Unverified Commit d7d7e996 authored by Jeffrey Morgan's avatar Jeffrey Morgan Committed by GitHub
Browse files

llama: update llama.cpp vendor code to commit d7cfe1ff (#9356)

parent 2db96c18
......@@ -8,10 +8,10 @@ Subject: [PATCH] add phony target ggml-cpu for all cpu variants
1 file changed, 2 insertions(+)
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
index 84101c32..72b488dd 100644
index 0002ac18..0a8d1092 100644
--- a/ggml/src/CMakeLists.txt
+++ b/ggml/src/CMakeLists.txt
@@ -278,6 +278,7 @@ function(ggml_add_cpu_backend_variant tag_name)
@@ -297,6 +297,7 @@ function(ggml_add_cpu_backend_variant tag_name)
endforeach()
ggml_add_cpu_backend_variant_impl(${tag_name})
......@@ -19,7 +19,7 @@ index 84101c32..72b488dd 100644
endfunction()
ggml_add_backend(CPU)
@@ -286,6 +287,7 @@ if (GGML_CPU_ALL_VARIANTS)
@@ -305,6 +306,7 @@ if (GGML_CPU_ALL_VARIANTS)
if (NOT GGML_BACKEND_DL)
message(FATAL_ERROR "GGML_CPU_ALL_VARIANTS requires GGML_BACKEND_DL")
endif()
......
......@@ -8,7 +8,7 @@ Subject: [PATCH] try/catch backend load
1 file changed, 23 insertions(+), 22 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 135f7df0..84b21dd8 100644
index 98d5e14d..1c19129a 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -512,32 +512,33 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
......
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Sun, 9 Feb 2025 17:22:15 -0800
Subject: [PATCH] remove sgemm global variables
removes the 'iq4nlt' global variable in sgemm.cpp that causes
a runtime crash when calling dlopen on ggml-cpu libraries as
its initialization depends on AVX instructions the host machine
may not have
---
ggml/src/ggml-cpu/llamafile/sgemm.cpp | 17 +++++++++--------
1 file changed, 9 insertions(+), 8 deletions(-)
diff --git a/ggml/src/ggml-cpu/llamafile/sgemm.cpp b/ggml/src/ggml-cpu/llamafile/sgemm.cpp
index 8fce576c..3f260ce5 100644
--- a/ggml/src/ggml-cpu/llamafile/sgemm.cpp
+++ b/ggml/src/ggml-cpu/llamafile/sgemm.cpp
@@ -279,14 +279,6 @@ template <> inline __m256bh load(const float *p) {
}
#endif
-////////////////////////////////////////////////////////////////////////////////////////////////////
-// CONSTANTS
-
-#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
-static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
-static const __m128i iq4nlt = _mm_loadu_si128((const __m128i *) kvalues_iq4nl);
-#endif
-
////////////////////////////////////////////////////////////////////////////////////////////////////
// FLOATING POINT MATRIX MULTIPLICATION
@@ -613,6 +605,14 @@ class tinyBLAS_Q0_AVX {
TC *C, int64_t ldc,
int ith, int nth)
: A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) {
+ const int8_t kvalues_iq4nl[16] = {
+ -127, -104, -83, -65,
+ -49, -35, -22, -10,
+ 1, 13, 25, 38,
+ 53, 69, 89, 113
+ };
+
+ iq4nlt = _mm_loadu_si128((const __m128i *)kvalues_iq4nl);
}
void matmul(int64_t m, int64_t n) {
@@ -1037,6 +1037,7 @@ class tinyBLAS_Q0_AVX {
const int64_t ldc;
const int ith;
const int nth;
+ __m128i iq4nlt;
};
#endif // __AVX__
......@@ -8,7 +8,7 @@ Subject: [PATCH] use std::filesystem::path instead of wstring
1 file changed, 58 insertions(+), 86 deletions(-)
diff --git a/ggml/src/ggml-backend-reg.cpp b/ggml/src/ggml-backend-reg.cpp
index 84b21dd8..e35a6936 100644
index 1c19129a..c854e6bb 100644
--- a/ggml/src/ggml-backend-reg.cpp
+++ b/ggml/src/ggml-backend-reg.cpp
@@ -66,26 +66,6 @@
......
......@@ -8,10 +8,10 @@ Subject: [PATCH] remove amx
1 file changed, 4 deletions(-)
diff --git a/ggml/src/CMakeLists.txt b/ggml/src/CMakeLists.txt
index 72b488dd..50828717 100644
index 0a8d1092..4564df91 100644
--- a/ggml/src/CMakeLists.txt
+++ b/ggml/src/CMakeLists.txt
@@ -293,10 +293,6 @@ if (GGML_CPU_ALL_VARIANTS)
@@ -312,10 +312,6 @@ if (GGML_CPU_ALL_VARIANTS)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 FMA AVX_VNNI)
......@@ -19,6 +19,6 @@ index 72b488dd..50828717 100644
- # MSVC doesn't support AMX
- ggml_add_cpu_backend_variant(sapphirerapids AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI AVX512_BF16 AMX_TILE AMX_INT8)
- endif()
else ()
elseif (GGML_CPU)
ggml_add_cpu_backend_variant_impl("")
endif()
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: jmorganca <jmorganca@gmail.com>
Date: Tue, 25 Feb 2025 19:14:51 -0800
Subject: [PATCH] fix-clip-compiler-error
---
examples/llava/clip.cpp | 2 +-
examples/llava/clip.h | 2 +-
2 files changed, 2 insertions(+), 2 deletions(-)
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 560021c7..54265beb 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -1788,7 +1788,7 @@ void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
}
}
-void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
+void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img) {
img->nx = nx;
img->ny = ny;
img->buf.resize(3 * nx * ny);
diff --git a/examples/llava/clip.h b/examples/llava/clip.h
index ce6f6194..f9f80d7d 100644
--- a/examples/llava/clip.h
+++ b/examples/llava/clip.h
@@ -75,7 +75,7 @@ CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
CLIP_API void clip_image_f32_batch_free(struct clip_image_f32_batch * batch);
/** build image from pixels decoded by other libraries instead of stb_image.h for better performance. The memory layout is RGBRGBRGB..., input buffer length must be 3*nx*ny bytes */
-CLIP_API void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img);
+CLIP_API void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, struct clip_image_u8 * img);
CLIP_API bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
......@@ -203,6 +203,8 @@ extern "C" {
// Backend registry
//
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
// Backend (reg) enumeration
GGML_API size_t ggml_backend_reg_count(void);
GGML_API ggml_backend_reg_t ggml_backend_reg_get(size_t index);
......
......@@ -7,6 +7,7 @@
#include "ggml.h"
#include "ggml-alloc.h"
#include "ggml-backend.h"
#include "gguf.h"
#include <memory>
// Smart pointers for ggml types
......
......@@ -8,7 +8,7 @@ extern "C" {
#endif
// the compute plan that needs to be prepared for ggml_graph_compute()
// since https://github.com/ggerganov/ggml/issues/287
// since https://github.com/ggml-org/ggml/issues/287
struct ggml_cplan {
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
......@@ -95,9 +95,11 @@ extern "C" {
GGML_BACKEND_API int ggml_cpu_has_matmul_int8(void);
GGML_BACKEND_API int ggml_cpu_has_sve (void);
GGML_BACKEND_API int ggml_cpu_get_sve_cnt (void); // sve vector length in bytes
GGML_BACKEND_API int ggml_cpu_has_sme (void);
// other
GGML_BACKEND_API int ggml_cpu_has_riscv_v (void);
GGML_BACKEND_API int ggml_cpu_has_vsx (void);
GGML_BACKEND_API int ggml_cpu_has_vxe (void);
GGML_BACKEND_API int ggml_cpu_has_wasm_simd (void);
GGML_BACKEND_API int ggml_cpu_has_llamafile (void);
......
......@@ -45,7 +45,7 @@ GGML_BACKEND_API bool ggml_backend_is_metal(ggml_backend_t backend);
GGML_DEPRECATED(
GGML_BACKEND_API ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size),
"obsoleted by the new device interface - https://github.com/ggerganov/llama.cpp/pull/9713");
"obsoleted by the new device interface - https://github.com/ggml-org/llama.cpp/pull/9713");
GGML_BACKEND_API void ggml_backend_metal_set_abort_callback(ggml_backend_t backend, ggml_abort_callback abort_callback, void * user_data);
......
......@@ -10,8 +10,6 @@ extern "C" {
#define GGML_VK_NAME "Vulkan"
#define GGML_VK_MAX_DEVICES 16
GGML_BACKEND_API void ggml_vk_instance_init(void);
// backend API
GGML_BACKEND_API ggml_backend_t ggml_backend_vk_init(size_t dev_num);
......
......@@ -198,7 +198,7 @@
#ifndef __GNUC__
# define GGML_ATTRIBUTE_FORMAT(...)
#elif defined(__MINGW32__)
#elif defined(__MINGW32__) && !defined(__clang__)
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
......@@ -241,12 +241,6 @@
#define GGML_ROPE_TYPE_MROPE 8
#define GGML_ROPE_TYPE_VISION 24
#define GGUF_MAGIC "GGUF"
#define GGUF_VERSION 3
#define GGUF_DEFAULT_ALIGNMENT 32
#define GGML_UNUSED(x) (void)(x)
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
......@@ -403,12 +397,6 @@ extern "C" {
GGML_PREC_F32,
};
enum ggml_backend_type {
GGML_BACKEND_TYPE_CPU = 0,
GGML_BACKEND_TYPE_GPU = 10,
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
};
// model file types
enum ggml_ftype {
GGML_FTYPE_UNKNOWN = -1,
......@@ -514,6 +502,7 @@ extern "C" {
GGML_OP_GET_REL_POS,
GGML_OP_ADD_REL_POS,
GGML_OP_RWKV_WKV6,
GGML_OP_GATED_LINEAR_ATTN,
GGML_OP_UNARY,
......@@ -588,8 +577,6 @@ extern "C" {
struct ggml_tensor {
enum ggml_type type;
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
struct ggml_backend_buffer * buffer;
int64_t ne[GGML_MAX_DIMS]; // number of elements
......@@ -1398,16 +1385,20 @@ extern "C" {
float scale,
float max_bias);
GGML_API struct ggml_tensor * ggml_soft_max_back(
GGML_API struct ggml_tensor * ggml_soft_max_ext_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * b,
float scale,
float max_bias);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
GGML_API struct ggml_tensor * ggml_soft_max_ext_back_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
struct ggml_tensor * b,
float scale,
float max_bias);
// rotary position embedding
// if (mode & 1) - skip n_past elements (NOT SUPPORTED)
......@@ -1514,7 +1505,7 @@ extern "C" {
// rotary position embedding backward, i.e compute dx from dy
// a - dy
GGML_API struct ggml_tensor * ggml_rope_back(
GGML_API struct ggml_tensor * ggml_rope_ext_back(
struct ggml_context * ctx,
struct ggml_tensor * a, // gradients of ggml_rope result
struct ggml_tensor * b, // positions
......@@ -1529,6 +1520,23 @@ extern "C" {
float beta_fast,
float beta_slow);
GGML_API struct ggml_tensor * ggml_rope_multi_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int sections[4],
int mode,
int n_ctx_orig,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
// clamp
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_clamp(
......@@ -1777,7 +1785,7 @@ extern "C" {
struct ggml_tensor * a,
int k);
#define GGML_KQ_MASK_PAD 32
#define GGML_KQ_MASK_PAD 64
// q: [n_embd, n_batch, n_head, 1]
// k: [n_embd, n_kv, n_head_kv, 1]
......@@ -1883,6 +1891,15 @@ extern "C" {
struct ggml_tensor * td,
struct ggml_tensor * state);
GGML_API struct ggml_tensor * ggml_gated_linear_attn(
struct ggml_context * ctx,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * q,
struct ggml_tensor * g,
struct ggml_tensor * state,
float scale);
// custom operators
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
......@@ -2121,132 +2138,6 @@ extern "C" {
int64_t n_per_row,
const float * imatrix);
//
// gguf
//
enum gguf_type {
GGUF_TYPE_UINT8 = 0,
GGUF_TYPE_INT8 = 1,
GGUF_TYPE_UINT16 = 2,
GGUF_TYPE_INT16 = 3,
GGUF_TYPE_UINT32 = 4,
GGUF_TYPE_INT32 = 5,
GGUF_TYPE_FLOAT32 = 6,
GGUF_TYPE_BOOL = 7,
GGUF_TYPE_STRING = 8,
GGUF_TYPE_ARRAY = 9,
GGUF_TYPE_UINT64 = 10,
GGUF_TYPE_INT64 = 11,
GGUF_TYPE_FLOAT64 = 12,
GGUF_TYPE_COUNT, // marks the end of the enum
};
struct gguf_context;
struct gguf_init_params {
bool no_alloc;
// if not NULL, create a ggml_context and allocate the tensor data in it
struct ggml_context ** ctx;
};
GGML_API struct gguf_context * gguf_init_empty(void);
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
GGML_API void gguf_free(struct gguf_context * ctx);
GGML_API const char * gguf_type_name(enum gguf_type type);
GGML_API int gguf_get_version (const struct gguf_context * ctx);
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
GGML_API void * gguf_get_data (const struct gguf_context * ctx);
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
// will abort if the wrong type is used for the key
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
// removes key if it exists
GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
// overrides existing values or adds a new one
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
// set or add KV pairs from another context
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
// manage tensor info
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
// writing gguf files can be done in 2 ways:
//
// - write the entire gguf_context to a binary file in a single pass:
//
// gguf_write_to_file(ctx, fname);
//
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
//
// FILE * f = fopen(fname, "wb");
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
// fwrite(f, ...);
// void * data = gguf_meta_get_meta_data(ctx);
// fseek(f, 0, SEEK_SET);
// fwrite(f, data, gguf_get_meta_size(ctx));
// free(data);
// fclose(f);
//
// write the entire context to a binary file
GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
#ifdef __cplusplus
// restrict not standard in C++
# if defined(__GNUC__)
......
// This file contains functionality related to "GGUF" files, the binary file format used by ggml.
// GGUF files have the following structure:
//
// 1. File magic "GGUF" (4 bytes).
// 2. File version (uint32_t).
// 3. Number of ggml tensors in file (int64_t).
// 4. Number of key-value-pairs in file (int64_t).
// 5. For each KV pair:
// 1. The key (string).
// 2. The value type (gguf_type).
// 3a. If the value type is GGUF_TYPE_ARRAY:
// 1. The type of the array (gguf_type).
// 2. The number of elements in the array (uint64_t).
// 3. The binary representation of each element in the array.
// 3b. Otherwise:
// 1. The binary representation of the value.
// 6. For each ggml tensor:
// 1. The tensor name (string).
// 2. The number of dimensions of the tensor (uint32_t).
// 3. For each dimension:
// 1. The size of the tensor in the dimension (int64_t).
// 4. The tensor data type (ggml_type).
// 5. The tensor data offset in the tensor data binary blob (uint64_t).
// 7. The tensor data binary blob (optional, aligned).
//
// Strings are serialized as the string length (uint64_t) followed by the C string without the null terminator.
// All enums are stored as int32_t.
// All bool values are stored as int8_t.
// If the special key "general.alignment" (uint32_t) is defined it is used for alignment,
// otherwise GGUF_DEFAULT_ALIGNMENT is used.
//
// Module maintainer: Johannes Gäßler (@JohannesGaessler, johannesg@5d6.de)
#pragma once
#include "ggml.h"
#include <stdbool.h>
#include <stdint.h>
#define GGUF_MAGIC "GGUF"
#define GGUF_VERSION 3
#define GGUF_KEY_GENERAL_ALIGNMENT "general.alignment"
#define GGUF_DEFAULT_ALIGNMENT 32
#ifdef __cplusplus
extern "C" {
#endif
// types that can be stored as GGUF KV data
enum gguf_type {
GGUF_TYPE_UINT8 = 0,
GGUF_TYPE_INT8 = 1,
GGUF_TYPE_UINT16 = 2,
GGUF_TYPE_INT16 = 3,
GGUF_TYPE_UINT32 = 4,
GGUF_TYPE_INT32 = 5,
GGUF_TYPE_FLOAT32 = 6,
GGUF_TYPE_BOOL = 7,
GGUF_TYPE_STRING = 8,
GGUF_TYPE_ARRAY = 9,
GGUF_TYPE_UINT64 = 10,
GGUF_TYPE_INT64 = 11,
GGUF_TYPE_FLOAT64 = 12,
GGUF_TYPE_COUNT, // marks the end of the enum
};
struct gguf_context;
struct gguf_init_params {
bool no_alloc;
// if not NULL, create a ggml_context and allocate the tensor data in it
struct ggml_context ** ctx;
};
GGML_API struct gguf_context * gguf_init_empty(void);
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
GGML_API void gguf_free(struct gguf_context * ctx);
GGML_API const char * gguf_type_name(enum gguf_type type);
GGML_API uint32_t gguf_get_version (const struct gguf_context * ctx);
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
GGML_API int64_t gguf_get_n_kv(const struct gguf_context * ctx);
GGML_API int64_t gguf_find_key(const struct gguf_context * ctx, const char * key); // returns -1 if key is not found
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int64_t key_id);
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int64_t key_id);
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int64_t key_id);
// will abort if the wrong type is used for the key
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int64_t key_id);
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int64_t key_id);
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int64_t key_id);
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int64_t key_id);
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int64_t key_id);
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int64_t key_id);
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int64_t key_id);
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int64_t key_id);
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int64_t key_id);
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int64_t key_id);
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int64_t key_id);
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int64_t key_id);
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int64_t key_id);
GGML_API size_t gguf_get_arr_n (const struct gguf_context * ctx, int64_t key_id);
// get raw pointer to the first element of the array with the given key_id
// for bool arrays, note that they are always stored as int8 on all platforms (usually this makes no difference)
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int64_t key_id);
// get ith C string from array with given key_id
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int64_t key_id, size_t i);
GGML_API int64_t gguf_get_n_tensors (const struct gguf_context * ctx);
GGML_API int64_t gguf_find_tensor (const struct gguf_context * ctx, const char * name); // returns -1 if the tensor is not found
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int64_t tensor_id);
GGML_API const char * gguf_get_tensor_name (const struct gguf_context * ctx, int64_t tensor_id);
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int64_t tensor_id);
GGML_API size_t gguf_get_tensor_size (const struct gguf_context * ctx, int64_t tensor_id);
// removes key if it exists, returns id that the key had prior to removal (-1 if it didn't exist)
GGML_API int64_t gguf_remove_key(struct gguf_context * ctx, const char * key);
// overrides an existing KV pair or adds a new one, the new KV pair is always at the back
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
// creates a new array with n elements of the given type and copies the corresponding number of bytes from data
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, size_t n);
// creates a new array with n strings and copies the corresponding strings from data
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, size_t n);
// set or add KV pairs from another context
GGML_API void gguf_set_kv(struct gguf_context * ctx, const struct gguf_context * src);
// add tensor to GGUF context, tensor name must be unique
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
// after changing a tensor's type, the offsets of all tensors with higher indices are immediately recalculated
// in such a way that the tensor data remains as one contiguous block (except for padding)
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
// assumes that at least gguf_get_tensor_size bytes can be read from data
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data);
// writing gguf files can be done in 3 ways:
//
// - write the entire gguf_context to a binary file in a single pass:
//
// gguf_write_to_file(ctx, fname, /*only_meta =*/ false);
//
// - write only the meta data to a file, then re-open the file and append the tensor data:
//
// gguf_write_to_file(ctx, fname, /*only_meta =*/ true);
// FILE * f = fopen(fname, "ab");
// fwrite(f, ...); // write tensor data
// fclose(f);
//
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
//
// FILE * f = fopen(fname, "wb");
// const size_t size_meta = gguf_get_meta_size(ctx);
// fseek(f, size_meta, SEEK_SET);
// fwrite(f, ...); // write tensor data
// void * data = malloc(size_meta);
// gguf_get_meta_data(ctx, data);
// rewind(f);
// fwrite(data, 1, data, f);
// free(data);
// fclose(f);
//
// write the entire context to a binary file
GGML_API bool gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
// writes the meta data to pointer "data"
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
#ifdef __cplusplus
}
#endif
......@@ -93,12 +93,18 @@ endif()
if (GGML_CCACHE)
find_program(GGML_CCACHE_FOUND ccache)
find_program(GGML_SCCACHE_FOUND sccache)
if (GGML_CCACHE_FOUND)
if (GGML_CCACHE_FOUND OR GGML_SCCACHE_FOUND)
if(GGML_CCACHE_FOUND)
set(GGML_CCACHE_VARIANT ccache)
else()
set(GGML_CCACHE_VARIANT sccache)
endif()
# TODO: should not be set globally
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE ccache)
set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE "${GGML_CCACHE_VARIANT}")
set(ENV{CCACHE_SLOPPINESS} time_macros)
message(STATUS "ccache found, compilation results will be cached. Disable with GGML_CCACHE=OFF.")
message(STATUS "${GGML_CCACHE_VARIANT} found, compilation results will be cached. Disable with GGML_CCACHE=OFF.")
else()
message(STATUS "Warning: ccache not found - consider installing it for faster compilation or disable this warning with GGML_CCACHE=OFF")
endif ()
......@@ -208,6 +214,7 @@ add_library(ggml-base
../include/ggml-backend.h
../include/ggml-cpp.h
../include/ggml-opt.h
../include/gguf.h
ggml.c
ggml-alloc.c
ggml-backend.cpp
......@@ -215,7 +222,8 @@ add_library(ggml-base
ggml-threading.cpp
ggml-threading.h
ggml-quants.c
ggml-quants.h)
ggml-quants.h
gguf.cpp)
target_include_directories(ggml-base PRIVATE .)
......@@ -248,6 +256,17 @@ function(ggml_add_backend_library backend)
target_compile_definitions(${backend} PRIVATE GGML_BACKEND_BUILD)
target_compile_definitions(${backend} PUBLIC GGML_BACKEND_SHARED)
endif()
if(NOT GGML_AVAILABLE_BACKENDS)
set(GGML_AVAILABLE_BACKENDS "${backend}"
CACHE INTERNAL "List of backends for cmake package")
else()
list(FIND GGML_AVAILABLE_BACKENDS "${backend}" has_backend)
if(has_backend EQUAL -1)
set(GGML_AVAILABLE_BACKENDS "${GGML_AVAILABLE_BACKENDS};${backend}"
CACHE INTERNAL "List of backends for cmake package")
endif()
endif()
endfunction()
function(ggml_add_backend backend)
......@@ -293,7 +312,7 @@ if (GGML_CPU_ALL_VARIANTS)
ggml_add_cpu_backend_variant(skylakex AVX F16C AVX2 FMA AVX512)
ggml_add_cpu_backend_variant(icelake AVX F16C AVX2 FMA AVX512 AVX512_VBMI AVX512_VNNI)
ggml_add_cpu_backend_variant(alderlake AVX F16C AVX2 FMA AVX_VNNI)
else ()
elseif (GGML_CPU)
ggml_add_cpu_backend_variant_impl("")
endif()
......
......@@ -37,6 +37,7 @@ static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml
return true;
}
// ops that return true for this function must not use restrict pointers for their backend implementations
static bool ggml_op_can_inplace(enum ggml_op op) {
switch (op) {
case GGML_OP_SCALE:
......@@ -52,8 +53,12 @@ static bool ggml_op_can_inplace(enum ggml_op op) {
case GGML_OP_LOG:
case GGML_OP_UNARY:
case GGML_OP_ROPE:
case GGML_OP_ROPE_BACK:
case GGML_OP_SILU_BACK:
case GGML_OP_RMS_NORM:
case GGML_OP_RMS_NORM_BACK:
case GGML_OP_SOFT_MAX:
case GGML_OP_SOFT_MAX_BACK:
return true;
default:
......@@ -984,19 +989,7 @@ ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_conte
this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment);
}
if (this_size > max_size) {
GGML_LOG_ERROR("%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n",
__func__, t->name,
ggml_backend_buft_name(buft),
this_size, max_size);
for (size_t i = 0; i < n_buffers; i++) {
ggml_backend_buffer_free(buffers[i]);
}
free(buffers);
return NULL;
}
if ((cur_buf_size + this_size) > max_size) {
if (cur_buf_size > 0 && (cur_buf_size + this_size) > max_size) {
// allocate tensors in the current buffer
if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) {
return NULL;
......
......@@ -208,7 +208,6 @@ extern "C" {
// Internal backend registry API
GGML_API void ggml_backend_register(ggml_backend_reg_t reg);
GGML_API void ggml_backend_device_register(ggml_backend_dev_t device);
// Add backend dynamic loading support to the backend
......
......@@ -552,4 +552,9 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
ggml_backend_load_best("opencl", silent, dir_path);
ggml_backend_load_best("musa", silent, dir_path);
ggml_backend_load_best("cpu", silent, dir_path);
// check the environment variable GGML_BACKEND_PATH to load an out-of-tree backend
const char * backend_path = std::getenv("GGML_BACKEND_PATH");
if (backend_path) {
ggml_backend_load(backend_path);
}
}
......@@ -763,7 +763,7 @@ static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, st
if (tensor->op != GGML_OP_ROPE && src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src, tensor);
// check if a backend with higher prio wants to offload the op
if (src_backend_id == sched->n_backends - 1) {
if (src_backend_id == sched->n_backends - 1 && ggml_backend_buffer_is_host(src->buffer)) {
for (int b = 0; b < src_backend_id; b++) {
if (ggml_backend_supports_op(sched->backends[b], tensor) && ggml_backend_offload_op(sched->backends[b], tensor)) {
SET_CAUSE(tensor, "1.off");
......
......@@ -473,7 +473,6 @@ GGML_TABLE_BEGIN(uint8_t, ksigns_iq2xs, 128)
240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
GGML_TABLE_END()
//#if __CUDA_ARCH__ >= GGML_CUDA_CC_DP4A // lowest compute capability for integer intrinsics
GGML_TABLE_BEGIN(uint64_t, ksigns64, 128)
0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff,
0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff,
......@@ -508,7 +507,6 @@ GGML_TABLE_BEGIN(uint64_t, ksigns64, 128)
0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff,
0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff,
GGML_TABLE_END()
//#endif
GGML_TABLE_BEGIN(uint64_t, iq2xxs_grid, 256)
......
......@@ -111,21 +111,23 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
function(check_arm_feature tag code)
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
set(CMAKE_REQUIRED_FLAGS "${ARM_MCPU_FLAG}+${tag}")
check_cxx_source_runs(
"${code}"
GGML_MACHINE_SUPPORTS_${tag}
)
check_cxx_source_runs("${code}" GGML_MACHINE_SUPPORTS_${tag})
if (GGML_MACHINE_SUPPORTS_${tag})
set(ARM_MCPU_FLAG_FIX "${ARM_MCPU_FLAG_FIX}+${tag}" PARENT_SCOPE)
else()
set(CMAKE_REQUIRED_FLAGS "${ARM_MCPU_FLAG}+no${tag}")
check_cxx_source_compiles("int main() { return 0; }" GGML_MACHINE_SUPPORTS_no${tag})
if (GGML_MACHINE_SUPPORTS_no${tag})
set(ARM_MCPU_FLAG_FIX "${ARM_MCPU_FLAG_FIX}+no${tag}" PARENT_SCOPE)
endif()
endif()
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
endfunction()
check_arm_feature(dotprod "#include <arm_neon.h>\nint main() { int8x16_t _a, _b; volatile int32x4_t _s = vdotq_s32(_s, _a, _b); return 0; }")
check_arm_feature(i8mm "#include <arm_neon.h>\nint main() { int8x16_t _a, _b; volatile int32x4_t _s = vmmlaq_s32(_s, _a, _b); return 0; }")
check_arm_feature(sve "#include <arm_sve.h>\nint main() { svfloat32_t _a, _b; volatile svfloat32_t _c = svadd_f32_z(svptrue_b8(), _a, _b); return 0; }")
check_arm_feature(sme "#include <arm_sme.h>\n__arm_locally_streaming int main() { __asm__ volatile(\"smstart; smstop;\"); return 0; }")
list(APPEND ARCH_FLAGS "${ARM_MCPU_FLAG}${ARM_MCPU_FLAG_FIX}")
else()
......@@ -150,7 +152,7 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
if (ARM_FEATURE_RESULT)
message(WARNING "Failed to get ARM features")
else()
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC)
foreach(feature DOTPROD SVE MATMUL_INT8 FMA FP16_VECTOR_ARITHMETIC SME)
string(FIND "${ARM_FEATURE}" "__ARM_FEATURE_${feature} 1" feature_pos)
if (NOT ${feature_pos} EQUAL -1)
message(STATUS "ARM feature ${feature} enabled")
......@@ -308,6 +310,27 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
if (GGML_RVV)
list(APPEND ARCH_FLAGS -march=rv64gcv -mabi=lp64d)
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "s390x")
message(STATUS "s390x detected")
file(READ "/proc/cpuinfo" CPUINFO_CONTENTS)
string(REGEX REPLACE "machine[ \t\r\n]*=[ \t\r\n]*([0-9]+)" "\\1" S390X_M ${CPUINFO_CONTENTS})
# TODO: Separation to determine activation of VX/VXE/VXE2
if (${S390X_M} MATCHES "8561|8562")
message(STATUS "z15 target")
list(APPEND ARCH_FLAGS -march=z15 -mtune=z15)
elseif (${S390X_M} MATCHES "3931")
message(STATUS "z16 target")
list(APPEND ARCH_FLAGS -march=z16 -mtune=z16)
else()
message(STATUS "Unknown target")
message(WARNING "Unknown target. If you are compiling for z14 and earlier, you might have to add -DGGML_VXE=OFF.")
list(APPEND ARCH_FLAGS -march=native -mtune=native)
endif()
if (GGML_VXE)
list(APPEND ARCH_FLAGS -mvx -mzvector)
endif()
else()
message(STATUS "Unknown architecture")
endif()
......@@ -316,6 +339,94 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
target_compile_definitions(${GGML_CPU_NAME} PRIVATE GGML_USE_CPU_AARCH64)
endif()
if (GGML_CPU_KLEIDIAI)
message(STATUS "Using KleidiAI optimized kernels if applicable")
# Disable the KleidiAI tests
set(KLEIDIAI_BUILD_TESTS OFF)
# Fetch KleidiAI sources:
include(FetchContent)
set(KLEIDIAI_COMMIT_TAG "v1.3.0")
set(KLEIDIAI_DOWNLOAD_URL "https://github.com/ARM-software/kleidiai/archive/refs/tags/${KLEIDIAI_COMMIT_TAG}.tar.gz")
set(KLEIDIAI_ARCHIVE_MD5 "060bd2dc64642b091f461cc8dd7426d9")
if (POLICY CMP0135)
cmake_policy(SET CMP0135 NEW)
endif()
FetchContent_Declare(KleidiAI_Download
URL ${KLEIDIAI_DOWNLOAD_URL}
DOWNLOAD_EXTRACT_TIMESTAMP NEW
URL_HASH MD5=${KLEIDIAI_ARCHIVE_MD5})
FetchContent_MakeAvailable(KleidiAI_Download)
FetchContent_GetProperties(KleidiAI_Download
SOURCE_DIR KLEIDIAI_SRC
POPULATED KLEIDIAI_POPULATED)
if (NOT KLEIDIAI_POPULATED)
message(FATAL_ERROR "KleidiAI source downloaded failed.")
endif()
add_compile_definitions(GGML_USE_CPU_KLEIDIAI)
# Remove kleidiai target after fetching it
if (TARGET kleidiai)
set_target_properties(kleidiai PROPERTIES EXCLUDE_FROM_ALL TRUE)
endif()
list(APPEND GGML_CPU_SOURCES
ggml-cpu/kleidiai/kleidiai.cpp
ggml-cpu/kleidiai/kernels.cpp
ggml-cpu/kleidiai/kleidiai.h
ggml-cpu/kleidiai/kernels.h
)
# KleidiAI
include_directories(
${KLEIDIAI_SRC}/
${KLEIDIAI_SRC}/kai/
${KLEIDIAI_SRC}/kai/ukernels/
${KLEIDIAI_SRC}/kai/ukernels/matmul/
${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/
${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/)
set(ARCH_FLAGS_TEMP "${ARCH_FLAGS}")
if (NOT ARCH_FLAGS_TEMP)
string(REGEX MATCH "-march=[^ ]+" ARCH_FLAGS_TEMP "${CMAKE_C_FLAGS}")
endif()
string(FIND "${ARCH_FLAGS_TEMP}" "+dotprod" DOTPROD_ENABLED)
string(FIND "${ARCH_FLAGS_TEMP}" "+i8mm" I8MM_ENABLED)
string(FIND "${ARCH_FLAGS_TEMP}" "+sme" SME_ENABLED)
set(PRIVATE_ARCH_FLAGS ${ARCH_FLAGS})
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32.c)
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32ps1s0scalef16_qsu4c32s16s0_neon.c)
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_lhs_quant_pack_qsi8d32p_f32_neon.c)
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/pack/kai_rhs_pack_nxk_qsi4c32pscalef16_qsu4c32s16s0.c)
if (NOT DOTPROD_ENABLED MATCHES -1)
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x8_qsi4c32p4x8_1x4x32_neon_dotprod.c)
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4x4_1x4_neon_dotprod.c)
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x4_qsi4c32p4x4_16x4_neon_dotprod.c)
endif()
if (NOT I8MM_ENABLED MATCHES -1)
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p4x8_qsi4c32p4x8_16x4_neon_i8mm.c)
endif()
if (NOT SME_ENABLED MATCHES -1)
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1vlx4_qsi4c32p4vlx4_1vlx4vl_sme2_mopa.c)
list(APPEND GGML_KLEIDIAI_SOURCES ${KLEIDIAI_SRC}/kai/ukernels/matmul/matmul_clamp_f32_qsi8d32p_qsi4c32p/kai_matmul_clamp_f32_qsi8d32p1x4_qsi4c32p4vlx4_1x4vl_sme2_sdot.c)
set(PRIVATE_ARCH_FLAGS "${PRIVATE_ARCH_FLAGS}+sve+sve2")
endif()
set_source_files_properties(${GGML_KLEIDIAI_SOURCES} PROPERTIES COMPILE_OPTIONS "${PRIVATE_ARCH_FLAGS}")
list(APPEND GGML_CPU_SOURCES ${GGML_KLEIDIAI_SOURCES})
endif()
message(STATUS "Adding CPU backend variant ${GGML_CPU_NAME}: ${ARCH_FLAGS} ${ARCH_DEFINITIONS}")
target_sources(${GGML_CPU_NAME} PRIVATE ${GGML_CPU_SOURCES})
target_compile_options(${GGML_CPU_NAME} PRIVATE ${ARCH_FLAGS})
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment