Unverified Commit e9e5f61c authored by Jeffrey Morgan's avatar Jeffrey Morgan Committed by GitHub
Browse files

llama: update to commit 2016f07b (#10352)

parent 11dde418
UPSTREAM=https://github.com/ggerganov/llama.cpp.git
WORKDIR=llama/vendor
FETCH_HEAD=71e90e8813f90097701e62f7fce137d96ddf41e2
FETCH_HEAD=2016f07bd106c73699ecbaace80f55db5ed95dac
.PHONY: help
help:
......
int LLAMA_BUILD_NUMBER = 0;
char const *LLAMA_COMMIT = "71e90e8813f90097701e62f7fce137d96ddf41e2";
char const *LLAMA_COMMIT = "2016f07bd106c73699ecbaace80f55db5ed95dac";
char const *LLAMA_COMPILER = "";
char const *LLAMA_BUILD_TARGET = "";
......@@ -50,7 +50,6 @@
// tensor name constants
//
#define TN_TOKEN_EMBD "%s.token_embd.weight"
#define TN_POS_EMBD "%s.position_embd.weight"
#define TN_CLASS_EMBD "v.class_embd"
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
......@@ -66,8 +65,6 @@
#define TN_LN_2 "%s.blk.%d.ln2.%s"
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_TEXT_PROJ "text_projection.weight"
#define TN_VIS_PROJ "visual_projection.weight"
#define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
......
......@@ -27,6 +27,7 @@
#include <sstream>
#include <cinttypes>
#include <limits>
#include <array>
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
......@@ -1719,45 +1720,6 @@ bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length
return true;
}
// Linear interpolation between two points
inline float clip_lerp(float s, float e, float t) {
return s + (e - s) * t;
}
// Bilinear resize function
static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
dst.nx = target_width;
dst.ny = target_height;
dst.buf.resize(3 * target_width * target_height);
float x_ratio = static_cast<float>(src.nx - 1) / target_width;
float y_ratio = static_cast<float>(src.ny - 1) / target_height;
for (int y = 0; y < target_height; y++) {
for (int x = 0; x < target_width; x++) {
float px = x_ratio * x;
float py = y_ratio * y;
int x_floor = static_cast<int>(px);
int y_floor = static_cast<int>(py);
float x_lerp = px - x_floor;
float y_lerp = py - y_floor;
for (int c = 0; c < 3; c++) {
float top = clip_lerp(
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
x_lerp
);
float bottom = clip_lerp(
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
x_lerp
);
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
}
}
}
}
// Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
dst.nx = src.nx;
......@@ -1771,336 +1733,489 @@ static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32
}
}
inline int clip(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
// set of tools to manupulate images
// in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
struct image_manipulation {
// Bilinear resize function
static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
dst.nx = target_width;
dst.ny = target_height;
dst.buf.resize(3 * target_width * target_height);
float x_ratio = static_cast<float>(src.nx - 1) / target_width;
float y_ratio = static_cast<float>(src.ny - 1) / target_height;
for (int y = 0; y < target_height; y++) {
for (int x = 0; x < target_width; x++) {
float px = x_ratio * x;
float py = y_ratio * y;
int x_floor = static_cast<int>(px);
int y_floor = static_cast<int>(py);
float x_lerp = px - x_floor;
float y_lerp = py - y_floor;
for (int c = 0; c < 3; c++) {
float top = lerp(
static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
x_lerp
);
float bottom = lerp(
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
x_lerp
);
dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
}
}
}
}
static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
const int nx = img.nx;
const int ny = img.ny;
dst.nx = target_width;
dst.ny = target_height;
dst.buf.resize(3 * target_width * target_height);
float Cc;
float C[5];
float d0, d2, d3, a0, a1, a2, a3;
int i, j, k, jj;
int x, y;
float dx, dy;
float tx, ty;
tx = (float)nx / (float)target_width;
ty = (float)ny / (float)target_height;
// Bicubic interpolation; adapted from ViT.cpp, inspired from :
// -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
// -> https://en.wikipedia.org/wiki/Bicubic_interpolation
for (i = 0; i < target_height; i++) {
for (j = 0; j < target_width; j++) {
x = (int)(tx * j);
y = (int)(ty * i);
dx = tx * j - x;
dy = ty * i - y;
for (k = 0; k < 3; k++) {
for (jj = 0; jj <= 3; jj++) {
d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
d0 = C[0] - C[1];
d2 = C[2] - C[1];
d3 = C[3] - C[1];
a0 = C[1];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
// Bicubic resize function
// part of image will be cropped if the aspect ratio is different
static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
const int nx = img.nx;
const int ny = img.ny;
dst.nx = target_width;
dst.ny = target_height;
dst.buf.resize(3 * target_width * target_height);
float Cc;
float C[5];
float d0, d2, d3, a0, a1, a2, a3;
int i, j, k, jj;
int x, y;
float dx, dy;
float tx, ty;
tx = (float)nx / (float)target_width;
ty = (float)ny / (float)target_height;
// Bicubic interpolation; adapted from ViT.cpp, inspired from :
// -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
// -> https://en.wikipedia.org/wiki/Bicubic_interpolation
for (i = 0; i < target_height; i++) {
for (j = 0; j < target_width; j++) {
x = (int)(tx * j);
y = (int)(ty * i);
dx = tx * j - x;
dy = ty * i - y;
for (k = 0; k < 3; k++) {
for (jj = 0; jj <= 3; jj++) {
d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
d0 = C[0] - C[1];
d2 = C[2] - C[1];
d3 = C[3] - C[1];
a0 = C[1];
a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
}
}
}
}
return true;
}
return true;
}
// llava-1.6 type of resize_and_pad
// if the ratio is not 1:1, padding with pad_color will be applied
// pad_color is single channel, default is 0 (black)
static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
int target_width = target_resolution.width;
int target_height = target_resolution.height;
// llava-1.6 type of resize_and_pad (black)
static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
int target_width = target_resolution.first;
int target_height = target_resolution.second;
float scale_w = static_cast<float>(target_width) / image.nx;
float scale_h = static_cast<float>(target_height) / image.ny;
float scale_w = static_cast<float>(target_width) / image.nx;
float scale_h = static_cast<float>(target_height) / image.ny;
int new_width, new_height;
int new_width, new_height;
if (scale_w < scale_h) {
new_width = target_width;
new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
} else {
new_height = target_height;
new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
}
if (scale_w < scale_h) {
new_width = target_width;
new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
} else {
new_height = target_height;
new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
}
clip_image_u8 resized_image;
bicubic_resize(image, resized_image, new_width, new_height);
clip_image_u8 resized_image;
// bilinear_resize(image, resized_image, new_width, new_height);
bicubic_resize(image, resized_image, new_width, new_height);
clip_image_u8 padded_image;
padded_image.nx = target_width;
padded_image.ny = target_height;
padded_image.buf.resize(3 * target_width * target_height);
clip_image_u8 padded_image;
padded_image.nx = target_width;
padded_image.ny = target_height;
padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
// Fill the padded image with the fill color
for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
padded_image.buf[i] = pad_color[0];
padded_image.buf[i + 1] = pad_color[1];
padded_image.buf[i + 2] = pad_color[2];
}
// Calculate padding offsets
int pad_x = (target_width - new_width) / 2;
int pad_y = (target_height - new_height) / 2;
// Calculate padding offsets
int pad_x = (target_width - new_width) / 2;
int pad_y = (target_height - new_height) / 2;
// Copy the resized image into the center of the padded buffer
for (int y = 0; y < new_height; ++y) {
for (int x = 0; x < new_width; ++x) {
for (int c = 0; c < 3; ++c) {
padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
// Copy the resized image into the center of the padded buffer
for (int y = 0; y < new_height; ++y) {
for (int x = 0; x < new_width; ++x) {
for (int c = 0; c < 3; ++c) {
padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
}
}
}
dst = std::move(padded_image);
}
image_output = std::move(padded_image);
}
static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
dst.nx = w;
dst.ny = h;
dst.buf.resize(3 * w * h);
for (int i = 0; i < h; ++i) {
for (int j = 0; j < w; ++j) {
int src_idx = 3 * ((y + i)*image.nx + (x + j));
int dst_idx = 3 * (i*w + j);
dst.buf[dst_idx] = image.buf[src_idx];
dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
}
}
}
private:
static inline int clip(int x, int lower, int upper) {
return std::max(lower, std::min(x, upper));
}
// Linear interpolation between two points
static inline float lerp(float s, float e, float t) {
return s + (e - s) * t;
}
};
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
* implementation of LLaVA-UHD:
* - https://arxiv.org/pdf/2403.11703
* - https://github.com/thunlp/LLaVA-UHD
* - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
*
* overview:
* - an image always have a single overview (downscaled image)
* - an image can have 0 or multiple slices, depending on the image size
* - each slice can then be considered as a separate image
*
* for example:
*
* @param original_size The original size of the image in the format (width, height).
* @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
* @return The best fit resolution in the format (width, height).
* [overview] --> [slice 1] --> [slice 2]
* | |
* +--> [slice 3] --> [slice 4]
*/
static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
int original_width = original_size.first;
int original_height = original_size.second;
std::pair<int, int> best_fit;
int max_effective_resolution = 0;
int min_wasted_resolution = std::numeric_limits<int>::max();
for (const auto& resolution : possible_resolutions) {
int width = resolution.first;
int height = resolution.second;
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
int downscaled_width = static_cast<int>(original_width * scale);
int downscaled_height = static_cast<int>(original_height * scale);
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
int wasted_resolution = (width * height) - effective_resolution;
// LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
max_effective_resolution = effective_resolution;
min_wasted_resolution = wasted_resolution;
best_fit = resolution;
}
}
return best_fit;
}
struct llava_uhd {
struct slice_coordinates {
int x;
int y;
clip_image_size size;
};
static std::vector<clip_image_u8_ptr> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
std::vector<clip_image_u8_ptr> patches;
int width = image.nx;
int height = image.ny;
for (int i = 0; i < height; i += patch_size) {
for (int j = 0; j < width; j += patch_size) {
clip_image_u8_ptr patch(clip_image_u8_init());
patch->nx = std::min(patch_size, width - j);
patch->ny = std::min(patch_size, height - i);
patch->buf.resize(3 * patch->nx * patch->ny);
for (int y = 0; y < patch->ny; ++y) {
for (int x = 0; x < patch->nx; ++x) {
for (int c = 0; c < 3; ++c) {
patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
struct slice_instructions {
clip_image_size overview_size; // size of downscaled image
clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
std::vector<slice_coordinates> slices;
bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
};
static int get_max_slices(struct clip_ctx * ctx) {
if (clip_is_minicpmv(ctx)) {
return 9;
}
return 0;
}
static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
slice_instructions res;
const int patch_size = clip_get_patch_size(ctx);
const int slice_size = clip_get_image_size(ctx);
const int max_slice_nums = get_max_slices(ctx);
const int original_width = original_size.width;
const int original_height = original_size.height;
const float log_ratio = log((float)original_width / original_height);
const float ratio = (float)original_width * original_height / (slice_size * slice_size);
const int multiple = fmin(ceil(ratio), max_slice_nums);
const bool has_slices = (multiple > 1);
const bool has_pinpoints = !ctx->vision_model.hparams.image_grid_pinpoints.empty();
if (has_pinpoints) {
// has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
auto refine_size = llava_uhd::select_best_resolution(
ctx->vision_model.hparams.image_grid_pinpoints,
original_size);
res.overview_size = clip_image_size{slice_size, slice_size};
res.refined_size = refine_size;
res.grid_size = clip_image_size{0, 0};
res.padding_refined = true;
for (int y = 0; y < refine_size.height; y += slice_size) {
for (int x = 0; x < refine_size.width; x += slice_size) {
slice_coordinates slice;
slice.x = x;
slice.y = y;
slice.size.width = std::min(slice_size, refine_size.width - x);
slice.size.height = std::min(slice_size, refine_size.height - y);
res.slices.push_back(slice);
if (x == 0) {
res.grid_size.width++;
}
}
res.grid_size.height++;
}
patches.push_back(std::move(patch));
}
}
return patches;
}
static int ensure_divide(int length, int patch_size) {
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
}
return res;
}
static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.first;
int height = original_size.second;
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
float r = static_cast<float>(width) / height;
height = static_cast<int>(scale_resolution / std::sqrt(r));
width = static_cast<int>(height * r);
}
int best_width = ensure_divide(width, patch_size);
int best_height = ensure_divide(height, patch_size);
return std::make_pair(best_width, best_height);
}
// no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width, height;
std::tie(width, height) = original_size;
int grid_x, grid_y;
std::tie(grid_x, grid_y) = grid;
auto best_size = get_best_resize(original_size, slice_size, patch_size, has_slices);
res.overview_size = best_size;
int refine_width = ensure_divide(width, grid_x);
int refine_height = ensure_divide(height, grid_y);
if (!has_slices) {
// skip slicing logic
res.refined_size = clip_image_size{0, 0};
res.grid_size = clip_image_size{0, 0};
int grid_width = refine_width / grid_x;
int grid_height = refine_height / grid_y;
} else {
auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
res.grid_size = best_grid;
res.refined_size = refine_size;
int width = refine_size.width;
int height = refine_size.height;
int grid_x = int(width / best_grid.width);
int grid_y = int(height / best_grid.height);
for (int patches_y = 0, ic = 0;
patches_y < refine_size.height && ic < best_grid.height;
patches_y += grid_y, ic += 1) {
for (int patches_x = 0, jc = 0;
patches_x < refine_size.width && jc < best_grid.width;
patches_x += grid_x, jc += 1) {
slice_coordinates slice;
slice.x = patches_x;
slice.y = patches_y;
slice.size.width = grid_x;
slice.size.height = grid_y;
res.slices.push_back(slice);
// LOG_INF("slice %d: %d %d %d %d\n", ic, patches_i, patches_j, grid_x, grid_y);
}
}
}
// auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
int best_grid_width, best_grid_height;
std::tie(best_grid_width, best_grid_height) = best_grid_size;
return res;
}
// std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
return refine_size;
}
static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
std::vector<clip_image_u8_ptr> output;
static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
std::vector<int> candidate_split_grids_nums;
for (int i : {multiple - 1, multiple, multiple + 1}) {
if (i == 1 || i > max_slice_nums) {
continue;
// resize to overview size
clip_image_u8_ptr resized_img(clip_image_u8_init());
image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
output.push_back(std::move(resized_img));
if (inst.slices.empty()) {
// no slices, just return the resized image
return output;
}
candidate_split_grids_nums.push_back(i);
}
std::vector<std::pair<int, int>> candidate_grids;
for (int split_grids_nums : candidate_split_grids_nums) {
int m = 1;
while (m <= split_grids_nums) {
if (split_grids_nums % m == 0) {
candidate_grids.emplace_back(m, split_grids_nums / m);
// resize to refined size
clip_image_u8_ptr refined_img(clip_image_u8_init());
if (inst.padding_refined) {
image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
} else {
image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
}
// create slices
for (const auto & slice : inst.slices) {
int x = slice.x;
int y = slice.y;
int w = slice.size.width;
int h = slice.size.height;
clip_image_u8_ptr img_slice(clip_image_u8_init());
image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
output.push_back(std::move(img_slice));
}
return output;
}
private:
static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.width;
int height = original_size.height;
if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
float r = static_cast<float>(width) / height;
height = static_cast<int>(scale_resolution / std::sqrt(r));
width = static_cast<int>(height * r);
}
clip_image_size res;
res.width = ensure_divide(width, patch_size);
res.height = ensure_divide(height, patch_size);
return res;
}
/**
* Selects the best resolution from a list of possible resolutions based on the original size.
*
* @param original_size The original size of the image
* @param possible_resolutions A list of possible resolutions
* @return The best fit resolution
*/
static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
int original_width = original_size.width;
int original_height = original_size.height;
clip_image_size best_fit;
int max_effective_resolution = 0;
int min_wasted_resolution = std::numeric_limits<int>::max();
for (const auto & resolution : possible_resolutions) {
int width = resolution.width;
int height = resolution.height;
float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
int downscaled_width = static_cast<int>(original_width * scale);
int downscaled_height = static_cast<int>(original_height * scale);
int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
int wasted_resolution = (width * height) - effective_resolution;
// LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
max_effective_resolution = effective_resolution;
min_wasted_resolution = wasted_resolution;
best_fit = resolution;
}
++m;
}
return best_fit;
}
std::pair<int, int> best_grid{1, 1};
float min_error = std::numeric_limits<float>::infinity();
for (const auto& grid : candidate_grids) {
float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
if (error < min_error) {
best_grid = grid;
min_error = error;
// used by llava 1.6 with custom list of pinpoints
static clip_image_size select_best_resolution(const std::vector<int32_t> & pinpoints, const clip_image_size & original_size) {
std::vector<clip_image_size> possible_resolutions;
for (size_t i = 0; i < pinpoints.size(); i += 2) {
possible_resolutions.push_back(clip_image_size{pinpoints[i], pinpoints[i+1]});
}
return select_best_resolution(original_size, possible_resolutions);
}
return best_grid;
}
// inspired from LLaVA-UHD:
// -> https://arxiv.org/pdf/2403.11703
// -> https://github.com/thunlp/LLaVA-UHD
// -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
static std::vector<std::vector<clip_image_u8_ptr>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
const std::pair<int, int> original_size={img->nx,img->ny};
const int original_width = img->nx;
const int original_height = img->ny;
const float log_ratio = log(1.0*original_width/original_height);
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
const int multiple = fmin(ceil(ratio), max_slice_nums);
std::vector<std::vector<clip_image_u8_ptr>> images;
LOG_DBG("%s: multiple %d\n", __func__, multiple);
images.push_back(std::vector<clip_image_u8_ptr>());
if (multiple <= 1) {
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
clip_image_u8_ptr source_image(clip_image_u8_init());
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
// source_image = image.resize(best_size, Image.Resampling.BICUBIC)
images.back().push_back(std::move(source_image));
}
else if (multiple > 1) {
auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
clip_image_u8_ptr source_image(clip_image_u8_init());
bicubic_resize(*img, *source_image, best_size.first, best_size.second);
// source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
LOG_DBG("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
images.back().push_back(std::move(source_image));
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
LOG_DBG("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
clip_image_u8_ptr refine_image(clip_image_u8_init());
bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
LOG_DBG("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
// split_to_patches
int width = refine_image->nx;
int height = refine_image->ny;
int grid_x = int(width / best_grid.first);
int grid_y = int(height / best_grid.second);
for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
images.push_back(std::vector<clip_image_u8_ptr>());
for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
clip_image_u8_ptr patch(clip_image_u8_init());
patch->nx = grid_x;
patch->ny = grid_y;
patch->buf.resize(3 * patch->nx * patch->ny);
for (int y = patches_i; y < patches_i + grid_y; ++y) {
for (int x = patches_j; x < patches_j + grid_x; ++x) {
const int i = 3 * (y * refine_image->nx + x);
const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
patch->buf[j] = refine_image->buf[i];
patch->buf[j+1] = refine_image->buf[i+1];
patch->buf[j+2] = refine_image->buf[i+2];
}
static int ensure_divide(int length, int patch_size) {
return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
}
static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
int width = original_size.width;
int height = original_size.height;
int grid_x = grid.width;
int grid_y = grid.height;
int refine_width = ensure_divide(width, grid_x);
int refine_height = ensure_divide(height, grid_y);
clip_image_size grid_size;
grid_size.width = refine_width / grid_x;
grid_size.height = refine_height / grid_y;
auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
int best_grid_width = best_grid_size.width;
int best_grid_height = best_grid_size.height;
clip_image_size refine_size;
refine_size.width = best_grid_width * grid_x;
refine_size.height = best_grid_height * grid_y;
return refine_size;
}
static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
std::vector<int> candidate_split_grids_nums;
for (int i : {multiple - 1, multiple, multiple + 1}) {
if (i == 1 || i > max_slice_nums) {
continue;
}
candidate_split_grids_nums.push_back(i);
}
std::vector<clip_image_size> candidate_grids;
for (int split_grids_nums : candidate_split_grids_nums) {
int m = 1;
while (m <= split_grids_nums) {
if (split_grids_nums % m == 0) {
candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
}
images.back().push_back(std::move(patch));
++m;
}
}
clip_image_size best_grid{1, 1};
float min_error = std::numeric_limits<float>::infinity();
for (const auto& grid : candidate_grids) {
float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
if (error < min_error) {
best_grid = grid;
min_error = error;
}
}
return best_grid;
}
return images;
}
};
// TODO @ngxson : decprecate the load_image_size singleton pattern
int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
const int max_slice_nums=9;
const int scale_resolution=448;
const int original_width = ctx_clip->load_image_size.width;
const int original_height = ctx_clip->load_image_size.height;
const float log_ratio = log(1.0*original_width/original_height);
const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
const int multiple = fmin(ceil(ratio), max_slice_nums);
std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
return best_grid.first;
const auto inst = llava_uhd::get_slice_instructions(ctx_clip, ctx_clip->load_image_size);
return inst.grid_size.width;
}
// returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
// res_imgs memory is being allocated here, previous allocations will be freed if found
bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
if (!ctx->has_vision_encoder) {
LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
return false;
}
clip_image_size original_size{img->nx, img->ny};
bool pad_to_square = true;
auto & params = ctx->vision_model.hparams;
// The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
pad_to_square = false;
}
if (clip_is_minicpmv(ctx)) {
int max_slice_nums = 9;
std::vector<std::vector<clip_image_u8_ptr>> imgs = uhd_slice_image(img, max_slice_nums);
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
for (size_t i = 0; i < imgs.size(); ++i) {
for (size_t j = 0; j < imgs[i].size(); ++j) {
LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i][j], *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
// clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
return true;
}
......@@ -2109,7 +2224,7 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
auto patch_size = clip_get_patch_size(ctx) * 2;
int nx = ceil((float)img->nx / patch_size) * patch_size;
int ny = ceil((float)img->ny / patch_size) * patch_size;
bicubic_resize(*img, resized, nx, ny);
image_manipulation::bicubic_resize(*img, resized, nx, ny);
clip_image_f32_ptr img_f32(clip_image_f32_init());
// clip_image_f32_ptr res(clip_image_f32_init());
......@@ -2121,8 +2236,8 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
if (ctx->has_glm_projector || ctx->proj_type == PROJECTOR_TYPE_GEMMA3) {
clip_image_u8 resized_image;
int32_t sz=ctx->vision_model.hparams.image_size;
bicubic_resize(*img, resized_image,sz,sz);
int sz = params.image_size;
image_manipulation::bicubic_resize(*img, resized_image, sz, sz);
clip_image_f32_ptr img_f32(clip_image_f32_init());
//clip_image_save_to_bmp(resized_image, "resized.bmp");
normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std);
......@@ -2130,156 +2245,47 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, str
return true;
}
bool pad_to_square = true;
if (!ctx->has_vision_encoder) {
LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__);
return false;
}
auto & params = ctx->vision_model.hparams;
// The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
pad_to_square = false;
}
// free the previous res_imgs if any set
res_imgs->entries.clear();
// the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
if (pad_to_square && img->nx != img->ny) {
int longer_side = std::max(img->nx, img->ny);
if (pad_to_square) {
// for llava-1.5, we resize image to a square, and pad the shorter side with a background color
// see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
const int longer_side = std::max(img->nx, img->ny);
temp->nx = longer_side;
temp->ny = longer_side;
temp->buf.resize(3 * longer_side * longer_side);
const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
// fill with background color
for (size_t i = 0; i < temp->buf.size(); i++) {
temp->buf[i] = bc[i % 3];
}
// copy from the input image
for (int y = 0; y < img->ny; y++) {
for (int x = 0; x < img->nx; x++) {
const int i = 3 * (y * img->nx + x);
const int j = 3 * (y * temp->nx + x);
temp->buf[j] = img->buf[i];
temp->buf[j+1] = img->buf[i+1];
temp->buf[j+2] = img->buf[i+2];
}
}
} else {
if (!params.image_grid_pinpoints.empty()) {
// "spatial_unpad" with "anyres" processing for llava-1.6
std::vector<std::pair<int, int>> possible_resolutions;
for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) {
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
}
std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
// clip_image_save_to_bmp(*img, "input.bmp");
resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
// clip_image_save_to_bmp(*temp, "resized.bmp");
// visually verify normalized image:
// normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
// {
// clip_image_u8 * temp2 = clip_image_u8_init();
// clip_image_convert_f32_to_u8(*res, *temp2);
// clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
// clip_image_u8_free(temp2);
// }
std::vector<clip_image_u8_ptr> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
clip_image_u8_ptr image_original_resize(clip_image_u8_init());
// bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
patches.insert(patches.begin(), std::move(image_original_resize));
for (auto & patch : patches) {
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*patch, *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
return true;
} else {
temp->nx = img->nx;
temp->ny = img->ny;
temp->buf.resize(img->buf.size());
memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
}
}
const int nx = temp->nx;
const int ny = temp->ny;
// clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
const int nx2 = ctx->vision_model.hparams.image_size;
const int ny2 = ctx->vision_model.hparams.image_size;
clip_image_f32_ptr res(clip_image_f32_init());
res->nx = nx2;
res->ny = ny2;
res->buf.resize(3 * nx2 * ny2);
const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
// background color in RGB from LLaVA (this is the mean rgb color * 255)
const std::array<uint8_t, 3> pad_color = {122, 116, 104};
const int nx3 = int(nx / scale + 0.5f);
const int ny3 = int(ny / scale + 0.5f);
// resize the image to the target_size
image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
for (int y = 0; y < ny3; y++) {
for (int x = 0; x < nx3; x++) {
for (int c = 0; c < 3; c++) {
// linear interpolation
const float sx = (x + 0.5f) * scale - 0.5f;
const float sy = (y + 0.5f) * scale - 0.5f;
const int x0 = std::max(0, (int)std::floor(sx));
const int y0 = std::max(0, (int)std::floor(sy));
const int x1 = std::min(x0 + 1, nx - 1);
const int y1 = std::min(y0 + 1, ny - 1);
const float dx = sx - x0;
const float dy = sy - y0;
const int j00 = 3 * (y0 * nx + x0) + c;
const int j01 = 3 * (y0 * nx + x1) + c;
const int j10 = 3 * (y1 * nx + x0) + c;
const int j11 = 3 * (y1 * nx + x1) + c;
const float v00 = temp->buf[j00];
const float v01 = temp->buf[j01];
const float v10 = temp->buf[j10];
const float v11 = temp->buf[j11];
const float v0 = v00 * (1.0f - dx) + v01 * dx;
const float v1 = v10 * (1.0f - dx) + v11 * dx;
const float v = v0 * (1.0f - dy) + v1 * dy;
const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
return true;
const int i = 3 * (y * nx3 + x) + c;
} else if (!params.image_grid_pinpoints.empty()) {
// "spatial_unpad" with "anyres" processing for llava-1.6
auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
}
for (size_t i = 0; i < imgs.size(); ++i) {
// clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
clip_image_f32_ptr res(clip_image_f32_init());
normalize_image_u8_to_f32(*imgs[i], *res, ctx->image_mean, ctx->image_std);
res_imgs->entries.push_back(std::move(res));
}
}
// {
// clip_image_u8 * temp2 = clip_image_u8_init();
// clip_image_convert_f32_to_u8(*res, *temp2);
// clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
// clip_image_u8_free(temp2);
// }
// res_imgs.push_back(res);
return true;
res_imgs->entries.push_back(std::move(res));
}
return true;
GGML_ASSERT(false && "Unknown image preprocessing type");
}
ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
......
......@@ -145,6 +145,8 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
{ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
......@@ -1142,6 +1144,8 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
{ LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
{ LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
{ LLM_TENSOR_ATTN_K_B, "blk.%d.attn_k_b" },
{ LLM_TENSOR_ATTN_V_B, "blk.%d.attn_v_b" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
......@@ -1636,23 +1640,8 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_ATTN_Q_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_KV_A_MQA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_KV_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_DEC_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_DEC_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_QKV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_OUT, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_GATE, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_DOWN, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_UP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_DOWN_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_GATE_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_FFN_UP_SHEXP, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_Q_A, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_Q_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_KV_A_MQA, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_KV_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_K_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_ATTN_V_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_DEC_ATTN_Q, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_DEC_ATTN_K, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
{LLM_TENSOR_DEC_ATTN_V, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL_MAT}},
......
......@@ -149,6 +149,8 @@ enum llm_kv {
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
......@@ -311,6 +313,8 @@ enum llm_tensor {
LLM_TENSOR_ATTN_Q_B,
LLM_TENSOR_ATTN_KV_A_MQA,
LLM_TENSOR_ATTN_KV_B,
LLM_TENSOR_ATTN_K_B,
LLM_TENSOR_ATTN_V_B,
LLM_TENSOR_ATTN_Q_A_NORM,
LLM_TENSOR_ATTN_KV_A_NORM,
LLM_TENSOR_ATTN_SUB_NORM,
......
......@@ -10,6 +10,7 @@
#include <cstring>
#include <stdexcept>
#include <cinttypes>
#include <cmath>
//
// llama_context
......@@ -473,7 +474,6 @@ ggml_tensor * llama_context::build_rope_shift(
const auto & n_ctx_orig = cparams.n_ctx_orig_yarn;
const auto & yarn_ext_factor = cparams.yarn_ext_factor;
const auto & yarn_attn_factor = cparams.yarn_attn_factor;
const auto & yarn_beta_fast = cparams.yarn_beta_fast;
const auto & yarn_beta_slow = cparams.yarn_beta_slow;
......@@ -482,6 +482,10 @@ ggml_tensor * llama_context::build_rope_shift(
const auto & n_rot = hparams.n_rot;
const auto & rope_type = hparams.rope_type;
// See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) : cparams.yarn_attn_factor;
ggml_tensor * tmp;
if (ggml_is_quantized(cur->type)) {
......
......@@ -1194,6 +1194,7 @@ ggml_tensor * llm_graph_context::build_attn_mha(
ggml_tensor * v,
ggml_tensor * kq_b,
ggml_tensor * kq_mask,
ggml_tensor * v_mla,
bool v_trans,
float kq_scale) const {
//const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
......@@ -1205,8 +1206,6 @@ ggml_tensor * llm_graph_context::build_attn_mha(
//const auto & n_embd_head_k = hparams.n_embd_head_k;
//const auto & n_embd_head_v = hparams.n_embd_head_v;
const auto n_embd_head_v = v_trans ? v->ne[1] : v->ne[0];
const auto n_tokens = q->ne[1];
const auto n_head = q->ne[2];
const auto n_kv = k->ne[1];
......@@ -1235,7 +1234,12 @@ ggml_tensor * llm_graph_context::build_attn_mha(
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
cur = ggml_reshape_2d(ctx0, cur, n_embd_head_v*n_head, n_tokens);
if (v_mla) {
cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
cur = ggml_mul_mat(ctx0, v_mla, cur);
}
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
} else {
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
......@@ -1273,9 +1277,14 @@ ggml_tensor * llm_graph_context::build_attn_mha(
ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
// for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
if (v_mla) {
kqv = ggml_mul_mat(ctx0, v_mla, kqv);
}
cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
if (!cparams.offload_kqv) {
// all nodes between the KV store and the attention output are run on the CPU
......@@ -1310,6 +1319,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
GGML_UNUSED(n_tokens);
......@@ -1331,7 +1341,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
//cb(k, "v", il);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, false, kq_scale);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, false, kq_scale);
cb(cur, "kqv_out", il);
......@@ -1385,6 +1395,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
......@@ -1470,7 +1481,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_element_size(kv_self->v_l[il])*n_ctx*n_embd_head_v,
0);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_trans, kq_scale);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, v_trans, kq_scale);
cb(cur, "kqv_out", il);
if (wo) {
......@@ -1529,6 +1540,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
ggml_tensor * v_mla,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
......@@ -1548,7 +1560,7 @@ ggml_tensor * llm_graph_context::build_attn(
ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
//cb(k, "v", il);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, false, kq_scale);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, false, kq_scale);
cb(cur, "kqv_out", il);
......@@ -1717,4 +1729,3 @@ void llm_graph_context::build_pooling(
ggml_build_forward_expand(gf, cur);
}
......@@ -517,11 +517,12 @@ struct llm_graph_context {
ggml_tensor * build_attn_mha(
ggml_cgraph * gf,
ggml_tensor * q, // [n_embd_head_q, n_tokens, n_head_q]
ggml_tensor * k, // [n_embd_head_k, n_tokens, n_head_k]
ggml_tensor * v, // [n_embd_head_v, n_tokens, n_head_v] (v_trans == false)
ggml_tensor * q, // [n_embd_head_q, n_tokens, n_head_q]
ggml_tensor * k, // [n_embd_head_k, n_tokens, n_head_k]
ggml_tensor * v, // [n_embd_head_v, n_tokens, n_head_v] (v_trans == false)
ggml_tensor * kq_b,
ggml_tensor * kq_mask,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
bool v_trans,
float kq_scale) const;
......@@ -536,6 +537,7 @@ struct llm_graph_context {
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
ggml_tensor * kq_b,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
float kq_scale,
int il) const;
......@@ -550,6 +552,7 @@ struct llm_graph_context {
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
ggml_tensor * kq_b,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
float kq_scale,
int il) const;
......@@ -564,6 +567,7 @@ struct llm_graph_context {
ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
ggml_tensor * kq_b,
ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
float kq_scale,
int il) const;
......
......@@ -46,6 +46,10 @@ struct llama_hparams {
uint32_t n_rel_attn_bkts = 0;
uint32_t n_vocab = 0;
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
uint32_t n_embd_head_k_mla = 0;
uint32_t n_embd_head_v_mla = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
struct llama_hparams_convnext convnext;
......
......@@ -27,7 +27,7 @@ bool llama_kv_cache_unified::init(
recurrent = llama_model_is_recurrent(&model);
v_trans = !recurrent && !cparams.flash_attn;
can_shift = !recurrent && model.arch != LLM_ARCH_DEEPSEEK2; // not supported due to MLA
can_shift = !recurrent;
LLAMA_LOG_INFO("%s: kv_size = %d, offload = %d, type_k = '%s', type_v = '%s', n_layer = %d, can_shift = %d\n",
__func__, kv_size, offload, ggml_type_name(type_k), ggml_type_name(type_v), n_layer, can_shift);
......
......@@ -1170,6 +1170,8 @@ void llama_model::load_hparams(llama_model_loader & ml) {
ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
}
ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
......@@ -3281,8 +3283,14 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
{
const bool is_lite = (hparams.n_layer == 27);
 
const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
// note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
const int64_t n_embd_head_qk_rope = hparams.n_rot;
const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
 
const int64_t q_lora_rank = hparams.n_lora_q;
const int64_t kv_lora_rank = hparams.n_lora_kv;
......@@ -3308,14 +3316,22 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
 
if (!is_lite) {
layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
} else {
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
}
 
layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
// note: only old legacy GGUF files will have the unsplit wkv_b tensor in
if (is_mla) {
layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
} else {
layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
}
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
 
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
 
......@@ -4394,6 +4410,8 @@ void llama_model::print_info() const {
LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
......@@ -4600,7 +4618,7 @@ struct llm_build_llama : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
 
......@@ -4903,14 +4921,14 @@ struct llm_build_mllama: public llm_graph_context {
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
 
if (il == n_layer - 1) {
// skip computing output for unused tokens
......@@ -5053,7 +5071,7 @@ struct llm_build_deci : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
}
 
if (il == n_layer - 1) {
......@@ -5195,7 +5213,7 @@ struct llm_build_baichuan : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -5310,7 +5328,7 @@ struct llm_build_xverse : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -5435,7 +5453,7 @@ struct llm_build_falcon : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -5565,7 +5583,7 @@ struct llm_build_grok : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
}
 
if (il == n_layer - 1) {
......@@ -5716,7 +5734,7 @@ struct llm_build_dbrx : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -5830,7 +5848,7 @@ struct llm_build_starcoder : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -5929,7 +5947,7 @@ struct llm_build_refact : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -6083,7 +6101,7 @@ struct llm_build_bert : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
cb(cur, "kqv_out", il);
 
if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
......@@ -6200,7 +6218,7 @@ struct llm_build_bloom : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -6341,7 +6359,7 @@ struct llm_build_mpt : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -6487,7 +6505,7 @@ struct llm_build_stablelm : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -6610,7 +6628,7 @@ struct llm_build_qwen : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -6730,7 +6748,7 @@ struct llm_build_qwen2 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -6851,7 +6869,7 @@ struct llm_build_qwen2vl : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -6978,7 +6996,7 @@ struct llm_build_qwen2moe : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -7131,7 +7149,7 @@ struct llm_build_qwen3 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -7252,7 +7270,7 @@ struct llm_build_qwen3moe : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -7392,7 +7410,7 @@ struct llm_build_phi2 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
}
 
if (il == n_layer - 1) {
......@@ -7521,7 +7539,7 @@ struct llm_build_phi3 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
}
 
if (il == n_layer - 1) {
......@@ -7656,7 +7674,7 @@ struct llm_build_plamo : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
ggml_tensor * sa_out = cur;
 
......@@ -7763,7 +7781,7 @@ struct llm_build_gpt2 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -7879,7 +7897,7 @@ struct llm_build_codeshell : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -8008,7 +8026,7 @@ struct llm_build_orion : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -8135,7 +8153,7 @@ struct llm_build_internlm2 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -8332,7 +8350,7 @@ struct llm_build_minicpm3 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
q_states, k_states, v_states, nullptr, kq_scale, il);
q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
}
 
if (il == n_layer - 1) {
......@@ -8462,7 +8480,7 @@ struct llm_build_gemma : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
}
 
if (il == n_layer - 1) {
......@@ -8584,7 +8602,7 @@ struct llm_build_gemma2 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
}
 
cur = build_norm(cur,
......@@ -8725,7 +8743,7 @@ struct llm_build_gemma3 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, hparams.f_attention_scale, il);
Qcur, Kcur, Vcur, nullptr, nullptr, hparams.f_attention_scale, il);
}
 
cur = build_norm(cur,
......@@ -8865,7 +8883,7 @@ struct llm_build_starcoder2 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -9200,7 +9218,7 @@ struct llm_build_command_r : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -9335,7 +9353,7 @@ struct llm_build_cohere2 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -9466,7 +9484,7 @@ struct llm_build_olmo : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, nullptr,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -9586,7 +9604,7 @@ struct llm_build_olmo2 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
cur = build_norm(cur,
......@@ -9719,7 +9737,7 @@ struct llm_build_olmoe : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -9852,7 +9870,7 @@ struct llm_build_openelm : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -9966,7 +9984,7 @@ struct llm_build_gptneox : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -10116,7 +10134,7 @@ struct llm_build_arctic : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -10271,7 +10289,7 @@ struct llm_build_deepseek : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
}
 
if (il == n_layer - 1) {
......@@ -10361,15 +10379,22 @@ struct llm_build_deepseek2 : public llm_graph_context {
llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
bool is_lite = (hparams.n_layer == 27);
 
const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
// note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
const int64_t n_embd_head_qk_rope = hparams.n_rot;
const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
// We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
// See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
const uint32_t n_embd_head_qk_rope = hparams.n_rot;
const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
const uint32_t kv_lora_rank = hparams.n_lora_kv;
const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k));
const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
 
ggml_tensor * cur;
ggml_tensor * inpL;
......@@ -10395,16 +10420,14 @@ struct llm_build_deepseek2 : public llm_graph_context {
{
ggml_tensor * q = NULL;
if (!is_lite) {
// {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
cb(q, "q", il);
 
q = build_norm(q,
model.layers[il].attn_q_a_norm, NULL,
model.layers[il].attn_q_a_norm, nullptr,
LLM_NORM_RMS, il);
cb(q, "q", il);
 
// {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
cb(q, "q", il);
} else {
......@@ -10412,96 +10435,125 @@ struct llm_build_deepseek2 : public llm_graph_context {
cb(q, "q", il);
}
 
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
// split into {n_embd_head_qk_nope, n_head, n_tokens}
ggml_tensor * q_nope = ggml_view_3d(ctx0, q,
n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(q->type, n_embd_head_k),
ggml_row_size(q->type, n_embd_head_k) * n_head,
0);
cb(q_nope, "q_nope", il);
 
// and {n_head * n_embd_head_qk_rope, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
ggml_row_size(q->type, hparams.n_embd_head_k),
ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
// and {n_embd_head_qk_rope, n_head, n_tokens}
ggml_tensor * q_pe = ggml_view_3d(ctx0, q,
n_embd_head_qk_rope, n_head, n_tokens,
ggml_row_size(q->type, n_embd_head_k),
ggml_row_size(q->type, n_embd_head_k) * n_head,
ggml_row_size(q->type, n_embd_head_qk_nope));
cb(q_pe, "q_pe", il);
 
// {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_pe_compresseed, "kv_pe_compresseed", il);
ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
cb(kv_cmpr_pe, "kv_cmpr_pe", il);
 
// split into {kv_lora_rank, n_tokens}
ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
kv_pe_compresseed->nb[1],
ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe,
kv_lora_rank, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
0);
cb(kv_compressed, "kv_compressed", il);
cb(kv_cmpr, "kv_cmpr", il);
// and {n_embd_head_qk_rope, 1, n_tokens}
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe,
n_embd_head_qk_rope, 1, n_tokens,
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
cb(k_pe, "k_pe", il);
 
// and {n_embd_head_qk_rope, n_tokens}
ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
kv_pe_compresseed->nb[1],
kv_pe_compresseed->nb[1],
ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(q_pe, "q_pe", il);
k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(k_pe, "k_pe", il);
 
// TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
kv_compressed = ggml_cont(ctx0, kv_compressed);
kv_compressed = build_norm(kv_compressed,
model.layers[il].attn_kv_a_norm, NULL,
kv_cmpr = build_norm(kv_cmpr,
model.layers[il].attn_kv_a_norm, nullptr,
LLM_NORM_RMS, il);
cb(kv_compressed, "kv_compressed", il);
cb(kv_cmpr, "kv_cmpr", il);
 
// {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
cb(kv, "kv", il);
if (is_mla) {
// {n_embd_head_qk_nope, n_tokens, n_head}
q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
cb(q_nope, "q_nope_perm", il);
 
// split into {n_head * n_embd_head_qk_nope, n_tokens}
ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
0);
cb(k_nope, "k_nope", il);
// {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
cb(q_nope_absorbed, "q_nope_absorbed", il);
 
// and {n_head * n_embd_head_v, n_tokens}
ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
ggml_row_size(kv->type, (n_embd_head_qk_nope)));
cb(v_states, "v_states", il);
// {kv_lora_rank, n_head, n_tokens}
q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
 
v_states = ggml_cont(ctx0, v_states);
cb(v_states, "v_states", il);
// {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
// note: rope must go first for in-place context shifting in build_rope_shift()
ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
cb(Qcur, "Qcur", il);
 
v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
0);
cb(v_states, "v_states", il);
kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
cb(kv_cmpr, "kv_cmpr_reshape", il);
 
q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
q_pe = ggml_rope_ext(
ctx0, q_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor_scaled, beta_fast, beta_slow
);
cb(q_pe, "q_pe", il);
// {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
cb(Kcur, "Kcur", il);
 
// shared RoPE key
k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
k_pe = ggml_rope_ext(
ctx0, k_pe, inp_pos, nullptr,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor_scaled, beta_fast, beta_slow
);
cb(k_pe, "k_pe", il);
// {kv_lora_rank, 1, n_tokens}
ggml_tensor * Vcur = kv_cmpr;
cb(Vcur, "Vcur", il);
 
ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
cb(q_states, "q_states", il);
// note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, model.layers[il].wv_b, kq_scale, il);
} else {
ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
cb(kv, "kv", il);
// split into {n_embd_head_qk_nope, n_head, n_tokens}
ggml_tensor * k_nope = ggml_view_3d(ctx0, kv,
n_embd_head_qk_nope, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
0);
cb(k_nope, "k_nope_view", il);
 
ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
cb(k_states, "k_states", il);
// and {n_embd_head_v, n_head, n_tokens}
ggml_tensor * Vcur = ggml_view_3d(ctx0, kv,
n_embd_head_v, n_head, n_tokens,
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
ggml_row_size(kv->type, n_embd_head_qk_nope));
cb(Vcur, "Vcur_view", il);
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
q_states, k_states, v_states, nullptr, kq_scale, il);
Vcur = ggml_cont(ctx0, Vcur);
cb(Vcur, "Vcur_cont", il);
// note: rope must go first for in-place context shifting in build_rope_shift()
ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
cb(Qcur, "Qcur", il);
ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
cb(Kcur, "Kcur", il);
// note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
}
}
 
if (il == n_layer - 1) {
......@@ -10667,7 +10719,7 @@ struct llm_build_bitnet : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
NULL, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
 
cur = build_norm(cur,
model.layers[il].attn_sub_norm, NULL,
......@@ -10790,7 +10842,7 @@ struct llm_build_t5_enc : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo_enc, nullptr,
Qcur, Kcur, Vcur, kq_b, 1.0f, il);
Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
cb(cur, "kqv_out", il);
}
 
......@@ -10896,7 +10948,7 @@ struct llm_build_t5_dec : public llm_graph_context {
 
cur = build_attn(inp_attn_self, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, kq_b, 1.0f, il);
Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
cb(cur, "kqv_out", il);
}
 
......@@ -10928,7 +10980,7 @@ struct llm_build_t5_dec : public llm_graph_context {
 
cur = build_attn(inp_attn_cross, gf,
model.layers[il].wo_cross, nullptr,
Qcur, Kcur, Vcur, nullptr, 1.0f, il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
cb(cur, "kqv_out", il);
 
//ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
......@@ -11061,7 +11113,7 @@ struct llm_build_jais : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/float(n_embd_head), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/float(n_embd_head), il);
}
 
if (il == n_layer - 1) {
......@@ -11193,7 +11245,7 @@ struct llm_build_chatglm : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -11326,7 +11378,7 @@ struct llm_build_glm4 : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -11470,7 +11522,7 @@ struct llm_build_nemotron : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -11601,7 +11653,7 @@ struct llm_build_exaone : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
}
 
if (il == n_layer - 1) {
......@@ -12503,7 +12555,7 @@ struct llm_build_chameleon : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, nullptr,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
 
if (hparams.swin_norm) {
cur = build_norm(cur,
......@@ -12683,14 +12735,14 @@ struct llm_build_solar : public llm_graph_context {
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
 
......@@ -13018,7 +13070,7 @@ struct llm_build_plm : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, NULL,
q_states, k_states, v_states, nullptr, kq_scale, il);
q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
}
 
if (il == n_layer - 1) {
......@@ -13141,7 +13193,7 @@ struct llm_build_bailingmoe : public llm_graph_context {
 
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_rot)), il);
Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
}
 
if (il == n_layer - 1) {
......
......@@ -174,6 +174,8 @@ struct llama_layer {
struct ggml_tensor * wq_b = nullptr;
struct ggml_tensor * wkv_a_mqa = nullptr;
struct ggml_tensor * wkv_b = nullptr;
struct ggml_tensor * wk_b = nullptr;
struct ggml_tensor * wv_b = nullptr;
struct ggml_tensor * wq_cross = nullptr;
struct ggml_tensor * wk_cross = nullptr;
struct ggml_tensor * wv_cross = nullptr;
......
......@@ -1833,6 +1833,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
if (false
|| t.first == "<|fim_prefix|>" // Qwen
|| t.first == "<fim-prefix>"
|| t.first == "<fim_prefix>" // Granite
|| t.first == "<|fim▁begin|>" // DeepSeek
|| t.first == "<PRE>"
|| t.first == "▁<PRE>" // CodeLlama
......@@ -1851,6 +1852,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
if (false
|| t.first == "<|fim_suffix|>" // Qwen
|| t.first == "<fim-suffix>"
|| t.first == "<fim_suffix>" // Granite
|| t.first == "<|fim▁hole|>" // DeepSeek
|| t.first == "<SUF>"
|| t.first == "▁<SUF>" // CodeLlama
......@@ -1869,6 +1871,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
if (false
|| t.first == "<|fim_middle|>" // Qwen
|| t.first == "<fim-middle>"
|| t.first == "<fim_middle>" // Granite
|| t.first == "<|fim▁end|>" // DeepSeek
|| t.first == "<MID>"
|| t.first == "▁<MID>" // CodeLlama
......@@ -1887,6 +1890,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
if (false
|| t.first == "<|fim_pad|>" // Qwen
|| t.first == "<fim-pad>"
|| t.first == "<fim_pad>" // Granite
|| t.first == "<PAD>"
) {
special_fim_pad_id = t.second;
......@@ -1905,6 +1909,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
|| t.first == "<|repo_name|>"
|| t.first == "<fim-repo>"
|| t.first == "<REPO>"
|| t.first == "<reponame>" // Granite
) {
special_fim_rep_id = t.second;
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) {
......
......@@ -65,10 +65,10 @@ index 273075f4..dd11f304 100644
/* .init_tensor = */ NULL, // no initialization required
/* .memset_tensor = */ ggml_backend_cpu_buffer_memset_tensor,
diff --git a/ggml/src/ggml-cann/ggml-cann.cpp b/ggml/src/ggml-cann/ggml-cann.cpp
index cec36b36..4b057973 100644
index e2617b06..242e50a7 100644
--- a/ggml/src/ggml-cann/ggml-cann.cpp
+++ b/ggml/src/ggml-cann/ggml-cann.cpp
@@ -530,6 +530,7 @@ static void ggml_backend_cann_buffer_free_buffer(
@@ -800,6 +800,7 @@ static void ggml_backend_cann_buffer_free_buffer(
ggml_backend_cann_buffer_context* ctx =
(ggml_backend_cann_buffer_context*)buffer->context;
delete ctx;
......@@ -76,7 +76,7 @@ index cec36b36..4b057973 100644
}
/**
@@ -1199,6 +1200,7 @@ static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buf
@@ -1472,6 +1473,7 @@ static const char * ggml_backend_cann_host_buffer_name(ggml_backend_buffer_t buf
*/
static void ggml_backend_cann_host_buffer_free(ggml_backend_buffer_t buffer) {
ACL_CHECK(aclrtFreeHost(buffer->context));
......@@ -85,10 +85,10 @@ index cec36b36..4b057973 100644
/**
diff --git a/ggml/src/ggml-cuda/ggml-cuda.cu b/ggml/src/ggml-cuda/ggml-cuda.cu
index fafe9633..59a49560 100644
index a7febef7..31750b6f 100644
--- a/ggml/src/ggml-cuda/ggml-cuda.cu
+++ b/ggml/src/ggml-cuda/ggml-cuda.cu
@@ -533,6 +533,7 @@ struct ggml_backend_cuda_buffer_context {
@@ -534,6 +534,7 @@ struct ggml_backend_cuda_buffer_context {
static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
delete ctx;
......@@ -96,7 +96,7 @@ index fafe9633..59a49560 100644
}
static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
@@ -788,6 +789,7 @@ struct ggml_backend_cuda_split_buffer_context {
@@ -789,6 +790,7 @@ struct ggml_backend_cuda_split_buffer_context {
static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
delete ctx;
......@@ -104,7 +104,7 @@ index fafe9633..59a49560 100644
}
static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -1061,6 +1063,7 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
@@ -1062,6 +1064,7 @@ static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_
static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
CUDA_CHECK(cudaFreeHost(buffer->context));
......@@ -125,10 +125,10 @@ index 50579227..2799a0a5 100644
static void * ggml_backend_kompute_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-metal/ggml-metal.m b/ggml/src/ggml-metal/ggml-metal.m
index 9f1c6c6c..310afe8a 100644
index 266d8af4..12886cd3 100644
--- a/ggml/src/ggml-metal/ggml-metal.m
+++ b/ggml/src/ggml-metal/ggml-metal.m
@@ -4641,6 +4641,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
@@ -4759,6 +4759,7 @@ static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer)
}
free(ctx);
......@@ -137,10 +137,10 @@ index 9f1c6c6c..310afe8a 100644
static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-opencl/ggml-opencl.cpp b/ggml/src/ggml-opencl/ggml-opencl.cpp
index b8b5cbd3..14d4561b 100644
index 05a2f4e6..392cc18d 100644
--- a/ggml/src/ggml-opencl/ggml-opencl.cpp
+++ b/ggml/src/ggml-opencl/ggml-opencl.cpp
@@ -1443,6 +1443,7 @@ struct ggml_backend_opencl_buffer_context {
@@ -1940,6 +1940,7 @@ struct ggml_backend_opencl_buffer_context {
static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
delete ctx;
......@@ -149,10 +149,10 @@ index b8b5cbd3..14d4561b 100644
static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-rpc/ggml-rpc.cpp b/ggml/src/ggml-rpc/ggml-rpc.cpp
index 862b9b66..34536681 100644
index a0667b7d..bd83adc5 100644
--- a/ggml/src/ggml-rpc/ggml-rpc.cpp
+++ b/ggml/src/ggml-rpc/ggml-rpc.cpp
@@ -443,6 +443,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@@ -468,6 +468,7 @@ static void ggml_backend_rpc_buffer_free_buffer(ggml_backend_buffer_t buffer) {
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_FREE_BUFFER, &request, sizeof(request), nullptr, 0);
GGML_ASSERT(status);
delete ctx;
......@@ -161,7 +161,7 @@ index 862b9b66..34536681 100644
static void * ggml_backend_rpc_buffer_get_base(ggml_backend_buffer_t buffer) {
diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp
index 3e48a924..a3d182fc 100644
index 1de34c96..4600f61e 100644
--- a/ggml/src/ggml-sycl/ggml-sycl.cpp
+++ b/ggml/src/ggml-sycl/ggml-sycl.cpp
@@ -316,6 +316,7 @@ ggml_backend_sycl_buffer_free_buffer(ggml_backend_buffer_t buffer) try {
......@@ -189,10 +189,10 @@ index 3e48a924..a3d182fc 100644
static ggml_backend_buffer_t ggml_backend_sycl_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
diff --git a/ggml/src/ggml-vulkan/ggml-vulkan.cpp b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
index 783a0ff8..8ac1e07e 100644
index 39f3cd34..c569a8a5 100644
--- a/ggml/src/ggml-vulkan/ggml-vulkan.cpp
+++ b/ggml/src/ggml-vulkan/ggml-vulkan.cpp
@@ -8639,6 +8639,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
@@ -8653,6 +8653,7 @@ static void ggml_backend_vk_buffer_free_buffer(ggml_backend_buffer_t buffer) {
ggml_backend_vk_buffer_context * ctx = (ggml_backend_vk_buffer_context *)buffer->context;
ggml_vk_destroy_buffer(ctx->dev_buffer);
delete ctx;
......@@ -200,7 +200,7 @@ index 783a0ff8..8ac1e07e 100644
}
static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
@@ -8782,6 +8783,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
@@ -8796,6 +8797,7 @@ static const char * ggml_backend_vk_host_buffer_name(ggml_backend_buffer_t buffe
static void ggml_backend_vk_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
VK_LOG_MEMORY("ggml_backend_vk_host_buffer_free_buffer()");
ggml_vk_host_free(vk_instance.devices[0], buffer->context);
......
......@@ -10,7 +10,7 @@ logs instead of throwing an error
1 file changed, 3 insertions(+), 11 deletions(-)
diff --git a/src/llama-vocab.cpp b/src/llama-vocab.cpp
index 464ff01e..0125ee53 100644
index 48060517..a35b498c 100644
--- a/src/llama-vocab.cpp
+++ b/src/llama-vocab.cpp
@@ -1491,16 +1491,7 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
......
......@@ -11,10 +11,10 @@ instead of forcing one or the error
1 file changed, 3 insertions(+), 3 deletions(-)
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index 4735e98e..65135172 100644
index 983385f8..32f59819 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -1232,7 +1232,7 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1236,7 +1236,7 @@ int llama_context::decode(llama_batch & inp_batch) {
int64_t n_outputs_all = 0;
// count outputs
......@@ -23,7 +23,7 @@ index 4735e98e..65135172 100644
for (uint32_t i = 0; i < n_tokens_all; ++i) {
n_outputs_all += batch.logits[i] != 0;
}
@@ -1344,7 +1344,7 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1348,7 +1348,7 @@ int llama_context::decode(llama_batch & inp_batch) {
// ggml_graph_dump_dot(gf, NULL, "llama.dot");
//}
......@@ -32,7 +32,7 @@ index 4735e98e..65135172 100644
auto * t_embd = cparams.embeddings ? res->get_embd() : nullptr;
if (t_embd && res->get_embd_pooled()) {
@@ -1488,7 +1488,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
@@ -1492,7 +1492,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
......
......@@ -10,12 +10,12 @@ filesystems for paths that include wide characters
1 file changed, 39 insertions(+)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 49c90b75..4b72ea9f 100644
index 75970615..d57b4bd6 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -28,6 +28,19 @@
#include <cinttypes>
@@ -29,6 +29,19 @@
#include <limits>
#include <array>
+#if defined(_WIN32)
+#define WIN32_LEAN_AND_MEAN
......@@ -33,7 +33,7 @@ index 49c90b75..4b72ea9f 100644
struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
//#define CLIP_DEBUG_FUNCTIONS
@@ -1429,7 +1442,29 @@ struct clip_model_loader {
@@ -1430,7 +1443,29 @@ struct clip_model_loader {
{
std::vector<uint8_t> read_buf;
......@@ -63,7 +63,7 @@ index 49c90b75..4b72ea9f 100644
if (!fin) {
throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
}
@@ -1456,7 +1491,11 @@ struct clip_model_loader {
@@ -1457,7 +1492,11 @@ struct clip_model_loader {
ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
}
}
......
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Tue, 8 Apr 2025 16:03:51 -0700
Date: Sun, 20 Apr 2025 16:11:09 -0700
Subject: [PATCH] solar-pro
adds support for the Solar Pro architecture
......@@ -15,7 +15,7 @@ adds support for the Solar Pro architecture
7 files changed, 248 insertions(+)
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index a6fddc7f..0b0fedcd 100644
index 62e1480b..f754bc8f 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -68,6 +68,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
......@@ -31,10 +31,10 @@ index a6fddc7f..0b0fedcd 100644
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
+ { LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
@@ -1478,6 +1480,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
@@ -1482,6 +1484,24 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
},
},
......@@ -59,7 +59,7 @@ index a6fddc7f..0b0fedcd 100644
{
LLM_ARCH_WAVTOKENIZER_DEC,
{
@@ -1671,6 +1691,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
@@ -1660,6 +1680,7 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
{LLM_TENSOR_FFN_EXP_PROBS_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_ADD}},
// this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
......@@ -68,7 +68,7 @@ index a6fddc7f..0b0fedcd 100644
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 2c2099b3..74aa3dd0 100644
index 98ca00a1..439aaeab 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -72,6 +72,7 @@ enum llm_arch {
......@@ -84,10 +84,10 @@ index 2c2099b3..74aa3dd0 100644
LLM_KV_ATTENTION_SLIDING_WINDOW,
LLM_KV_ATTENTION_SCALE,
+ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
@@ -340,6 +342,7 @@ enum llm_tensor {
@@ -344,6 +346,7 @@ enum llm_tensor {
LLM_TENSOR_ENC_OUTPUT_NORM,
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
......@@ -115,10 +115,10 @@ index 90dfe7a7..8a667960 100644
if (il < n_layer) {
return n_swa > 0 && n_swa_pattern > 0 && il % n_swa_pattern < (n_swa_pattern - 1);
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
index 4e0b5719..c3147cbc 100644
index 80fcd65d..6e278945 100644
--- a/src/llama-hparams.h
+++ b/src/llama-hparams.h
@@ -51,6 +51,8 @@ struct llama_hparams {
@@ -55,6 +55,8 @@ struct llama_hparams {
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr;
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
......@@ -127,7 +127,7 @@ index 4e0b5719..c3147cbc 100644
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
uint32_t n_lora_kv = 0;
@@ -149,6 +151,9 @@ struct llama_hparams {
@@ -153,6 +155,9 @@ struct llama_hparams {
// dimension of the recurrent state embeddings
uint32_t n_embd_v_s() const;
......@@ -150,10 +150,10 @@ index ea73a8a7..a012aeae 100644
llama_model_loader::llama_model_loader(
const std::string & fname,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index b74dd72c..5fbd0055 100644
index 6b7bfecf..aba42819 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -1372,6 +1372,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
@@ -1374,6 +1374,21 @@ void llama_model::load_hparams(llama_model_loader & ml) {
default: type = LLM_TYPE_UNKNOWN;
}
} break;
......@@ -175,7 +175,7 @@ index b74dd72c..5fbd0055 100644
case LLM_ARCH_WAVTOKENIZER_DEC:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -3701,6 +3716,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -3717,6 +3732,34 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
......@@ -210,7 +210,7 @@ index b74dd72c..5fbd0055 100644
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
@@ -12244,6 +12287,165 @@ struct llm_build_chameleon : public llm_graph_context {
@@ -12296,6 +12339,165 @@ struct llm_build_chameleon : public llm_graph_context {
}
};
......@@ -309,14 +309,14 @@ index b74dd72c..5fbd0055 100644
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ cur = build_attn(inp_attn, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Qcur, Kcur, Vcur, nullptr, kq_scale, il);
+ Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
+ cb(cur, "attn_out", il);
+ }
+
......@@ -376,7 +376,7 @@ index b74dd72c..5fbd0055 100644
struct llm_build_wavtokenizer_dec : public llm_graph_context {
llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
ggml_tensor * cur;
@@ -12993,6 +13195,10 @@ llm_graph_result_ptr llama_model::build_graph(
@@ -13045,6 +13247,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
} break;
......@@ -387,7 +387,7 @@ index b74dd72c..5fbd0055 100644
case LLM_ARCH_WAVTOKENIZER_DEC:
{
llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
@@ -13139,6 +13345,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
@@ -13191,6 +13397,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
case LLM_ARCH_CHAMELEON:
......@@ -396,7 +396,7 @@ index b74dd72c..5fbd0055 100644
return LLAMA_ROPE_TYPE_NORM;
diff --git a/src/llama-model.h b/src/llama-model.h
index 0f18dac1..e08d4ae4 100644
index fd82d106..5865d5e9 100644
--- a/src/llama-model.h
+++ b/src/llama-model.h
@@ -62,6 +62,7 @@ enum llm_type {
......@@ -407,7 +407,7 @@ index 0f18dac1..e08d4ae4 100644
LLM_TYPE_30B,
LLM_TYPE_32B,
LLM_TYPE_34B,
@@ -305,6 +306,8 @@ struct llama_layer {
@@ -307,6 +308,8 @@ struct llama_layer {
struct ggml_tensor * ffn_up_scale = nullptr;
struct ggml_tensor * ffn_down_scale = nullptr;
......
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Tue, 8 Apr 2025 19:27:12 -0700
Date: Sun, 20 Apr 2025 16:12:36 -0700
Subject: [PATCH] add mllama support
adds support for the llama 3.2 vision architecture
......@@ -28,7 +28,7 @@ adds support for the llama 3.2 vision architecture
20 files changed, 475 insertions(+), 22 deletions(-)
diff --git a/examples/llava/gemma3-cli.cpp b/examples/llava/gemma3-cli.cpp
index 91a07e2a..13127c7b 100644
index 3d566475..654d1358 100644
--- a/examples/llava/gemma3-cli.cpp
+++ b/examples/llava/gemma3-cli.cpp
@@ -106,7 +106,7 @@ struct decode_embd_batch {
......@@ -79,10 +79,10 @@ index 03a22cbb..5eb40bcd 100644
LOG_ERR("%s : failed to eval\n", __func__);
return false;
diff --git a/examples/llava/mtmd.cpp b/examples/llava/mtmd.cpp
index 114c274b..a0e649ad 100644
index 3fd5bebc..f0cec596 100644
--- a/examples/llava/mtmd.cpp
+++ b/examples/llava/mtmd.cpp
@@ -213,7 +213,7 @@ struct decode_embd_batch {
@@ -233,7 +233,7 @@ struct decode_embd_batch {
std::vector<llama_seq_id *> seq_ids;
std::vector<int8_t> logits;
llama_batch batch;
......@@ -91,7 +91,7 @@ index 114c274b..a0e649ad 100644
pos .resize(n_tokens);
n_seq_id.resize(n_tokens);
seq_ids .resize(n_tokens + 1);
@@ -225,6 +225,7 @@ struct decode_embd_batch {
@@ -245,6 +245,7 @@ struct decode_embd_batch {
/*n_tokens =*/ n_tokens,
/*tokens =*/ nullptr,
/*embd =*/ embd,
......@@ -99,9 +99,9 @@ index 114c274b..a0e649ad 100644
/*pos =*/ pos.data(),
/*n_seq_id =*/ n_seq_id.data(),
/*seq_id =*/ seq_ids.data(),
@@ -291,7 +292,8 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
@@ -311,7 +312,8 @@ int32_t mtmd_helper_eval(mtmd_context * ctx,
int32_t n_tokens = chunk.tokens_image->n_tokens();
int32_t n_tokens = mtmd_image_tokens_get_n_tokens(chunk.tokens_image.get());
float * embd = mtmd_get_output_embd(ctx);
- decode_embd_batch batch_img(embd, n_tokens, n_past, 0);
+ int n_embd = llama_model_n_embd(llama_get_model(lctx));
......@@ -158,7 +158,7 @@ index 5657fbf0..f91896e4 100644
LLAMA_API void llama_free(struct llama_context * ctx);
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index 0b0fedcd..c1f78618 100644
index f754bc8f..0568565f 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -6,6 +6,7 @@
......@@ -174,10 +174,10 @@ index 0b0fedcd..c1f78618 100644
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection" },
+ { LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
{ LLM_KV_ATTENTION_KEY_LENGTH_MLA, "%s.attention.key_length_mla" },
{ LLM_KV_ATTENTION_VALUE_LENGTH_MLA, "%s.attention.value_length_mla" },
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
{ LLM_KV_ROPE_DIMENSION_SECTIONS, "%s.rope.dimension_sections" },
@@ -269,6 +271,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
@@ -271,6 +273,40 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
......@@ -218,7 +218,7 @@ index 0b0fedcd..c1f78618 100644
{
LLM_ARCH_DECI,
{
@@ -1692,6 +1728,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
@@ -1681,6 +1717,14 @@ static const std::map<llm_tensor, llm_tensor_info> LLM_TENSOR_INFOS = {
// this tensor is loaded for T5, but never used
{LLM_TENSOR_DEC_CROSS_ATTN_REL_B, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_NONE}},
{LLM_TENSOR_BSKCN_TV, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
......@@ -234,7 +234,7 @@ index 0b0fedcd..c1f78618 100644
{LLM_TENSOR_POS_NET_NORM, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
{LLM_TENSOR_POS_NET_NORM1, {LLM_TENSOR_LAYER_REPEATING, GGML_OP_MUL}},
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 74aa3dd0..f987844d 100644
index 439aaeab..6a989034 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -11,6 +11,7 @@
......@@ -250,10 +250,10 @@ index 74aa3dd0..f987844d 100644
LLM_KV_ATTENTION_SCALE,
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
+ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
LLM_KV_ATTENTION_KEY_LENGTH_MLA,
LLM_KV_ATTENTION_VALUE_LENGTH_MLA,
LLM_KV_ROPE_DIMENSION_COUNT,
LLM_KV_ROPE_DIMENSION_SECTIONS,
@@ -343,6 +345,14 @@ enum llm_tensor {
@@ -347,6 +349,14 @@ enum llm_tensor {
LLM_TENSOR_CLS,
LLM_TENSOR_CLS_OUT,
LLM_TENSOR_BSKCN_TV,
......@@ -297,10 +297,10 @@ index 01d5ca57..8682b0e6 100644
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
}
diff --git a/src/llama-context.cpp b/src/llama-context.cpp
index 65135172..afe6f552 100644
index 32f59819..0343ba8a 100644
--- a/src/llama-context.cpp
+++ b/src/llama-context.cpp
@@ -858,7 +858,7 @@ float * llama_context::get_logits_ith(int32_t i) {
@@ -862,7 +862,7 @@ float * llama_context::get_logits_ith(int32_t i) {
throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, n_outputs));
}
......@@ -309,7 +309,7 @@ index 65135172..afe6f552 100644
} catch (const std::exception & err) {
LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
#ifndef NDEBUG
@@ -979,6 +979,10 @@ void llama_context::set_warmup(bool value) {
@@ -983,6 +983,10 @@ void llama_context::set_warmup(bool value) {
cparams.warmup = value;
}
......@@ -320,7 +320,7 @@ index 65135172..afe6f552 100644
void llama_context::set_adapter_lora(
llama_adapter_lora * adapter,
float scale) {
@@ -1054,7 +1058,7 @@ int llama_context::encode(llama_batch & inp_batch) {
@@ -1058,7 +1062,7 @@ int llama_context::encode(llama_batch & inp_batch) {
const int64_t n_embd = hparams.n_embd;
......@@ -329,7 +329,7 @@ index 65135172..afe6f552 100644
const llama_ubatch ubatch = sbatch.split_simple(n_tokens);
@@ -1194,10 +1198,9 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1198,10 +1202,9 @@ int llama_context::decode(llama_batch & inp_batch) {
const llama_batch & batch = batch_allocr.batch;
......@@ -341,7 +341,7 @@ index 65135172..afe6f552 100644
const int64_t n_tokens_all = batch.n_tokens;
const int64_t n_embd = hparams.n_embd;
@@ -1245,7 +1248,7 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1249,7 +1252,7 @@ int llama_context::decode(llama_batch & inp_batch) {
const bool logits_all = n_outputs_all == n_tokens_all;
......@@ -350,7 +350,7 @@ index 65135172..afe6f552 100644
/* simple_split */ !kv_self->recurrent,
/* logits_all */ logits_all);
@@ -1479,12 +1482,11 @@ int llama_context::decode(llama_batch & inp_batch) {
@@ -1483,12 +1486,11 @@ int llama_context::decode(llama_batch & inp_batch) {
int32_t llama_context::output_reserve(int32_t n_outputs) {
const auto & hparams = model.hparams;
......@@ -364,7 +364,7 @@ index 65135172..afe6f552 100644
const auto n_embd = hparams.n_embd;
// TODO: use a per-batch flag for logits presence instead
@@ -1554,7 +1556,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
@@ -1558,7 +1560,7 @@ int32_t llama_context::output_reserve(int32_t n_outputs) {
void llama_context::output_reorder() {
auto & out_ids = sbatch.out_ids;
if (!out_ids.empty()) {
......@@ -373,7 +373,7 @@ index 65135172..afe6f552 100644
const uint32_t n_embd = model.hparams.n_embd;
GGML_ASSERT((size_t) n_outputs == out_ids.size());
@@ -2061,7 +2063,7 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
@@ -2065,7 +2067,7 @@ size_t llama_context::state_write_data(llama_io_write_i & io) {
{
LLAMA_LOG_DEBUG("%s: - writing logits\n", __func__);
......@@ -382,7 +382,7 @@ index 65135172..afe6f552 100644
io.write(&logits_size, sizeof(logits_size));
@@ -2244,6 +2246,7 @@ llama_context_params llama_context_default_params() {
@@ -2248,6 +2250,7 @@ llama_context_params llama_context_default_params() {
/*.offload_kqv =*/ true,
/*.flash_attn =*/ false,
/*.no_perf =*/ true,
......@@ -390,7 +390,7 @@ index 65135172..afe6f552 100644
/*.abort_callback =*/ nullptr,
/*.abort_callback_data =*/ nullptr,
};
@@ -2371,6 +2374,10 @@ void llama_set_warmup(llama_context * ctx, bool warmup) {
@@ -2375,6 +2378,10 @@ void llama_set_warmup(llama_context * ctx, bool warmup) {
ctx->set_warmup(warmup);
}
......@@ -426,7 +426,7 @@ index 30e550f0..85ad91b9 100644
enum llama_pooling_type pooling_type;
diff --git a/src/llama-graph.cpp b/src/llama-graph.cpp
index cd955d63..83f3c5a8 100644
index a85e9728..d740c120 100644
--- a/src/llama-graph.cpp
+++ b/src/llama-graph.cpp
@@ -546,6 +546,12 @@ void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
......@@ -442,7 +442,7 @@ index cd955d63..83f3c5a8 100644
//
// llm_graph_context
//
@@ -1495,6 +1501,25 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
@@ -1506,6 +1512,25 @@ llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}
......@@ -469,7 +469,7 @@ index cd955d63..83f3c5a8 100644
llm_graph_input_attn_cross * inp,
ggml_cgraph * gf,
diff --git a/src/llama-graph.h b/src/llama-graph.h
index 5b6618f9..51993998 100644
index d192dc14..260a2af2 100644
--- a/src/llama-graph.h
+++ b/src/llama-graph.h
@@ -86,6 +86,7 @@ public:
......@@ -518,7 +518,7 @@ index 8a667960..6a02de03 100644
+ return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
+}
diff --git a/src/llama-hparams.h b/src/llama-hparams.h
index c3147cbc..4567a0e9 100644
index 6e278945..c8a34d52 100644
--- a/src/llama-hparams.h
+++ b/src/llama-hparams.h
@@ -2,6 +2,8 @@
......@@ -536,9 +536,9 @@ index c3147cbc..4567a0e9 100644
uint32_t n_rel_attn_bkts = 0;
+ uint32_t n_vocab = 0;
// for WavTokenizer
struct llama_hparams_posnet posnet;
@@ -52,6 +55,7 @@ struct llama_hparams {
// note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
uint32_t n_embd_head_k_mla = 0;
@@ -56,6 +59,7 @@ struct llama_hparams {
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr = {};
......@@ -546,7 +546,7 @@ index c3147cbc..4567a0e9 100644
uint32_t n_layer_dense_lead = 0;
uint32_t n_lora_q = 0;
@@ -154,6 +158,9 @@ struct llama_hparams {
@@ -158,6 +162,9 @@ struct llama_hparams {
// Block skip connection
bool n_bskcn(uint32_t n, uint32_t il) const;
......@@ -557,7 +557,7 @@ index c3147cbc..4567a0e9 100644
};
diff --git a/src/llama-kv-cache.cpp b/src/llama-kv-cache.cpp
index dbf5f118..9310f262 100644
index 7c9d46d8..69f8d35a 100644
--- a/src/llama-kv-cache.cpp
+++ b/src/llama-kv-cache.cpp
@@ -95,8 +95,16 @@ bool llama_kv_cache_unified::init(
......@@ -593,7 +593,7 @@ index a012aeae..2e11507d 100644
bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
const int kid = gguf_find_key(meta.get(), key.c_str());
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 5fbd0055..d5ad466e 100644
index aba42819..d051696c 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -419,6 +419,7 @@ void llama_model::load_hparams(llama_model_loader & ml) {
......@@ -650,7 +650,7 @@ index 5fbd0055..d5ad466e 100644
case LLM_ARCH_DECI:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@@ -1548,7 +1562,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -1550,7 +1564,7 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
const int64_t n_embd_head_v = hparams.n_embd_head_v;
const int64_t n_ff = hparams.n_ff();
const int64_t n_embd_gqa = n_embd_v_gqa;
......@@ -659,7 +659,7 @@ index 5fbd0055..d5ad466e 100644
const int64_t n_token_types = vocab.n_token_types();
const int64_t n_rot = hparams.n_rot;
const int64_t n_expert = hparams.n_expert;
@@ -1801,6 +1815,52 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
@@ -1803,6 +1817,52 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
} break;
......@@ -712,7 +712,7 @@ index 5fbd0055..d5ad466e 100644
case LLM_ARCH_DECI:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -4665,6 +4725,246 @@ struct llm_build_llama : public llm_graph_context {
@@ -4683,6 +4743,246 @@ struct llm_build_llama : public llm_graph_context {
}
};
......@@ -893,14 +893,14 @@ index 5fbd0055..d5ad466e 100644
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+ ext_factor, attn_factor, beta_fast, beta_slow
+ );
+
+
+ cb(Qcur, "Qcur", il);
+ cb(Kcur, "Kcur", il);
+ cb(Vcur, "Vcur", il);
+
+ cur = build_attn(inp_attn, gf,
+ model.layers[il].wo, model.layers[il].bo,
+ Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+ Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+
+ if (il == n_layer - 1) {
+ // skip computing output for unused tokens
......@@ -959,7 +959,7 @@ index 5fbd0055..d5ad466e 100644
struct llm_build_deci : public llm_graph_context {
llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -12965,6 +13265,10 @@ llm_graph_result_ptr llama_model::build_graph(
@@ -13017,6 +13317,10 @@ llm_graph_result_ptr llama_model::build_graph(
{
llm = std::make_unique<llm_build_llama>(*this, params, gf);
} break;
......@@ -970,7 +970,7 @@ index 5fbd0055..d5ad466e 100644
case LLM_ARCH_DECI:
{
llm = std::make_unique<llm_build_deci>(*this, params, gf);
@@ -13325,6 +13629,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
@@ -13377,6 +13681,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
case LLM_ARCH_LLAMA4:
......@@ -979,7 +979,7 @@ index 5fbd0055..d5ad466e 100644
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:
diff --git a/src/llama-model.h b/src/llama-model.h
index e08d4ae4..21c4617b 100644
index 5865d5e9..72bab5be 100644
--- a/src/llama-model.h
+++ b/src/llama-model.h
@@ -11,6 +11,7 @@
......@@ -998,7 +998,7 @@ index e08d4ae4..21c4617b 100644
LLM_TYPE_236B,
LLM_TYPE_314B,
LLM_TYPE_671B,
@@ -308,6 +310,16 @@ struct llama_layer {
@@ -310,6 +312,16 @@ struct llama_layer {
struct ggml_tensor * bskcn_tv = nullptr;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment