attr
<
float
>
(
"alpha"
);
int64_t
seq_len
=
h_grad_tensor
->
shape_view
().
At
(
0
);
int64_t
batch_size
=
h_grad_tensor
->
shape_view
().
At
(
1
);
int64_t
hidden_size
=
h_grad_tensor
->
shape_view
().
At
(
2
);
int64_t
num_heads
=
v_grad_tensor
->
shape_view
().
At
(
1
);
int64_t
head_size
=
v_grad_tensor
->
shape_view
().
At
(
3
);
int64_t
ld
=
batch_size
*
hidden_size
;
int64_t
stride
=
3
*
head_size
;
CHECK_EQ
(
hidden_size
,
num_heads
*
stride
);
// transpose from (b, n, s, h) to (s, b, n, h)
Shape
value_shape
({
seq_len
,
batch_size
,
num_heads
,
head_size
});
TransposeGpu
<
T
>
(
ctx
->
stream
(),
v_grad_tensor
->
data_type
(),
v_grad_tensor
->
shape_view
(),
value_shape
,
{
2
,
0
,
1
,
3
},
v_grad_tensor
->
dptr
<
T
>
(),
tmp_v_tensor
->
mut_dptr
<
T
>
());
// slice v grad
SliceParams
params
=
ConstructSliceParams4Value
(
seq_len
,
batch_size
,
num_heads
,
head_size
);
SliceKernelUtil
<
DeviceType
::
kCUDA
,
T
>::
Backward
(
ctx
->
stream
(),
params
,
tmp_v_tensor
->
dptr
<
T
>
(),
h_grad_tensor
->
mut_dptr
<
T
>
());
// grad_q = grad_qmk * k
// (b, n, sq, sk) x (b, n, sk, h) -> (b, n, s, h) <= (s, b, n, h) <= (s, b, n, 3, h)
const
T
*
qmk_grad_dptr
=
qmk_grad_tensor
->
dptr
<
T
>
();
const
T
*
k_dptr
=
h_tensor
->
dptr
<
T
>
()
+
head_size
;
T
*
grad_q_dptr
=
h_grad_tensor
->
mut_dptr
<
T
>
();
BatchedGemm
<
T
>
(
ctx
->
stream
(),
'N'
,
'N'
,
seq_len
,
head_size
,
seq_len
,
alpha
,
qmk_grad_dptr
,
seq_len
,
seq_len
*
seq_len
,
k_dptr
,
ld
,
stride
,
0.0
f
,
grad_q_dptr
,
ld
,
stride
,
batch_size
*
num_heads
);
// grad_k = grad_qmk * q
// (b, n, sk, sq) x (b, n, sq, h) -> (b, n, sk, h) <= (s, b, n, h) <= (s, b, n, 3, h)
const
T
*
q_dptr
=
h_tensor
->
dptr
<
T
>
();
T
*
grad_k_dptr
=
h_grad_tensor
->
mut_dptr
<
T
>
()
+
head_size
;
BatchedGemm
<
T
>
(
ctx
->
stream
(),
'T'
,
'N'
,
seq_len
,
head_size
,
seq_len
,
alpha
,
qmk_grad_dptr
,
seq_len
,
seq_len
*
seq_len
,
q_dptr
,
ld
,
stride
,
0.0
f
,
grad_k_dptr
,
ld
,
stride
,
batch_size
*
num_heads
);
}
bool
AlwaysComputeWhenAllOutputsEmpty
()
const
override
{
return
false
;
}
};
size_t
InferTmpBufferSize
(
user_op
::
InferContext
*
ctx
)
{
const
Shape
*
value_shape
=
ctx
->
OutputShape
(
"value"
,
0
);
DataType
value_dtype
=
*
ctx
->
OutputDType
(
"value"
,
0
);
return
value_shape
->
elem_cnt
()
*
GetSizeOfDataType
(
value_dtype
);
}
size_t
InferGradTmpBufferSize
(
user_op
::
InferContext
*
ctx
)
{
const
Shape
&
value_shape
=
ctx
->
InputShape
(
"value_grad"
,
0
);
const
DataType
&
value_dtype
=
ctx
->
InputDType
(
"value_grad"
,
0
);
return
value_shape
.
elem_cnt
()
*
GetSizeOfDataType
(
value_dtype
);
}
}
// namespace
#define REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_CUDA_KERNEL(dtype) \
REGISTER_USER_KERNEL("fused_self_attention_query_mul_key_and_value") \
.SetCreateFn<FusedSelfAttentionQueryMulKeyAndValueGpuKernel<dtype>>() \
.SetIsMatchedHob((user_op::HobDeviceType() == DeviceType::kCUDA) \
&& (user_op::HobDataType("hidden_states", 0) == GetDataType<dtype>::value)) \
.SetInferTmpSizeFn(InferTmpBufferSize);
#define REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_GRAD_CUDA_KERNEL(dtype) \
REGISTER_USER_KERNEL("fused_self_attention_query_mul_key_and_value_grad") \
.SetCreateFn<FusedSelfAttentionQueryMulKeyAndValueGradGpuKernel<dtype>>() \
.SetIsMatchedHob((user_op::HobDeviceType() == DeviceType::kCUDA) \
&& (user_op::HobDataType("hidden_states", 0) == GetDataType<dtype>::value)) \
.SetInferTmpSizeFn(InferGradTmpBufferSize);
REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_CUDA_KERNEL
(
float
)
REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_CUDA_KERNEL
(
float16
)
REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_GRAD_CUDA_KERNEL
(
float
)
REGISTER_FUSED_SELF_ATTENTION_QUERY_MUL_KEY_AND_VALUE_GRAD_CUDA_KERNEL
(
float16
)
}
// namespace oneflow
\ No newline at end of file
Prev
1
…
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment