Commit d3ad6274 authored by xuxzh1's avatar xuxzh1 🎱
Browse files

init

parent 97b02a89
This source diff could not be displayed because it is too large. You can view the blob instead.
//
// MIT license
// Copyright (C) 2024 Intel Corporation
// SPDX-License-Identifier: MIT
//
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_SYCL_MAX_DEVICES 48
#define GGML_SYCL_NAME "SYCL"
// backend API
GGML_API ggml_backend_t ggml_backend_sycl_init(int device);
// devide buffer
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_buffer_type(int device);
// split tensor buffer that splits matrices by rows across multiple devices
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_sycl_split_buffer_type(const float * tensor_split);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API ggml_backend_buffer_type_t ggml_backend_sycl_host_buffer_type(void);
GGML_API void ggml_backend_sycl_print_sycl_devices(void);
GGML_API GGML_CALL void ggml_sycl_get_gpu_list(int *id_list, int max_len);
GGML_API GGML_CALL void ggml_sycl_get_device_description(int device, char *description, size_t description_size);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_count();
GGML_API GGML_CALL void ggml_backend_sycl_get_device_memory(int device, size_t *free, size_t *total);
GGML_API GGML_CALL int ggml_backend_sycl_get_device_index(int device_id);
// TODO: these are temporary
// ref: https://github.com/ggerganov/llama.cpp/pull/6022#issuecomment-1992615670
GGML_API GGML_CALL int ggml_backend_sycl_get_device_id(int device_index);
GGML_API GGML_CALL void ggml_backend_sycl_set_single_device_mode(int main_gpu_id);
GGML_API GGML_CALL void ggml_backend_sycl_set_mul_device_mode();
// SYCL doesn't support registering host memory, keep here for reference
// GGML_API GGML_CALL bool ggml_backend_sycl_register_host_buffer(void * buffer, size_t size);
// GGML_API GGML_CALL void ggml_backend_sycl_unregister_host_buffer(void * buffer);
#ifdef __cplusplus
}
#endif
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
#pragma once
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
#define GGML_VK_NAME "Vulkan"
#define GGML_VK_MAX_DEVICES 16
GGML_API void ggml_vk_instance_init(void);
// backend API
GGML_API GGML_CALL ggml_backend_t ggml_backend_vk_init(size_t dev_num);
GGML_API GGML_CALL bool ggml_backend_is_vk(ggml_backend_t backend);
GGML_API GGML_CALL int ggml_backend_vk_get_device_count(void);
GGML_API GGML_CALL void ggml_backend_vk_get_device_description(int device, char * description, size_t description_size);
GGML_API GGML_CALL void ggml_backend_vk_get_device_memory(int device, size_t * free, size_t * total);
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_buffer_type(size_t dev_num);
// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU
GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_vk_host_buffer_type(void);
#ifdef __cplusplus
}
#endif
This source diff could not be displayed because it is too large. You can view the blob instead.
#pragma once
//
// GGML Tensor Library
//
// This documentation is still a work in progress.
// If you wish some specific topics to be covered, feel free to drop a comment:
//
// https://github.com/ggerganov/whisper.cpp/issues/40
//
// ## Overview
//
// This library implements:
//
// - a set of tensor operations
// - automatic differentiation
// - basic optimization algorithms
//
// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
// but is not limited to, the following:
//
// - linear regression
// - support vector machines
// - neural networks
//
// The library allows the user to define a certain function using the available tensor operations. This function
// definition is represented internally via a computation graph. Each tensor operation in the function definition
// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
// using one of the available optimization algorithms.
//
// For example, here we define the function: f(x) = a*x^2 + b
//
// {
// struct ggml_init_params params = {
// .mem_size = 16*1024*1024,
// .mem_buffer = NULL,
// };
//
// // memory allocation happens here
// struct ggml_context * ctx = ggml_init(params);
//
// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
//
// ggml_set_param(ctx, x); // x is an input variable
//
// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
// struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
//
// ...
// }
//
// Notice that the function definition above does not involve any actual computation. The computation is performed only
// when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
//
// {
// ...
//
// struct ggml_cgraph * gf = ggml_new_graph(ctx);
// ggml_build_forward_expand(gf, f);
//
// // set the input variable and parameter values
// ggml_set_f32(x, 2.0f);
// ggml_set_f32(a, 3.0f);
// ggml_set_f32(b, 4.0f);
//
// ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
//
// printf("f = %f\n", ggml_get_f32_1d(f, 0));
//
// ...
// }
//
// The actual computation is performed in the ggml_graph_compute() function.
//
// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
// actually needed.
//
// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
// differentiation and optimization algorithms.
//
// The described approach allows to define the function graph once and then compute its forward or backward graphs
// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
// the user can avoid the memory allocation overhead at runtime.
//
// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
// citizens, but in theory the library can be extended to support FP8 and integer data types.
//
// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
// and binary operations. Most of the available operations fall into one of these two categories. With time, it became
// clear that the library needs to support more complex operations. The way to support these operations is not clear
// yet, but a few examples are demonstrated in the following operations:
//
// - ggml_permute()
// - ggml_conv_1d_1s()
// - ggml_conv_1d_2s()
//
// For each tensor operator, the library implements a forward and backward computation function. The forward function
// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
// calculus class, or watch the following video:
//
// What is Automatic Differentiation?
// https://www.youtube.com/watch?v=wG_nF1awSSY
//
//
// ## Tensor data (struct ggml_tensor)
//
// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
//
// {
// struct ggml_tensor * c = ggml_add(ctx, a, b);
//
// assert(c->src[0] == a);
// assert(c->src[1] == b);
// }
//
// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
// permutation. All tensor operations have to take the stride into account and not assume that the tensor is
// contiguous in memory.
//
// The data of the tensor is accessed via the "data" pointer. For example:
//
// {
// const int nx = 2;
// const int ny = 3;
//
// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
//
// for (int y = 0; y < ny; y++) {
// for (int x = 0; x < nx; x++) {
// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
// }
// }
//
// ...
// }
//
// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
//
// ## The matrix multiplication operator (ggml_mul_mat)
//
// TODO
//
//
// ## Multi-threading
//
// TODO
//
//
// ## Overview of ggml.c
//
// TODO
//
//
// ## SIMD optimizations
//
// TODO
//
//
// ## Debugging ggml
//
// TODO
//
//
#ifdef GGML_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef GGML_BUILD
# define GGML_API __declspec(dllexport)
# else
# define GGML_API __declspec(dllimport)
# endif
# else
# define GGML_API __attribute__ ((visibility ("default")))
# endif
#else
# define GGML_API
#endif
#ifdef GGML_MULTIPLATFORM
# if defined(_WIN32)
# define GGML_CALL
# else
# define GGML_CALL __attribute__((__ms_abi__))
# endif
#else
# define GGML_CALL
#endif
// TODO: support for clang
#ifdef __GNUC__
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
#elif defined(_MSC_VER)
# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
#else
# define GGML_DEPRECATED(func, hint) func
#endif
#ifndef __GNUC__
# define GGML_ATTRIBUTE_FORMAT(...)
#elif defined(__MINGW32__)
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
#else
# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
#endif
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#define GGML_FILE_MAGIC 0x67676d6c // "ggml"
#define GGML_FILE_VERSION 1
#define GGML_QNT_VERSION 2 // bump this on quantization format changes
#define GGML_QNT_VERSION_FACTOR 1000 // do not change this
#define GGML_MAX_DIMS 4
#define GGML_MAX_PARAMS 2048
#define GGML_MAX_CONTEXTS 64
#define GGML_MAX_SRC 10
#ifndef GGML_MAX_NAME
#define GGML_MAX_NAME 64
#endif
#define GGML_MAX_OP_PARAMS 64
#define GGML_DEFAULT_N_THREADS 4
#define GGML_DEFAULT_GRAPH_SIZE 2048
#if UINTPTR_MAX == 0xFFFFFFFF
#define GGML_MEM_ALIGN 4
#else
#define GGML_MEM_ALIGN 16
#endif
#define GGML_EXIT_SUCCESS 0
#define GGML_EXIT_ABORTED 1
#define GGUF_MAGIC "GGUF"
#define GGUF_VERSION 3
#define GGUF_DEFAULT_ALIGNMENT 32
#define GGML_UNUSED(x) (void)(x)
#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
#define GGML_ASSERT(x) \
do { \
if (!(x)) { \
fflush(stdout); \
fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
ggml_print_backtrace(); \
abort(); \
} \
} while (0)
#ifndef NDEBUG
#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
#elif defined(__GNUC__)
#define GGML_UNREACHABLE() __builtin_unreachable()
#elif defined(_MSC_VER)
#define GGML_UNREACHABLE() __assume(0)
#else
#define GGML_UNREACHABLE() ((void) 0)
#endif
// used to copy the number of elements and stride in bytes of tensors into local variables.
// main purpose is to reduce code duplication and improve readability.
//
// example:
//
// GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
//
#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
const type prefix##0 = (pointer)->array[0]; \
GGML_UNUSED(prefix##0);
#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
const type prefix##1 = (pointer)->array[1]; \
GGML_UNUSED(prefix##1);
#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
const type prefix##2 = (pointer)->array[2]; \
GGML_UNUSED(prefix##2);
#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
const type prefix##3 = (pointer)->array[3]; \
GGML_UNUSED(prefix##3);
#define GGML_TENSOR_UNARY_OP_LOCALS \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
#define GGML_TENSOR_BINARY_OP_LOCALS \
GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
#ifdef __cplusplus
extern "C" {
#endif
enum ggml_status {
GGML_STATUS_ALLOC_FAILED = -2,
GGML_STATUS_FAILED = -1,
GGML_STATUS_SUCCESS = 0,
GGML_STATUS_ABORTED = 1,
};
// get ggml_status name string
GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
// ieee 754-2008 half-precision float16
// todo: make this not an integral type
typedef uint16_t ggml_fp16_t;
GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
// google brain half-precision bfloat16
typedef struct { uint16_t bits; } ggml_bf16_t;
GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
struct ggml_object;
struct ggml_context;
// NOTE: always add types at the end of the enum to keep backward compatibility
enum ggml_type {
GGML_TYPE_F32 = 0,
GGML_TYPE_F16 = 1,
GGML_TYPE_Q4_0 = 2,
GGML_TYPE_Q4_1 = 3,
// GGML_TYPE_Q4_2 = 4, support has been removed
// GGML_TYPE_Q4_3 = 5, support has been removed
GGML_TYPE_Q5_0 = 6,
GGML_TYPE_Q5_1 = 7,
GGML_TYPE_Q8_0 = 8,
GGML_TYPE_Q8_1 = 9,
GGML_TYPE_Q2_K = 10,
GGML_TYPE_Q3_K = 11,
GGML_TYPE_Q4_K = 12,
GGML_TYPE_Q5_K = 13,
GGML_TYPE_Q6_K = 14,
GGML_TYPE_Q8_K = 15,
GGML_TYPE_IQ2_XXS = 16,
GGML_TYPE_IQ2_XS = 17,
GGML_TYPE_IQ3_XXS = 18,
GGML_TYPE_IQ1_S = 19,
GGML_TYPE_IQ4_NL = 20,
GGML_TYPE_IQ3_S = 21,
GGML_TYPE_IQ2_S = 22,
GGML_TYPE_IQ4_XS = 23,
GGML_TYPE_I8 = 24,
GGML_TYPE_I16 = 25,
GGML_TYPE_I32 = 26,
GGML_TYPE_I64 = 27,
GGML_TYPE_F64 = 28,
GGML_TYPE_IQ1_M = 29,
GGML_TYPE_BF16 = 30,
GGML_TYPE_COUNT,
};
// precision
enum ggml_prec {
GGML_PREC_DEFAULT,
GGML_PREC_F32,
};
enum ggml_backend_type {
GGML_BACKEND_TYPE_CPU = 0,
GGML_BACKEND_TYPE_GPU = 10,
GGML_BACKEND_TYPE_GPU_SPLIT = 20,
};
// model file types
enum ggml_ftype {
GGML_FTYPE_UNKNOWN = -1,
GGML_FTYPE_ALL_F32 = 0,
GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
};
// available tensor operations:
enum ggml_op {
GGML_OP_NONE = 0,
GGML_OP_DUP,
GGML_OP_ADD,
GGML_OP_ADD1,
GGML_OP_ACC,
GGML_OP_SUB,
GGML_OP_MUL,
GGML_OP_DIV,
GGML_OP_SQR,
GGML_OP_SQRT,
GGML_OP_LOG,
GGML_OP_SUM,
GGML_OP_SUM_ROWS,
GGML_OP_MEAN,
GGML_OP_ARGMAX,
GGML_OP_REPEAT,
GGML_OP_REPEAT_BACK,
GGML_OP_CONCAT,
GGML_OP_SILU_BACK,
GGML_OP_NORM, // normalize
GGML_OP_RMS_NORM,
GGML_OP_RMS_NORM_BACK,
GGML_OP_GROUP_NORM,
GGML_OP_MUL_MAT,
GGML_OP_MUL_MAT_ID,
GGML_OP_OUT_PROD,
GGML_OP_SCALE,
GGML_OP_SET,
GGML_OP_CPY,
GGML_OP_CONT,
GGML_OP_RESHAPE,
GGML_OP_VIEW,
GGML_OP_PERMUTE,
GGML_OP_TRANSPOSE,
GGML_OP_GET_ROWS,
GGML_OP_GET_ROWS_BACK,
GGML_OP_DIAG,
GGML_OP_DIAG_MASK_INF,
GGML_OP_DIAG_MASK_ZERO,
GGML_OP_SOFT_MAX,
GGML_OP_SOFT_MAX_BACK,
GGML_OP_ROPE,
GGML_OP_ROPE_BACK,
GGML_OP_CLAMP,
GGML_OP_CONV_TRANSPOSE_1D,
GGML_OP_IM2COL,
GGML_OP_CONV_TRANSPOSE_2D,
GGML_OP_POOL_1D,
GGML_OP_POOL_2D,
GGML_OP_UPSCALE, // nearest interpolate
GGML_OP_PAD,
GGML_OP_ARANGE,
GGML_OP_TIMESTEP_EMBEDDING,
GGML_OP_ARGSORT,
GGML_OP_LEAKY_RELU,
GGML_OP_FLASH_ATTN_EXT,
GGML_OP_FLASH_ATTN_BACK,
GGML_OP_SSM_CONV,
GGML_OP_SSM_SCAN,
GGML_OP_WIN_PART,
GGML_OP_WIN_UNPART,
GGML_OP_GET_REL_POS,
GGML_OP_ADD_REL_POS,
GGML_OP_UNARY,
GGML_OP_MAP_UNARY,
GGML_OP_MAP_BINARY,
GGML_OP_MAP_CUSTOM1_F32,
GGML_OP_MAP_CUSTOM2_F32,
GGML_OP_MAP_CUSTOM3_F32,
GGML_OP_MAP_CUSTOM1,
GGML_OP_MAP_CUSTOM2,
GGML_OP_MAP_CUSTOM3,
GGML_OP_CROSS_ENTROPY_LOSS,
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
GGML_OP_COUNT,
};
enum ggml_unary_op {
GGML_UNARY_OP_ABS,
GGML_UNARY_OP_SGN,
GGML_UNARY_OP_NEG,
GGML_UNARY_OP_STEP,
GGML_UNARY_OP_TANH,
GGML_UNARY_OP_ELU,
GGML_UNARY_OP_RELU,
GGML_UNARY_OP_SIGMOID,
GGML_UNARY_OP_GELU,
GGML_UNARY_OP_GELU_QUICK,
GGML_UNARY_OP_SILU,
GGML_UNARY_OP_HARDSWISH,
GGML_UNARY_OP_HARDSIGMOID,
GGML_UNARY_OP_COUNT,
};
enum ggml_object_type {
GGML_OBJECT_TYPE_TENSOR,
GGML_OBJECT_TYPE_GRAPH,
GGML_OBJECT_TYPE_WORK_BUFFER
};
enum ggml_log_level {
GGML_LOG_LEVEL_ERROR = 2,
GGML_LOG_LEVEL_WARN = 3,
GGML_LOG_LEVEL_INFO = 4,
GGML_LOG_LEVEL_DEBUG = 5
};
enum ggml_tensor_flag {
GGML_TENSOR_FLAG_INPUT = 1,
GGML_TENSOR_FLAG_OUTPUT = 2,
GGML_TENSOR_FLAG_PARAM = 4,
};
// ggml object
struct ggml_object {
size_t offs;
size_t size;
struct ggml_object * next;
enum ggml_object_type type;
char padding[4];
};
static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
// n-dimensional tensor
struct ggml_tensor {
enum ggml_type type;
GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
struct ggml_backend_buffer * buffer;
int64_t ne[GGML_MAX_DIMS]; // number of elements
size_t nb[GGML_MAX_DIMS]; // stride in bytes:
// nb[0] = ggml_type_size(type)
// nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
// nb[i] = nb[i-1] * ne[i-1]
// compute data
enum ggml_op op;
// op params - allocated as int32_t for alignment
int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
int32_t flags;
struct ggml_tensor * grad;
struct ggml_tensor * src[GGML_MAX_SRC];
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
struct ggml_tensor * view_src;
size_t view_offs;
void * data;
char name[GGML_MAX_NAME];
void * extra; // extra things e.g. for ggml-cuda.cu
char padding[8];
};
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
// Abort callback
// If not NULL, called before ggml computation
// If it returns true, the computation is aborted
typedef bool (*ggml_abort_callback)(void * data);
// the compute plan that needs to be prepared for ggml_graph_compute()
// since https://github.com/ggerganov/ggml/issues/287
struct ggml_cplan {
size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
int n_threads;
// abort ggml_graph_compute when true
ggml_abort_callback abort_callback;
void * abort_callback_data;
};
enum ggml_cgraph_eval_order {
GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
GGML_CGRAPH_EVAL_ORDER_COUNT
};
struct ggml_hash_set {
size_t size;
struct ggml_tensor ** keys;
};
// computation graph
struct ggml_cgraph {
int size;
int n_nodes;
int n_leafs;
struct ggml_tensor ** nodes;
struct ggml_tensor ** grads;
struct ggml_tensor ** leafs;
struct ggml_hash_set visited_hash_table;
enum ggml_cgraph_eval_order order;
// performance
int perf_runs;
int64_t perf_cycles;
int64_t perf_time_us;
};
// scratch buffer
struct ggml_scratch {
size_t offs;
size_t size;
void * data;
};
struct ggml_init_params {
// memory pool
size_t mem_size; // bytes
void * mem_buffer; // if NULL, memory will be allocated internally
bool no_alloc; // don't allocate memory for the tensor data
};
// compute types
// NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
// This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
enum ggml_task_type {
GGML_TASK_TYPE_INIT = 0,
GGML_TASK_TYPE_COMPUTE,
GGML_TASK_TYPE_FINALIZE,
};
struct ggml_compute_params {
enum ggml_task_type type;
// ith = thread index, nth = number of threads
int ith, nth;
// work buffer for all threads
size_t wsize;
void * wdata;
};
// numa strategies
enum ggml_numa_strategy {
GGML_NUMA_STRATEGY_DISABLED = 0,
GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
GGML_NUMA_STRATEGY_ISOLATE = 2,
GGML_NUMA_STRATEGY_NUMACTL = 3,
GGML_NUMA_STRATEGY_MIRROR = 4,
GGML_NUMA_STRATEGY_COUNT
};
//
// GUID
//
// GUID types
typedef uint8_t ggml_guid[16];
typedef ggml_guid * ggml_guid_t;
GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
// misc
GGML_API void ggml_time_init(void); // call this once at the beginning of the program
GGML_API int64_t ggml_time_ms(void);
GGML_API int64_t ggml_time_us(void);
GGML_API int64_t ggml_cycles(void);
GGML_API int64_t ggml_cycles_per_ms(void);
GGML_API void ggml_print_backtrace(void);
// accepts a UTF-8 path, even on Windows
GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
GGML_API void ggml_print_object (const struct ggml_object * obj);
GGML_API void ggml_print_objects(const struct ggml_context * ctx);
GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
GGML_DEPRECATED(
GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
"use ggml_row_size() instead");
GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
GGML_API const char * ggml_op_symbol(enum ggml_op op);
GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
// TODO: temporary until model loading of ggml examples is refactored
GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
// use this to compute the memory overhead of a tensor
GGML_API size_t ggml_tensor_overhead(void);
GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
// main
GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
GGML_API void ggml_free(struct ggml_context * ctx);
GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_new_tensor(
struct ggml_context * ctx,
enum ggml_type type,
int n_dims,
const int64_t *ne);
GGML_API struct ggml_tensor * ggml_new_tensor_1d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0);
GGML_API struct ggml_tensor * ggml_new_tensor_2d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1);
GGML_API struct ggml_tensor * ggml_new_tensor_3d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2);
GGML_API struct ggml_tensor * ggml_new_tensor_4d(
struct ggml_context * ctx,
enum ggml_type type,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
// Context tensor enumeration and lookup
GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
// Converts a flat index into coordinates
GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
GGML_ATTRIBUTE_FORMAT(2, 3)
GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
//
// operations on tensors with backpropagation
//
GGML_API struct ggml_tensor * ggml_dup(
struct ggml_context * ctx,
struct ggml_tensor * a);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_dup_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_add(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_add_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_add_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
enum ggml_type type);
GGML_API struct ggml_tensor * ggml_add1(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_add1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// dst = a
// view(dst, nb1, nb2, nb3, offset) += b
// return dst
GGML_API struct ggml_tensor * ggml_acc(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
GGML_API struct ggml_tensor * ggml_acc_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
GGML_API struct ggml_tensor * ggml_sub(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_sub_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_mul(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_mul_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_div(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_div_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_sqr(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sqr_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sqrt(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sqrt_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_log(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_log_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// return scalar
GGML_API struct ggml_tensor * ggml_sum(
struct ggml_context * ctx,
struct ggml_tensor * a);
// sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
GGML_API struct ggml_tensor * ggml_sum_rows(
struct ggml_context * ctx,
struct ggml_tensor * a);
// mean along rows
GGML_API struct ggml_tensor * ggml_mean(
struct ggml_context * ctx,
struct ggml_tensor * a);
// argmax along rows
GGML_API struct ggml_tensor * ggml_argmax(
struct ggml_context * ctx,
struct ggml_tensor * a);
// if a is the same shape as b, and a is not parameter, return a
// otherwise, return a new tensor: repeat(a) to fit in b
GGML_API struct ggml_tensor * ggml_repeat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// sums repetitions in a into shape of b
GGML_API struct ggml_tensor * ggml_repeat_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// concat a and b along dim
// used in stable-diffusion
GGML_API struct ggml_tensor * ggml_concat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int dim);
GGML_API struct ggml_tensor * ggml_abs(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_abs_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sgn(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sgn_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_neg(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_neg_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_step(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_step_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_tanh(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_tanh_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_elu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_elu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_relu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_leaky_relu(
struct ggml_context * ctx,
struct ggml_tensor * a, float negative_slope, bool inplace);
GGML_API struct ggml_tensor * ggml_relu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sigmoid(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu_quick(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_silu(
struct ggml_context * ctx,
struct ggml_tensor * a);
GGML_API struct ggml_tensor * ggml_silu_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// a - x
// b - dy
GGML_API struct ggml_tensor * ggml_silu_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// hardswish(x) = x * relu6(x + 3) / 6
GGML_API struct ggml_tensor * ggml_hardswish(
struct ggml_context * ctx,
struct ggml_tensor * a);
// hardsigmoid(x) = relu6(x + 3) / 6
GGML_API struct ggml_tensor * ggml_hardsigmoid(
struct ggml_context * ctx,
struct ggml_tensor * a);
// normalize along rows
GGML_API struct ggml_tensor * ggml_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps);
GGML_API struct ggml_tensor * ggml_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps);
GGML_API struct ggml_tensor * ggml_rms_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps);
GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float eps);
// group normalize along ne0*ne1*n_groups
// used in stable-diffusion
// TODO: eps is hardcoded to 1e-6 for now
GGML_API struct ggml_tensor * ggml_group_norm(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups);
GGML_API struct ggml_tensor * ggml_group_norm_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_groups);
// a - x
// b - dy
GGML_API struct ggml_tensor * ggml_rms_norm_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
float eps);
// A: k columns, n rows => [ne03, ne02, n, k]
// B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
// result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
GGML_API struct ggml_tensor * ggml_mul_mat(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// change the precision of a matrix multiplication
// set to GGML_PREC_F32 for higher precision (useful for phi-2)
GGML_API void ggml_mul_mat_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec);
// indirect matrix multiplication
GGML_API struct ggml_tensor * ggml_mul_mat_id(
struct ggml_context * ctx,
struct ggml_tensor * as,
struct ggml_tensor * b,
struct ggml_tensor * ids);
// A: m columns, n rows,
// B: p columns, n rows,
// result is m columns, p rows
GGML_API struct ggml_tensor * ggml_out_prod(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
//
// operations on tensors without backpropagation
//
GGML_API struct ggml_tensor * ggml_scale(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_scale_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
float s);
// b -> view(a,offset,nb1,nb2,3), return modified a
GGML_API struct ggml_tensor * ggml_set(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
// b -> view(a,offset,nb1,nb2,3), return view(a)
GGML_API struct ggml_tensor * ggml_set_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t nb2,
size_t nb3,
size_t offset);
GGML_API struct ggml_tensor * ggml_set_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset);
GGML_API struct ggml_tensor * ggml_set_1d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t offset);
// b -> view(a,offset,nb1,nb2,3), return modified a
GGML_API struct ggml_tensor * ggml_set_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset);
// b -> view(a,offset,nb1,nb2,3), return view(a)
GGML_API struct ggml_tensor * ggml_set_2d_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
size_t nb1,
size_t offset);
// a -> b, return view(b)
GGML_API struct ggml_tensor * ggml_cpy(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_cast(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_type type);
// make contiguous
GGML_API struct ggml_tensor * ggml_cont(
struct ggml_context * ctx,
struct ggml_tensor * a);
// make contiguous, with new shape
GGML_API struct ggml_tensor * ggml_cont_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0);
GGML_API struct ggml_tensor * ggml_cont_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1);
GGML_API struct ggml_tensor * ggml_cont_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2);
GGML_API struct ggml_tensor * ggml_cont_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
// return view(a), b specifies the new shape
// TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0);
GGML_API struct ggml_tensor * ggml_reshape_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1);
// return view(a)
// TODO: when we start computing gradient, make a copy instead of view
GGML_API struct ggml_tensor * ggml_reshape_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2);
GGML_API struct ggml_tensor * ggml_reshape_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3);
// offset in bytes
GGML_API struct ggml_tensor * ggml_view_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
size_t offset);
GGML_API struct ggml_tensor * ggml_view_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
size_t nb1, // row stride in bytes
size_t offset);
GGML_API struct ggml_tensor * ggml_view_3d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
size_t nb1, // row stride in bytes
size_t nb2, // slice stride in bytes
size_t offset);
GGML_API struct ggml_tensor * ggml_view_4d(
struct ggml_context * ctx,
struct ggml_tensor * a,
int64_t ne0,
int64_t ne1,
int64_t ne2,
int64_t ne3,
size_t nb1, // row stride in bytes
size_t nb2, // slice stride in bytes
size_t nb3,
size_t offset);
GGML_API struct ggml_tensor * ggml_permute(
struct ggml_context * ctx,
struct ggml_tensor * a,
int axis0,
int axis1,
int axis2,
int axis3);
// alias for ggml_permute(ctx, a, 1, 0, 2, 3)
GGML_API struct ggml_tensor * ggml_transpose(
struct ggml_context * ctx,
struct ggml_tensor * a);
// supports 3D: a->ne[2] == b->ne[1]
GGML_API struct ggml_tensor * ggml_get_rows(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_get_rows_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c);
GGML_API struct ggml_tensor * ggml_diag(
struct ggml_context * ctx,
struct ggml_tensor * a);
// set elements above the diagonal to -INF
GGML_API struct ggml_tensor * ggml_diag_mask_inf(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past);
// set elements above the diagonal to 0
GGML_API struct ggml_tensor * ggml_diag_mask_zero(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
int n_past);
GGML_API struct ggml_tensor * ggml_soft_max(
struct ggml_context * ctx,
struct ggml_tensor * a);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_soft_max_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a);
// fused soft_max(a*scale + mask*(ALiBi slope))
// mask is optional
// max_bias = 0.0f for no ALiBi
GGML_API struct ggml_tensor * ggml_soft_max_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * mask,
float scale,
float max_bias);
GGML_API struct ggml_tensor * ggml_soft_max_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// rotary position embedding
// if mode & 1 == 1, skip n_past elements (NOT SUPPORTED)
// if mode & 2 == 1, GPT-NeoX style
// if mode & 4 == 1, ChatGLM style
//
// b is an int32 vector with size a->ne[2], it contains the positions
// c is freq factors (e.g. phi3-128k), (optional)
GGML_API struct ggml_tensor * ggml_rope(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx);
// custom RoPE
GGML_API struct ggml_tensor * ggml_rope_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow);
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow),
"use ggml_rope_ext instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow),
"use ggml_rope_ext_inplace instead");
struct ggml_tensor * ggml_rope_xpos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int n_dims,
float base,
bool down);
// compute correction dims for YaRN RoPE scaling
GGML_CALL void ggml_rope_yarn_corr_dims(
int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
// rotary position embedding backward, i.e compute dx from dy
// a - dy
GGML_API struct ggml_tensor * ggml_rope_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
int n_dims,
int mode,
int n_ctx,
int n_orig_ctx,
float freq_base,
float freq_scale,
float ext_factor,
float attn_factor,
float beta_fast,
float beta_slow,
float xpos_base,
bool xpos_down);
// clamp
// in-place, returns view(a)
GGML_API struct ggml_tensor * ggml_clamp(
struct ggml_context * ctx,
struct ggml_tensor * a,
float min,
float max);
GGML_API struct ggml_tensor * ggml_im2col(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1,
bool is_2D,
enum ggml_type dst_type);
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1);
GGML_API struct ggml_tensor * ggml_conv_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0, // stride
int p0, // padding
int d0); // dilation
// conv_1d with padding = half
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s,
int d);
GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int p0,
int d0);
GGML_API struct ggml_tensor * ggml_conv_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int s0,
int s1,
int p0,
int p1,
int d0,
int d1);
// kernel size is a->ne[0] x a->ne[1]
// stride is equal to kernel size
// padding is zero
// example:
// a: 16 16 3 768
// b: 1024 1024 3 1
// res: 64 64 768 1
// used in sam
GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// kernel size is a->ne[0] x a->ne[1]
// stride is 1
// padding is half
// example:
// a: 3 3 256 256
// b: 64 64 256 1
// res: 64 64 256 1
// used in sam
GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
int stride);
enum ggml_op_pool {
GGML_OP_POOL_MAX,
GGML_OP_POOL_AVG,
GGML_OP_POOL_COUNT,
};
GGML_API struct ggml_tensor * ggml_pool_1d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0, // kernel size
int s0, // stride
int p0); // padding
// the result will have 2*p0 padding for the first dimension
// and 2*p1 padding for the second dimension
GGML_API struct ggml_tensor * ggml_pool_2d(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_op_pool op,
int k0,
int k1,
int s0,
int s1,
float p0,
float p1);
// nearest interpolate
// multiplies ne0 and ne1 by scale factor
// used in stable-diffusion
GGML_API struct ggml_tensor * ggml_upscale(
struct ggml_context * ctx,
struct ggml_tensor * a,
int scale_factor);
// nearest interpolate
// nearest interpolate to specified dimensions
// used in tortoise.cpp
GGML_API struct ggml_tensor * ggml_upscale_ext(
struct ggml_context * ctx,
struct ggml_tensor * a,
int ne0,
int ne1,
int ne2,
int ne3);
// pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
GGML_API struct ggml_tensor * ggml_pad(
struct ggml_context * ctx,
struct ggml_tensor * a,
int p0,
int p1,
int p2,
int p3);
// Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
// timesteps: [N,]
// return: [N, dim]
GGML_API struct ggml_tensor * ggml_timestep_embedding(
struct ggml_context * ctx,
struct ggml_tensor * timesteps,
int dim,
int max_period);
// sort rows
enum ggml_sort_order {
GGML_SORT_ORDER_ASC,
GGML_SORT_ORDER_DESC,
};
GGML_API struct ggml_tensor * ggml_argsort(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_sort_order order);
GGML_API struct ggml_tensor * ggml_arange(
struct ggml_context * ctx,
float start,
float stop,
float step);
// top k elements per row
GGML_API struct ggml_tensor * ggml_top_k(
struct ggml_context * ctx,
struct ggml_tensor * a,
int k);
#define GGML_KQ_MASK_PAD 32
// q: [n_embd, n_batch, n_head, 1]
// k: [n_embd, n_kv, n_head_kv, 1]
// v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
// mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
// res: [n_embd, n_head, n_batch, 1] !! permuted !!
GGML_API struct ggml_tensor * ggml_flash_attn_ext(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * mask,
float scale,
float max_bias);
GGML_API void ggml_flash_attn_ext_set_prec(
struct ggml_tensor * a,
enum ggml_prec prec);
// TODO: needs to be adapted to ggml_flash_attn_ext
GGML_API struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
struct ggml_tensor * d,
bool masked);
GGML_API struct ggml_tensor * ggml_ssm_conv(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * c,
struct ggml_tensor * sq);
GGML_API struct ggml_tensor * ggml_ssm_scan(
struct ggml_context * ctx,
struct ggml_tensor * s,
struct ggml_tensor * x,
struct ggml_tensor * dt,
struct ggml_tensor * A,
struct ggml_tensor * B,
struct ggml_tensor * C,
struct ggml_tensor * sq);
// partition into non-overlapping windows with padding if needed
// example:
// a: 768 64 64 1
// w: 14
// res: 768 14 14 25
// used in sam
GGML_API struct ggml_tensor * ggml_win_part(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w);
// reverse of ggml_win_part
// used in sam
GGML_API struct ggml_tensor * ggml_win_unpart(
struct ggml_context * ctx,
struct ggml_tensor * a,
int w0,
int h0,
int w);
GGML_API struct ggml_tensor * ggml_unary(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op);
GGML_API struct ggml_tensor * ggml_unary_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
enum ggml_unary_op op);
// used in sam
GGML_API struct ggml_tensor * ggml_get_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
int qh,
int kh);
// used in sam
GGML_API struct ggml_tensor * ggml_add_rel_pos(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph);
GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * pw,
struct ggml_tensor * ph);
// custom operators
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_unary_op_f32_t fun),
"use ggml_map_custom1 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_unary_op_f32_t fun),
"use ggml_map_custom1_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_binary_op_f32_t fun),
"use ggml_map_custom2 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_binary_op_f32_t fun),
"use ggml_map_custom2_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_f32_t fun),
"use ggml_map_custom1 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_f32_t fun),
"use ggml_map_custom1_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_f32_t fun),
"use ggml_map_custom2 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_f32_t fun),
"use ggml_map_custom2_inplace instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_f32_t fun),
"use ggml_map_custom3 instead");
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_f32_t fun),
"use ggml_map_custom3_inplace instead");
// custom operators v2
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
#define GGML_N_TASKS_MAX -1
GGML_API struct ggml_tensor * ggml_map_custom1(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
ggml_custom1_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom2(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
ggml_custom2_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom3(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_t fun,
int n_tasks,
void * userdata);
GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c,
ggml_custom3_op_t fun,
int n_tasks,
void * userdata);
// loss function
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b,
struct ggml_tensor * c);
//
// automatic differentiation
//
GGML_API void ggml_set_param(
struct ggml_context * ctx,
struct ggml_tensor * tensor);
GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
// graph allocation in a context
GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
GGML_API size_t ggml_graph_overhead(void);
GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
// ggml_graph_plan() has to be called before ggml_graph_compute()
// when plan.work_size > 0, caller must allocate memory for plan.work_data
GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
// same as ggml_graph_compute() but the work data is allocated as a part of the context
// note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
// print info and performance information for the graph
GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
// dump the graph into a file using the dot format
GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
// build gradient checkpointing backward graph gb for gf using provided checkpoints
// gb_tmp will contain original backward graph with rewritten backward process nodes,
// but without the second forward pass nodes.
GGML_API void ggml_build_backward_gradient_checkpointing(
struct ggml_context * ctx,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
struct ggml_cgraph * gb_tmp,
struct ggml_tensor * * checkpoints,
int n_checkpoints);
//
// optimization
//
// optimization methods
enum ggml_opt_type {
GGML_OPT_TYPE_ADAM,
GGML_OPT_TYPE_LBFGS,
};
// linesearch methods
enum ggml_linesearch {
GGML_LINESEARCH_DEFAULT = 1,
GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
};
// optimization return values
enum ggml_opt_result {
GGML_OPT_RESULT_OK = 0,
GGML_OPT_RESULT_DID_NOT_CONVERGE,
GGML_OPT_RESULT_NO_CONTEXT,
GGML_OPT_RESULT_INVALID_WOLFE,
GGML_OPT_RESULT_FAIL,
GGML_OPT_RESULT_CANCEL,
GGML_LINESEARCH_FAIL = -128,
GGML_LINESEARCH_MINIMUM_STEP,
GGML_LINESEARCH_MAXIMUM_STEP,
GGML_LINESEARCH_MAXIMUM_ITERATIONS,
GGML_LINESEARCH_INVALID_PARAMETERS,
};
typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
// optimization parameters
//
// see ggml.c (ggml_opt_default_params) for default values
//
struct ggml_opt_params {
enum ggml_opt_type type;
size_t graph_size;
int n_threads;
// delta-based convergence test
//
// if past == 0 - disabled
// if past > 0:
// stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
//
int past;
float delta;
// maximum number of iterations without improvement
//
// if 0 - disabled
// if > 0:
// assume convergence if no cost improvement in this number of iterations
//
int max_no_improvement;
bool print_forward_graph;
bool print_backward_graph;
int n_gradient_accumulation;
// ADAM parameters
struct {
int n_iter;
float sched; // schedule multiplier (fixed, decay or warmup)
float decay; // weight decay for AdamW, use 0.0f to disable
int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
float alpha; // learning rate
float beta1;
float beta2;
float eps; // epsilon for numerical stability
float eps_f; // epsilon for convergence test
float eps_g; // epsilon for convergence test
float gclip; // gradient clipping
} adam;
// LBFGS parameters
struct {
int m; // number of corrections to approximate the inv. Hessian
int n_iter;
int max_linesearch;
float eps; // convergence tolerance
float ftol; // line search tolerance
float wolfe;
float min_step;
float max_step;
enum ggml_linesearch linesearch;
} lbfgs;
};
struct ggml_opt_context {
struct ggml_context * ctx;
struct ggml_opt_params params;
int iter;
int64_t nx; // number of parameter elements
bool just_initialized;
float loss_before;
float loss_after;
struct {
struct ggml_tensor * g; // current gradient
struct ggml_tensor * m; // first moment
struct ggml_tensor * v; // second moment
struct ggml_tensor * pf; // past function values
float fx_best;
float fx_prev;
int n_no_improvement;
} adam;
struct {
struct ggml_tensor * x; // current parameters
struct ggml_tensor * xp; // previous parameters
struct ggml_tensor * g; // current gradient
struct ggml_tensor * gp; // previous gradient
struct ggml_tensor * d; // search direction
struct ggml_tensor * pf; // past function values
struct ggml_tensor * lmal; // the L-BFGS memory alpha
struct ggml_tensor * lmys; // the L-BFGS memory ys
struct ggml_tensor * lms; // the L-BFGS memory s
struct ggml_tensor * lmy; // the L-BFGS memory y
float fx_best;
float step;
int j;
int k;
int end;
int n_no_improvement;
} lbfgs;
};
GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
// optimize the function defined by the tensor f
GGML_API enum ggml_opt_result ggml_opt(
struct ggml_context * ctx,
struct ggml_opt_params params,
struct ggml_tensor * f);
// initialize optimizer context
GGML_API void ggml_opt_init(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_opt_params params,
int64_t nx);
// continue optimizing the function defined by the tensor f
GGML_API enum ggml_opt_result ggml_opt_resume(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f);
// continue optimizing the function defined by the tensor f
GGML_API enum ggml_opt_result ggml_opt_resume_g(
struct ggml_context * ctx,
struct ggml_opt_context * opt,
struct ggml_tensor * f,
struct ggml_cgraph * gf,
struct ggml_cgraph * gb,
ggml_opt_callback callback,
void * callback_data);
//
// tensor flags
//
GGML_API void ggml_set_input(struct ggml_tensor * tensor);
GGML_API void ggml_set_output(struct ggml_tensor * tensor);
//
// quantization
//
// - ggml_quantize_init can be called multiple times with the same type
// it will only initialize the quantization tables for the first call or after ggml_quantize_free
// automatically called by ggml_quantize_chunk for convenience
//
// - ggml_quantize_free will free any memory allocated by ggml_quantize_init
// call this at the end of the program to avoid memory leaks
//
// note: these are thread-safe
//
GGML_API void ggml_quantize_init(enum ggml_type type);
GGML_API void ggml_quantize_free(void);
// some quantization type cannot be used without an importance matrix
GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
// calls ggml_quantize_init internally (i.e. can allocate memory)
GGML_API size_t ggml_quantize_chunk(
enum ggml_type type,
const float * src,
void * dst,
int64_t start,
int64_t nrows,
int64_t n_per_row,
const float * imatrix);
//
// gguf
//
enum gguf_type {
GGUF_TYPE_UINT8 = 0,
GGUF_TYPE_INT8 = 1,
GGUF_TYPE_UINT16 = 2,
GGUF_TYPE_INT16 = 3,
GGUF_TYPE_UINT32 = 4,
GGUF_TYPE_INT32 = 5,
GGUF_TYPE_FLOAT32 = 6,
GGUF_TYPE_BOOL = 7,
GGUF_TYPE_STRING = 8,
GGUF_TYPE_ARRAY = 9,
GGUF_TYPE_UINT64 = 10,
GGUF_TYPE_INT64 = 11,
GGUF_TYPE_FLOAT64 = 12,
GGUF_TYPE_COUNT, // marks the end of the enum
};
struct gguf_context;
struct gguf_init_params {
bool no_alloc;
// if not NULL, create a ggml_context and allocate the tensor data in it
struct ggml_context ** ctx;
};
GGML_API struct gguf_context * gguf_init_empty(void);
GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
//GGML_API struct gguf_context * gguf_init_from_buffer(..);
GGML_API void gguf_free(struct gguf_context * ctx);
GGML_API const char * gguf_type_name(enum gguf_type type);
GGML_API int gguf_get_version (const struct gguf_context * ctx);
GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
GGML_API void * gguf_get_data (const struct gguf_context * ctx);
GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
// will abort if the wrong type is used for the key
GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
// removes key if it exists
GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
// overrides existing values or adds a new one
GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
// set or add KV pairs from another context
GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
// manage tensor info
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
// writing gguf files can be done in 2 ways:
//
// - write the entire gguf_context to a binary file in a single pass:
//
// gguf_write_to_file(ctx, fname);
//
// - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
//
// FILE * f = fopen(fname, "wb");
// fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
// fwrite(f, ...);
// void * data = gguf_meta_get_meta_data(ctx);
// fseek(f, 0, SEEK_SET);
// fwrite(f, data, gguf_get_meta_size(ctx));
// free(data);
// fclose(f);
//
// write the entire context to a binary file
GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
// get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
//
// system info
//
GGML_API int ggml_cpu_has_avx (void);
GGML_API int ggml_cpu_has_avx_vnni (void);
GGML_API int ggml_cpu_has_avx2 (void);
GGML_API int ggml_cpu_has_avx512 (void);
GGML_API int ggml_cpu_has_avx512_vbmi(void);
GGML_API int ggml_cpu_has_avx512_vnni(void);
GGML_API int ggml_cpu_has_avx512_bf16(void);
GGML_API int ggml_cpu_has_fma (void);
GGML_API int ggml_cpu_has_neon (void);
GGML_API int ggml_cpu_has_sve (void);
GGML_API int ggml_cpu_has_arm_fma (void);
GGML_API int ggml_cpu_has_metal (void);
GGML_API int ggml_cpu_has_f16c (void);
GGML_API int ggml_cpu_has_fp16_va (void);
GGML_API int ggml_cpu_has_wasm_simd (void);
GGML_API int ggml_cpu_has_blas (void);
GGML_API int ggml_cpu_has_cuda (void);
GGML_API int ggml_cpu_has_clblast (void);
GGML_API int ggml_cpu_has_vulkan (void);
GGML_API int ggml_cpu_has_kompute (void);
GGML_API int ggml_cpu_has_gpublas (void);
GGML_API int ggml_cpu_has_sse3 (void);
GGML_API int ggml_cpu_has_ssse3 (void);
GGML_API int ggml_cpu_has_sycl (void);
GGML_API int ggml_cpu_has_rpc (void);
GGML_API int ggml_cpu_has_vsx (void);
GGML_API int ggml_cpu_has_matmul_int8(void);
//
// Internal types and functions exposed for tests and benchmarks
//
#ifdef __cplusplus
// restrict not standard in C++
#define GGML_RESTRICT
#else
#define GGML_RESTRICT restrict
#endif
typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
const void * GGML_RESTRICT y, size_t by, int nrc);
typedef struct {
const char * type_name;
int blck_size;
size_t type_size;
bool is_quantized;
ggml_to_float_t to_float;
ggml_from_float_t from_float;
ggml_from_float_t from_float_reference;
ggml_vec_dot_t vec_dot;
enum ggml_type vec_dot_type;
int64_t nrows; // number of rows to process simultaneously;
} ggml_type_traits_t;
GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
#ifdef __cplusplus
}
#endif
#!/usr/bin/env python
import logging
import argparse
import asyncio
import os
import sys
from tempfile import gettempdir, NamedTemporaryFile
logger = logging.getLogger("ggml-vk-generate-shaders")
shader_f32 = """
#define FLOAT_TYPE float
"""
shader_f16 = """
#extension GL_EXT_shader_explicit_arithmetic_types_float16 : require
#define FLOAT_TYPE float16_t
"""
shader_int8_ext = """
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
"""
# Type-specific defines
shader_f32_defines = """
#define QUANT_K 1
#define QUANT_R 1
#define A_TYPE float
"""
shader_f16_defines = """
#define QUANT_K 1
#define QUANT_R 1
#define A_TYPE float16_t
"""
shader_q4_0_defines = """
#define QUANT_K 32
#define QUANT_R 2
struct block_q4_0
{
float16_t d;
uint8_t qs[16];
};
#define A_TYPE block_q4_0
"""
shader_q4_1_defines = """
#define QUANT_K 32
#define QUANT_R 2
struct block_q4_1
{
float16_t d;
float16_t m;
uint8_t qs[16];
};
#define A_TYPE block_q4_1
"""
shader_q5_0_defines = """
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#define QUANT_K 32
#define QUANT_R 2
struct block_q5_0
{
float16_t d;
uint16_t qh[2];
uint8_t qs[16];
};
#define A_TYPE block_q5_0
"""
shader_q5_1_defines = """
#extension GL_EXT_shader_explicit_arithmetic_types_int16 : require
#define QUANT_K 32
#define QUANT_R 2
struct block_q5_1
{
float16_t d;
float16_t m;
uint qh;
uint8_t qs[16];
};
#define A_TYPE block_q5_1
"""
shader_q8_0_defines = """
#define QUANT_K 32
#define QUANT_R 1
struct block_q8_0
{
float16_t d;
int8_t qs[32];
};
#define A_TYPE block_q8_0
"""
# K-quants
shader_q2_K_defines = """
#define QUANT_K 256
struct block_q2_K
{
uint8_t scales[QUANT_K/16];
uint8_t qs[QUANT_K/4];
f16vec2 d;
};
#define A_TYPE block_q2_K
"""
shader_q3_K_defines = """
#define QUANT_K 256
struct block_q3_K
{
uint8_t hmask[QUANT_K/8];
uint8_t qs[QUANT_K/4];
uint8_t scales[12];
float16_t d;
};
#define A_TYPE block_q3_K
"""
shader_q4_K_defines = """
#define QUANT_K 256
struct block_q4_K
{
f16vec2 d;
uint8_t scales[3*QUANT_K/64];
uint8_t qs[QUANT_K/2];
};
#define A_TYPE block_q4_K
"""
shader_q5_K_defines = """
#define QUANT_K 256
struct block_q5_K
{
f16vec2 d;
uint8_t scales[12];
uint8_t qh[QUANT_K/8];
uint8_t qs[QUANT_K/2];
};
#define A_TYPE block_q5_K
"""
shader_q6_K_defines = """
#define QUANT_K 256
struct block_q6_K
{
uint8_t ql[QUANT_K/2];
uint8_t qh[QUANT_K/4];
int8_t scales[QUANT_K/16];
float16_t d;
};
#define A_TYPE block_q6_K
"""
# Dequant functions
shader_float_dequant_func = """
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
return vec2(data_a[a_offset + ib], data_a[a_offset + ib + 1]);
}
"""
shader_q4_0_dequant_func = """
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a[a_offset + ib].d);
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
return (vec2(vui & 0xF, vui >> 4) - 8.0f) * d;
}
"""
shader_q4_1_dequant_func = """
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a[a_offset + ib].d);
const float m = float(data_a[a_offset + ib].m);
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
return vec2(vui & 0xF, vui >> 4) * d + m;
}
"""
shader_q5_0_dequant_func = """
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a[a_offset + ib].d);
const uint uint_qh = uint(data_a[a_offset + ib].qh[1]) << 16 | data_a[a_offset + ib].qh[0];
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
return (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d;
}
"""
shader_q5_1_dequant_func = """
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a[a_offset + ib].d);
const float m = float(data_a[a_offset + ib].m);
const uint uint_qh = data_a[a_offset + ib].qh;
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
return vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m;
}
"""
shader_q8_0_dequant_func = """
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a[a_offset + ib].d);
return vec2(int(data_a[a_offset + ib].qs[iqs]), int(data_a[a_offset + ib].qs[iqs + 1])) * d;
}
"""
# MULMAT
mulmat_head = """#version 450
#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#ifdef MUL_MAT_ID
#extension GL_EXT_buffer_reference2 : require
#extension GL_EXT_nonuniform_qualifier : require
#extension GL_EXT_scalar_block_layout : require
#extension GL_EXT_shader_explicit_arithmetic_types_int8 : require
#define EXPERT_COUNT 8
#endif
#ifndef LOAD_VEC_A
#define LOAD_VEC_A 1
#endif
#ifndef LOAD_VEC_B
#define LOAD_VEC_B 1
#endif
"""
mulmat_body1 = """
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
#endif
layout (push_constant) uniform parameter
{
uint M;
uint N;
uint K;
uint stride_a;
uint stride_b;
uint stride_d;
uint k_split;
uint ne02;
uint ne12;
uint broadcast2;
uint broadcast3;
uint batch_stride_a;
uint batch_stride_b;
uint batch_stride_d;
#ifdef MUL_MAT_ID
uint expert_stride_a;
uint expert_stride_b0;
uint expert_stride_b1;
uint expert_stride_d;
uint ids_stride;
uint n_as;
uint nei0;
uint nei1;
uint nbi1;
uint ne11;
#endif
} p;
layout (constant_id = 1) const uint BM = 64;
layout (constant_id = 2) const uint BN = 64;
layout (constant_id = 3) const uint BK = 16; // Assumed to be 32 if working with a quant
layout (constant_id = 4) const uint WM = 32;
layout (constant_id = 5) const uint WN = 32;
layout (constant_id = 6) const uint WMITER = 2;
layout (constant_id = 7) const uint TM = 4;
layout (constant_id = 8) const uint TN = 2;
layout (constant_id = 9) const uint WARP = 32;
shared FLOAT_TYPE buf_a[BM * (BK+1)];
shared FLOAT_TYPE buf_b[BN * (BK+1)];
#ifdef MUL_MAT_ID
shared u8vec2 rowids[2048];
#endif
void main() {
#ifdef MUL_MAT_ID
const uint batch_idx = gl_GlobalInvocationID.z / p.n_as;
const uint expert_idx = gl_GlobalInvocationID.z % p.n_as;
#else
const uint batch_idx = gl_GlobalInvocationID.z;
#endif
const uint i13 = batch_idx / p.ne12;
const uint i12 = batch_idx % p.ne12;
const uint i03 = i13 / p.broadcast3;
const uint i02 = i12 / p.broadcast2;
const uint batch_idx_a = i03 * p.ne02 + i02;
const uint blocks_m = (p.M + BM - 1) / BM;
const uint ir = gl_WorkGroupID.x % blocks_m;
const uint ik = gl_WorkGroupID.x / blocks_m;
const uint ic = gl_WorkGroupID.y;
const uint warp_i = gl_LocalInvocationID.x / WARP;
const uint warp_r = warp_i % (BM / WM);
const uint warp_c = warp_i / (BM / WM);
const uint WNITER = (WM * WN) / (WARP * TM * TN * WMITER);
const uint WSUBM = WM / WMITER;
const uint WSUBN = WN / WNITER;
const uint tiw = gl_LocalInvocationID.x % WARP;
const uint tiwr = tiw % (WSUBM / TM);
const uint tiwc = tiw / (WSUBM / TM);
const uint loadr_a = gl_LocalInvocationID.x % (BK / LOAD_VEC_A);
const uint loadc_a = gl_LocalInvocationID.x / (BK / LOAD_VEC_A);
const uint loadr_b = gl_LocalInvocationID.x % (BK / LOAD_VEC_B);
const uint loadc_b = gl_LocalInvocationID.x / (BK / LOAD_VEC_B);
const uint loadstride_a = gl_WorkGroupSize.x * LOAD_VEC_A / BK;
const uint loadstride_b = gl_WorkGroupSize.x * LOAD_VEC_B / BK;
#ifdef MUL_MAT_ID
uint _ne1 = 0;
for (uint ii1 = 0; ii1 < p.nei1; ii1++) {
for (uint ii0 = 0; ii0 < p.nei0; ii0++) {
if (data_ids[ii1*p.nbi1 + ii0] == expert_idx) {
rowids[_ne1] = u8vec2(ii0, ii1);
_ne1++;
}
}
}
const u8vec2 id = rowids[ir * BN + ic];
#endif
const uint start_k = ik * p.k_split;
const uint end_k = min(p.K, (ik + 1) * p.k_split);
uint pos_a = (
#ifdef MUL_MAT_ID
expert_idx * p.expert_stride_a +
#endif
batch_idx_a * p.batch_stride_a + ir * BM * p.stride_a + start_k) / LOAD_VEC_A;
uint pos_b = (
#ifdef MUL_MAT_ID
id.y * p.expert_stride_b1 +
(id.x % p.ne11) * p.expert_stride_b0 +
#endif
batch_idx * p.batch_stride_b +
ic * BN * p.stride_b + start_k) / LOAD_VEC_B;
float sums[WMITER * TM * WNITER * TN];
FLOAT_TYPE cache_a[WMITER * TM];
FLOAT_TYPE cache_b[WNITER * TN];
[[unroll]] for (uint i = 0; i < WMITER*TM*WNITER*TN; i++) {
sums[i] = 0.0f;
}
[[unroll]] for (uint block = start_k; block < end_k; block += BK) {
[[unroll]] for (uint l = 0; l < BM; l += loadstride_a) {"""
mulmat_load_scalar = """
#if LOAD_VEC_A == 8
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
buf_a[buf_idx ] = FLOAT_TYPE(data_a[idx][0].x);
buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx][0].y);
buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx][0].z);
buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx][0].w);
buf_a[buf_idx + 4] = FLOAT_TYPE(data_a[idx][1].x);
buf_a[buf_idx + 5] = FLOAT_TYPE(data_a[idx][1].y);
buf_a[buf_idx + 6] = FLOAT_TYPE(data_a[idx][1].z);
buf_a[buf_idx + 7] = FLOAT_TYPE(data_a[idx][1].w);
#elif LOAD_VEC_A == 4
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
buf_a[buf_idx ] = FLOAT_TYPE(data_a[idx].x);
buf_a[buf_idx + 1] = FLOAT_TYPE(data_a[idx].y);
buf_a[buf_idx + 2] = FLOAT_TYPE(data_a[idx].z);
buf_a[buf_idx + 3] = FLOAT_TYPE(data_a[idx].w);
#else
if (ir * BM + loadc_a + l < p.M && block + loadr_a < end_k) {
buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(data_a[pos_a + (loadc_a + l) * p.stride_a + loadr_a]);
} else {
buf_a[(loadc_a + l) * (BK+1) + loadr_a] = FLOAT_TYPE(0.0f);
}
#endif
"""
mulmat_load_q4_0 = """
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
const uint ib = idx / 16;
const uint iqs = idx & 0xF;
const float d = float(data_a[ib].d);
const uint vui = uint(data_a[ib].qs[iqs]);
const vec2 v = (vec2(vui & 0xF, vui >> 4) - 8.0f) * d;
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
mulmat_load_q4_1 = """
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
const uint ib = idx / 16;
const uint iqs = idx & 0xF;
const float d = float(data_a[ib].d);
const float m = float(data_a[ib].m);
const uint vui = uint(data_a[ib].qs[iqs]);
const vec2 v = vec2(vui & 0xF, vui >> 4) * d + m;
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
mulmat_load_q5_0 = """
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
const uint ib = idx / 16;
const uint iqs = idx & 0xF;
const float d = float(data_a[ib].d);
const uint uint_qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0];
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
const uint vui = uint(data_a[ib].qs[iqs]);
const vec2 v = (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d;
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
mulmat_load_q5_1 = """
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a;
const uint ib = idx / 16;
const uint iqs = idx & 0xF;
const float d = float(data_a[ib].d);
const float m = float(data_a[ib].m);
const uint uint_qh = data_a[ib].qh;
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
const uint vui = uint(data_a[ib].qs[iqs]);
const vec2 v = vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m;
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
buf_a[buf_idx + 16] = FLOAT_TYPE(v.y);"""
mulmat_load_q8_0 = """
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
const uint ib = idx / 16;
const uint iqs = (idx & 0xF) * 2;
const float d = float(data_a[ib].d);
const vec2 v = vec2(int(data_a[ib].qs[iqs]), int(data_a[ib].qs[iqs + 1])) * d;
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);"""
mulmat_load_q2_K = """
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
const uint ib = idx / 128; // 2 values per idx
const uint iqs = idx % 128; // 0..127
const uint qsi = (iqs / 64) * 32 + (iqs % 16) * 2; // 0,2,4..30
const uint scalesi = iqs / 8; // 0..15
const uint qsshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
const uvec2 qs = uvec2(data_a[ib].qs[qsi], data_a[ib].qs[qsi + 1]);
const uint scales = data_a[ib].scales[scalesi];
const vec2 d = vec2(data_a[ib].d);
const vec2 v = d.x * float(scales & 0xF) * vec2((qs >> qsshift) & 3) - d.y * float(scales >> 4);
buf_a[buf_idx ] = FLOAT_TYPE(v.x);
buf_a[buf_idx + 1] = FLOAT_TYPE(v.y);"""
mulmat_load_q3_K = """
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
const uint ib = idx / 128; // 2 values per idx
const uint iqs = idx % 128; // 0..127
const uint n = iqs / 64; // 0,1
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..62
const uint hmi = (iqs % 16) * 2; // 0,2,4..30
const uint j = (iqs % 64) / 4; // 0..3
const uint is = iqs / 8; // 0..15
const uint halfsplit = ((iqs % 64) / 16); // 0,1,2,3
const uint qsshift = halfsplit * 2; // 0,2,4,6
const uint m = 1 << (4 * n + halfsplit); // 1,2,4,8,16,32,64,128
const int8_t us = int8_t(is < 4 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+8] >> 0) & 3) << 4) :
is < 8 ? (data_a[ib].scales[is-0] & 0xF) | (((data_a[ib].scales[is+4] >> 2) & 3) << 4) :
is < 12 ? (data_a[ib].scales[is-8] >> 4) | (((data_a[ib].scales[is+0] >> 4) & 3) << 4) :
(data_a[ib].scales[is-8] >> 4) | (((data_a[ib].scales[is-4] >> 6) & 3) << 4));
const float dl = float(data_a[ib].d) * float(us - 32);
buf_a[buf_idx ] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi ] >> qsshift) & 3) - (((data_a[ib].hmask[hmi ] & m) != 0) ? 0 : 4)));
buf_a[buf_idx + 1] = FLOAT_TYPE(dl * float(int8_t((data_a[ib].qs[qsi + 1] >> qsshift) & 3) - (((data_a[ib].hmask[hmi + 1] & m) != 0) ? 0 : 4)));"""
mulmat_load_q4_K = """
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
const uint ib = idx / 128; // 2 values per idx
const uint iqs = idx % 128; // 0..127
const uint n = iqs / 32; // 0,1,2,3
const uint b = (iqs % 32) / 16; // 0,1
const uint is = 2 * n + b; // 0..7
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126
const vec2 loadd = vec2(data_a[ib].d);
uint8_t sc;
uint8_t mbyte;
if (is < 4) {
sc = uint8_t(data_a[ib].scales[is ] & 63);
mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
} else {
sc = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4));
}
const float d = loadd.x * sc;
const float m = loadd.y * mbyte;
buf_a[buf_idx ] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) - m);
buf_a[buf_idx + 1] = FLOAT_TYPE(d * float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) - m);"""
mulmat_load_q5_K = """
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
const uint ib = idx / 128; // 2 values per idx
const uint iqs = idx % 128; // 0..127
const uint n = iqs / 32; // 0,1,2,3
const uint b = (iqs % 32) / 16; // 0,1
const uint is = 2 * n + b; // 0..7
const uint qsi = n * 32 + (iqs % 16) * 2; // 0,2,4..126
const uint qhi = (iqs % 16) * 2; // 0,2,4..30
const uint8_t hm = uint8_t(1 << (iqs / 16));
const vec2 loadd = vec2(data_a[ib].d);
uint8_t sc;
uint8_t mbyte;
if (is < 4) {
sc = uint8_t(data_a[ib].scales[is ] & 63);
mbyte = uint8_t(data_a[ib].scales[is + 4] & 63);
} else {
sc = uint8_t((data_a[ib].scales[is + 4] & 0xF) | ((data_a[ib].scales[is - 4] >> 6) << 4));
mbyte = uint8_t((data_a[ib].scales[is + 4] >> 4) | ((data_a[ib].scales[is ] >> 6) << 4));
}
const float d = loadd.x * sc;
const float m = loadd.y * mbyte;
buf_a[buf_idx ] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi ] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi ] & hm) != 0 ? 16 : 0)) - m);
buf_a[buf_idx + 1] = FLOAT_TYPE(d * (float((data_a[ib].qs[qsi + 1] >> (b * 4)) & 0xF) + float((data_a[ib].qh[qhi + 1] & hm) != 0 ? 16 : 0)) - m);"""
mulmat_load_q6_K = """
const uint idx = pos_a + (loadc_a + l) * p.stride_a / LOAD_VEC_A + loadr_a;
const uint buf_idx = (loadc_a + l) * (BK+1) + loadr_a * LOAD_VEC_A;
const uint ib = idx / 128; // 2 values per idx
const uint iqs = idx % 128; // 0..127
const uint n = iqs / 64; // 0,1
const uint b = (iqs % 64) / 32; // 0,1
const uint is_b = (iqs % 16) / 8; // 0,1
const uint qhshift = ((iqs % 64) / 16) * 2; // 0,2,4,6
const uint is = 8 * n + qhshift + is_b; // 0..15
const uint qsi = n * 64 + (iqs % 32) * 2; // 0,2,4..126
const uint qhi = n * 32 + (iqs % 16) * 2; // 0,2,4..62
const float dscale = float(data_a[ib].d) * float(data_a[ib].scales[is]);
buf_a[buf_idx ] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi ] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi ] >> qhshift) & 3) << 4)) - 32));
buf_a[buf_idx + 1] = FLOAT_TYPE(dscale * float(int8_t(((data_a[ib].ql[qsi + 1] >> (b * 4)) & 0xF) | (((data_a[ib].qh[qhi + 1] >> qhshift) & 3) << 4)) - 32));"""
mulmat_body2 = """
}
[[unroll]] for (uint l = 0; l < BN; l += loadstride_b) {
#if LOAD_VEC_B == 8
const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx][0].x);
buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx][0].y);
buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx][0].z);
buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx][0].w);
buf_b[buf_idx + 4] = FLOAT_TYPE(data_b[idx][1].x);
buf_b[buf_idx + 5] = FLOAT_TYPE(data_b[idx][1].y);
buf_b[buf_idx + 6] = FLOAT_TYPE(data_b[idx][1].z);
buf_b[buf_idx + 7] = FLOAT_TYPE(data_b[idx][1].w);
#elif LOAD_VEC_B == 4
const uint idx = pos_b + (loadc_b + l) * p.stride_b / LOAD_VEC_B + loadr_b;
const uint buf_idx = (loadc_b + l) * (BK+1) + loadr_b * LOAD_VEC_B;
buf_b[buf_idx + 0] = FLOAT_TYPE(data_b[idx].x);
buf_b[buf_idx + 1] = FLOAT_TYPE(data_b[idx].y);
buf_b[buf_idx + 2] = FLOAT_TYPE(data_b[idx].z);
buf_b[buf_idx + 3] = FLOAT_TYPE(data_b[idx].w);
#else
if (ic * BN + loadc_b + l < p.N && block + loadr_b < end_k) {
buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(data_b[pos_b + (loadc_b + l) * p.stride_b + loadr_b]);
} else {
buf_b[(loadc_b + l) * (BK+1) + loadr_b] = FLOAT_TYPE(0.0f);
}
#endif
}
barrier();
pos_a += BK / LOAD_VEC_A;
pos_b += BK / LOAD_VEC_B;
for (uint i = 0; i < BK; i++) {
// Load from shared into cache
[[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
[[unroll]] for (uint j = 0; j < TM; j++) {
cache_a[wsir * TM + j] = buf_a[(warp_r * WM + wsir * WSUBM + tiwr * TM + j) * (BK+1) + i];
}
}
[[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (uint j = 0; j < TN; j++) {
cache_b[wsic * TN + j] = buf_b[(warp_c * WN + wsic * WSUBN + tiwc * TN + j) * (BK+1) + i];
}
}
[[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
[[unroll]] for (uint cc = 0; cc < TN; cc++) {
[[unroll]] for (uint cr = 0; cr < TM; cr++) {
sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr] += float(cache_a[wsir * TM + cr]) * float(cache_b[wsic * TN + cc]);
}
}
}
}
}
barrier();
}
const uint dr = ir * BM + warp_r * WM;
const uint dc = ic * BN + warp_c * WN;
const uint offsets =
#ifdef MUL_MAT_ID
expert_idx * p.expert_stride_d +
#endif
batch_idx * p.batch_stride_d + ik * p.batch_stride_d * gl_NumWorkGroups.z;
[[unroll]] for (uint wsic = 0; wsic < WNITER; wsic++) {
[[unroll]] for (uint wsir = 0; wsir < WMITER; wsir++) {
const uint dr_warp = dr + wsir * WSUBM + tiwr * TM;
const uint dc_warp = dc + wsic * WSUBN + tiwc * TN;
[[unroll]] for (uint cc = 0; cc < TN; cc++) {
[[unroll]] for (uint cr = 0; cr < TM; cr++) {
if (dr_warp + cr < p.M && dc_warp + cc < p.N) {
data_d[offsets + (dc_warp + cc) * p.stride_d + dr_warp + cr] = D_TYPE(sums[(wsic * TN + cc) * (WMITER * TM) + wsir * TM + cr]);
}
}
}
}
}
}
"""
mulmat_split_k_reduce_src = """#version 450
#extension GL_EXT_control_flow_attributes : enable
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {float data_a[];};
layout (binding = 1) writeonly buffer D {float data_d[];};
layout (push_constant) uniform parameter {
uint ne;
uint k_num;
} p;
void main() {
const uint idx = gl_GlobalInvocationID.x;
if (idx >= p.ne) {
return;
}
float result = 0.0f;
[[unroll]] for (uint i = 0; i < p.k_num; i++) {
result += data_a[i * p.ne + idx];
}
data_d[idx] = result;
}
"""
# DEQUANT SHADER
dequant_head = """#version 450
#extension GL_EXT_control_flow_attributes : require
#extension GL_EXT_shader_16bit_storage : require
layout (push_constant) uniform parameter
{
uint M;
uint K;
uint stride_a;
uint stride_b;
uint nel;
} p;
"""
dequant_f32_body = """
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {float data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
const uint i = gl_GlobalInvocationID.x * 16;
if (i >= p.nel) {
return;
}
[[unroll]] for (uint l = 0; l < 16; l++) {
data_b[i + l] = D_TYPE(data_a[i + l]);
}
}
"""
dequant_q4_0_body = """
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {block_q4_0 data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
const uint tid = gl_LocalInvocationID.x % 64;
const uint il = tid/32;
const uint ir = tid%32;
const uint ib = 32*i + ir;
if (ib >= p.nel / 32) {
return;
}
const uint b_idx = 1024*i + 32*ir + 8*il;
const float d = float(data_a[ib].d);
const float dm = -8.0f * d;
const uint q_idx = 8*il;
[[unroll]] for (uint l = 0; l < 8; ++l) {
data_b[b_idx + l + 0] = D_TYPE(d * (data_a[ib].qs[q_idx + l] & 0xF) + dm);
data_b[b_idx + l + 16] = D_TYPE(d * (data_a[ib].qs[q_idx + l] >> 4) + dm);
}
}
"""
dequant_q4_1_body = """
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {block_q4_1 data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
const uint tid = gl_LocalInvocationID.x % 64;
const uint il = tid/32;
const uint ir = tid%32;
const uint ib = 32*i + ir;
if (ib >= p.nel / 32) {
return;
}
const uint b_idx = 1024*i + 32*ir + 8*il;
const float d = float(data_a[ib].d);
const float m = float(data_a[ib].m);
const uint q_idx = 8*il;
[[unroll]] for (uint l = 0; l < 8; ++l) {
data_b[b_idx + l + 0] = D_TYPE(d * (data_a[ib].qs[q_idx + l] & 0xF) + m);
data_b[b_idx + l + 16] = D_TYPE(d * (data_a[ib].qs[q_idx + l] >> 4) + m);
}
}
"""
dequant_q5_0_body = """
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {block_q5_0 data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
const uint tid = gl_LocalInvocationID.x % 64;
const uint il = tid/32;
const uint ir = tid%32;
const uint ib = 32*i + ir;
if (ib >= p.nel / 32) {
return;
}
const uint b_idx = 1024*i + 32*ir + 8*il;
const float d = float(data_a[ib].d);
const uint qh = uint(data_a[ib].qh[1]) << 16 | data_a[ib].qh[0];
const uint q_idx = 8*il;
[[unroll]] for (uint l = 0; l < 8; ++l) {
const uint iqs = q_idx + l;
const uint vui = uint(data_a[ib].qs[iqs]);
data_b[b_idx + l + 0] = D_TYPE(d * (((vui & 0xF) | (((qh >> iqs) << 4) & 0x10)) - 16.0f));
data_b[b_idx + l + 16] = D_TYPE(d * (((vui >> 4) | ((qh >> (iqs + 12)) & 0x10)) - 16.0f));
}
}
"""
dequant_q5_1_body = """
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {block_q5_1 data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
const uint tid = gl_LocalInvocationID.x % 64;
const uint il = tid/32;
const uint ir = tid%32;
const uint ib = 32*i + ir;
if (ib >= p.nel / 32) {
return;
}
const uint b_idx = 1024*i + 32*ir + 8*il;
const float d = float(data_a[ib].d);
const float m = float(data_a[ib].m);
const uint qh = data_a[ib].qh;
const uint q_idx = 8*il;
[[unroll]] for (uint l = 0; l < 8; ++l) {
const uint iqs = q_idx + l;
const uint vui = uint(data_a[ib].qs[iqs]);
data_b[b_idx + l + 0] = D_TYPE(d * (((vui & 0xF) | (((qh >> iqs) << 4) & 0x10))) + m);
data_b[b_idx + l + 16] = D_TYPE(d * (((vui >> 4) | ((qh >> (iqs + 12)) & 0x10))) + m);
}
}
"""
dequant_q8_0_body = """
layout(local_size_x = 256, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {block_q8_0 data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
const uint i = gl_WorkGroupID.x * 4 + gl_LocalInvocationID.x / 64;
const uint tid = gl_LocalInvocationID.x % 64;
const uint il = tid/32;
const uint ir = tid%32;
const uint ib = 32*i + ir;
if (ib >= p.nel / 32) {
return;
}
const uint b_idx = 1024*i + 32*ir + 16*il;
const float d = float(data_a[ib].d);
const uint q_idx = 16*il;
[[unroll]] for (uint l = 0; l < 16; l += 2) {
data_b[b_idx + l ] = D_TYPE(d * data_a[ib].qs[q_idx + l ]);
data_b[b_idx + l + 1] = D_TYPE(d * data_a[ib].qs[q_idx + l + 1]);
}
}
"""
# K-quants
dequant_q2_K_body = """
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint i = gl_WorkGroupID.x * 256 + wgy;
if (i >= p.M * p.K / QUANT_K) {
return;
}
const uint tid = gl_LocalInvocationID.x;
const uint ip = tid / 32;
const uint il = tid - 32 * ip;
const uint is = 8 * ip + il / 16;
const uint y_idx = i * QUANT_K + 128 * ip + il;
const uint ql_idx = 32 * ip + il;
const uint8_t qs = data_a[i].qs[32 * ip + il];
FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
data_b[y_idx + 0] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+0] & 0xF) * ((qs >> 0) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+0] >> 4));
data_b[y_idx + 32] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+2] & 0xF) * ((qs >> 2) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+2] >> 4));
data_b[y_idx + 64] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+4] & 0xF) * ((qs >> 4) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+4] >> 4));
data_b[y_idx + 96] = D_TYPE(dall * FLOAT_TYPE((data_a[i].scales[is+6] & 0xF) * ((qs >> 6) & 3)) - dmin * FLOAT_TYPE(data_a[i].scales[is+6] >> 4));
}
}
"""
dequant_q3_K_body = """
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint i = uint(gl_WorkGroupID.x * 256 + wgy);
if (i >= p.M * p.K / QUANT_K) {
return;
}
const uint r = gl_LocalInvocationID.x / 4;
const uint tid = r / 2;
const uint is0 = r % 2;
const uint l0 = 16 * is0 + 4 * (gl_LocalInvocationID.x % 4);
const uint n = tid / 4;
const uint j = tid - 4*n;
const uint8_t m = uint8_t(1 << (4*n + j));
const uint is = 8*n + 2*j + is0;
const uint shift = 2*j;
const int8_t us = int8_t(is < 4 ? (data_a[i].scales[is-0] & 0xF) | (((data_a[i].scales[is+8] >> 0) & 3) << 4) :
is < 8 ? (data_a[i].scales[is-0] & 0xF) | (((data_a[i].scales[is+4] >> 2) & 3) << 4) :
is < 12 ? (data_a[i].scales[is-8] >> 4) | (((data_a[i].scales[is+0] >> 4) & 3) << 4) :
(data_a[i].scales[is-8] >> 4) | (((data_a[i].scales[is-4] >> 6) & 3) << 4));
const FLOAT_TYPE d_all = FLOAT_TYPE(data_a[i].d);
const FLOAT_TYPE dl = d_all * FLOAT_TYPE(us - 32);
const uint y_idx = i * QUANT_K + 128 * n + 32 * j;
const uint qs_idx = 32*n;
for (uint l = l0; l < l0 + 4; ++l) {
data_b[y_idx + l] = D_TYPE(dl * FLOAT_TYPE(int8_t((data_a[i].qs[qs_idx + l] >> shift) & 3) - (((data_a[i].hmask[l] & m) != 0) ? 0 : 4)));
}
}
}
"""
dequant_q4_K_body = """
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint i = gl_WorkGroupID.x * 256 + wgy;
if (i >= p.M * p.K / QUANT_K) {
return;
}
const uint tid = gl_LocalInvocationID.x;
const uint il = tid / 8;
const uint ir = tid % 8;
const uint is = 2 * il;
const uint n = 4;
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
const uint y_idx = i * QUANT_K + 64 * il + n * ir;
const uint qs_idx = 32*il + n * ir;
uint8_t sc;
uint8_t m;
if (is < 4) {
sc = uint8_t(data_a[i].scales[is] & 63);
m = uint8_t(data_a[i].scales[is + 4] & 63);
} else {
sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4));
m = uint8_t((data_a[i].scales[is + 4] >> 4) | ((data_a[i].scales[is ] >> 6) << 4));
}
const FLOAT_TYPE d1 = dall * sc;
const FLOAT_TYPE m1 = dmin * m;
if (is < 4) {
sc = uint8_t(data_a[i].scales[is + 1] & 63);
m = uint8_t(data_a[i].scales[is + 5] & 63);
} else {
sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4));
m = uint8_t((data_a[i].scales[is + 5] >> 4) | ((data_a[i].scales[is + 1] >> 6) << 4));
}
const FLOAT_TYPE d2 = dall * sc;
const FLOAT_TYPE m2 = dmin * m;
[[unroll]] for (uint l = 0; l < n; ++l) {
data_b[y_idx + l ] = D_TYPE(d1 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] & 0xF) - m1);
data_b[y_idx + l + 32] = D_TYPE(d2 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] >> 4) - m2);
}
}
}
"""
dequant_q5_K_body = """
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint i = gl_WorkGroupID.x * 256 + wgy;
if (i >= p.M * p.K / QUANT_K) {
return;
}
const uint tid = gl_LocalInvocationID.x;
const uint il = tid / 16;
const uint ir = tid % 16;
const uint is = 2 * il;
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
const uint y_idx = i * QUANT_K + 64 * il + 2 * ir;
const uint qs_idx = 32*il + 2 * ir;
const uint qh_idx = 2 * ir;
uint8_t sc;
uint8_t m;
if (is < 4) {
sc = uint8_t(data_a[i].scales[is] & 63);
m = uint8_t(data_a[i].scales[is + 4] & 63);
} else {
sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4));
m = uint8_t((data_a[i].scales[is + 4] >> 4) | ((data_a[i].scales[is ] >> 6) << 4));
}
const FLOAT_TYPE d1 = dall * sc;
const FLOAT_TYPE m1 = dmin * m;
if (is < 4) {
sc = uint8_t(data_a[i].scales[is + 1] & 63);
m = uint8_t(data_a[i].scales[is + 5] & 63);
} else {
sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4));
m = uint8_t((data_a[i].scales[is + 5] >> 4) | ((data_a[i].scales[is + 1] >> 6) << 4));
}
const FLOAT_TYPE d2 = dall * sc;
const FLOAT_TYPE m2 = dmin * m;
const uint8_t hm1 = uint8_t(1 << (2 * il ));
const uint8_t hm2 = uint8_t(1 << (2 * il + 1));
data_b[y_idx ] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx ] & 0xF) + (((data_a[i].qh[qh_idx ] & hm1) != 0) ? 16 : 0)) - m1);
data_b[y_idx + 1] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1] & 0xF) + (((data_a[i].qh[qh_idx + 1] & hm1) != 0) ? 16 : 0)) - m1);
data_b[y_idx + 32] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx ] >> 4) + (((data_a[i].qh[qh_idx ] & hm2) != 0) ? 16 : 0)) - m2);
data_b[y_idx + 33] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1] >> 4) + (((data_a[i].qh[qh_idx + 1] & hm2) != 0) ? 16 : 0)) - m2);
}
}
"""
dequant_q6_K_body = """
layout(local_size_x = 64, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint i = gl_WorkGroupID.x * 256 + wgy;
if (i >= p.M * p.K / QUANT_K) {
return;
}
const uint tid = gl_LocalInvocationID.x;
const uint ip = tid / 32;
const uint il = tid - 32 * ip;
const uint is = 8 * ip + il / 16;
const uint y_idx = i * QUANT_K + 128 * ip + il;
const uint ql_idx = 64 * ip + il;
const uint8_t qh = data_a[i].qh[32 * ip + il];
const FLOAT_TYPE d = FLOAT_TYPE(data_a[i].d);
data_b[y_idx + 0] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 0] * (int8_t((data_a[i].ql[ql_idx + 0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32)));
data_b[y_idx + 32] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 2] * (int8_t((data_a[i].ql[ql_idx + 32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32)));
data_b[y_idx + 64] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 4] * (int8_t((data_a[i].ql[ql_idx + 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32)));
data_b[y_idx + 96] = D_TYPE(d * FLOAT_TYPE(data_a[i].scales[is + 6] * (int8_t((data_a[i].ql[ql_idx + 32] >> 4) | (((qh >> 6) & 3) << 4)) - 32)));
}
}
"""
# Mul Mat Vec
mul_mat_vec_head = """#version 450
#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#extension GL_EXT_shader_8bit_storage : require
#ifdef MUL_MAT_ID
#define EXPERT_COUNT 8
#endif
"""
mul_mat_vec_layout = """
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
#ifdef MUL_MAT_ID
layout (binding = 3) readonly buffer IDS {int data_ids[];};
#endif
layout (push_constant) uniform parameter
{
uint ncols;
uint stride_a;
uint stride_b;
uint stride_d;
uint ne02;
uint ne12;
uint broadcast2;
uint broadcast3;
uint batch_stride_a;
uint batch_stride_b;
uint batch_stride_d;
#ifdef MUL_MAT_ID
uint expert_stride_a;
uint expert_stride_b0;
uint expert_stride_b1;
uint expert_stride_d0;
uint expert_stride_d1;
uint ne11;
uint nei0;
uint nbi1;
uint n_as;
#endif
} p;
"""
mul_mat_vec_body = """
layout(local_size_x_id = 0, local_size_y = 1, local_size_z = 1) in;
layout (constant_id = 0) const uint BLOCK_SIZE = 32;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x;
const uint tid = gl_LocalInvocationID.x;
const uint batch_idx = gl_GlobalInvocationID.y;
#ifdef MUL_MAT_ID
const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
#endif
const uint i13 = batch_idx / p.ne12;
const uint i12 = batch_idx % p.ne12;
const uint i03 = i13 / p.broadcast3;
const uint i02 = i12 / p.broadcast2;
const uint batch_idx_a = i03 * p.ne02 + i02;
#ifdef MUL_MAT_ID
const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
#endif
const uint a_offset =
#ifdef MUL_MAT_ID
expert_id * p.expert_stride_a +
#endif
batch_idx_a * p.batch_stride_a;
const uint b_offset =
#ifdef MUL_MAT_ID
(expert_idx0 % p.ne11) * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_b;
const uint d_offset =
#ifdef MUL_MAT_ID
expert_idx0 * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_d;
const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
tmp[tid] = FLOAT_TYPE(0.0f);
[[unroll]] for (uint i = 0; i < p.ncols/BLOCK_SIZE; i += 2) {
const uint col = i*BLOCK_SIZE + 2*tid;
const uint ib = (row*p.ncols + col)/QUANT_K; // block index
const uint iqs = (col%QUANT_K)/QUANT_R; // quant index
const uint iybs = col - col%QUANT_K; // y block start index
vec2 v = dequantize(ib, iqs, a_offset / QUANT_K);
// matrix multiplication
tmp[tid] += FLOAT_TYPE(v.x) * FLOAT_TYPE(data_b[b_offset + iybs + iqs]) +
FLOAT_TYPE(v.y) * FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]);
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = BLOCK_SIZE/2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier();
}
if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]);
}
}
"""
# K-quants
mul_mat_vec_q2_K_body = """
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32];
void main() {
const uint row = gl_WorkGroupID.x;
const uint batch_idx = gl_GlobalInvocationID.y;
#ifdef MUL_MAT_ID
const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
#endif
const uint i13 = batch_idx / p.ne12;
const uint i12 = batch_idx % p.ne12;
const uint i03 = i13 / p.broadcast3;
const uint i02 = i12 / p.broadcast2;
const uint batch_idx_a = i03 * p.ne02 + i02;
#ifdef MUL_MAT_ID
const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
#endif
const uint a_offset =
#ifdef MUL_MAT_ID
expert_id * p.expert_stride_a +
#endif
batch_idx_a * p.batch_stride_a;
const uint b_offset =
#ifdef MUL_MAT_ID
(expert_idx0 % p.ne11) * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_b;
const uint d_offset =
#ifdef MUL_MAT_ID
expert_idx0 * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_d;
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = tid - step*v_im; // 0...15 or 0...7
const uint l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15
const uint q_offset = 32*v_im + l0;
const uint s_offset = 8*v_im;
const uint y_offset = 128*v_im + l0;
tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const uint y_idx = i * QUANT_K + y_offset;
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
FLOAT_TYPE sum1 = FLOAT_TYPE(0.0);
FLOAT_TYPE sum2 = FLOAT_TYPE(0.0);
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
sum1 += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 0) & 3)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 0) & 3)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 2) & 3)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 2) & 3)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 4) & 3)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 4) & 3)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l + 0] >> 6) & 3)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7] & 0xF) * FLOAT_TYPE((data_a[ib0 + i].qs[q_offset + l +16] >> 6) & 3);
sum2 += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 0] >> 4) & 0xF)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 1] >> 4) & 0xF)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 2] >> 4) & 0xF)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 3] >> 4) & 0xF)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 4] >> 4) & 0xF)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 5] >> 4) & 0xF)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 6] >> 4) & 0xF)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE((data_a[ib0 + i].scales[s_offset + 7] >> 4) & 0xF);
}
tmp[16 * ix + tid] += dall * sum1 - dmin * sum2;
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = 16; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier();
}
if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]);
}
}
"""
mul_mat_vec_q3_K_body = """
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32];
void main() {
const uint row = gl_WorkGroupID.x;
const uint batch_idx = gl_GlobalInvocationID.y;
#ifdef MUL_MAT_ID
const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
#endif
const uint i13 = batch_idx / p.ne12;
const uint i12 = batch_idx % p.ne12;
const uint i03 = i13 / p.broadcast3;
const uint i02 = i12 / p.broadcast2;
const uint batch_idx_a = i03 * p.ne02 + i02;
#ifdef MUL_MAT_ID
const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
#endif
const uint a_offset =
#ifdef MUL_MAT_ID
expert_id * p.expert_stride_a +
#endif
batch_idx_a * p.batch_stride_a;
const uint b_offset =
#ifdef MUL_MAT_ID
(expert_idx0 % p.ne11) * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_b;
const uint d_offset =
#ifdef MUL_MAT_ID
expert_idx0 * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_d;
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = tid - step*v_im; // 0...15 or 0...7
const uint8_t m = uint8_t(1 << (4 * v_im));
const uint l0 = K_QUANTS_PER_ITERATION*v_in; // 0...15
const uint q_offset = 32*v_im + l0;
const uint y_offset = 128*v_im + l0;
tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
const uint s_shift = 4 * v_im;
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const uint y_idx = i * QUANT_K + y_offset;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
sum += FLOAT_TYPE(data_b[b_offset + y_idx + l + 0]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[0] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 0)) != 0) ? 0 : 4))
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 32]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[2] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 1)) != 0) ? 0 : 4))
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 64]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[4] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 8] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 2)) != 0) ? 0 : 4))
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 96]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[6] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[10] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l ] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l ] & (m << 3)) != 0) ? 0 : 4))
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 16]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[1] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] ) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 0)) != 0) ? 0 : 4))
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 48]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[3] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 0) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 2) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 1)) != 0) ? 0 : 4))
+ FLOAT_TYPE(data_b[b_offset + y_idx + l + 80]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[5] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[ 9] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 4) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 2)) != 0) ? 0 : 4))
+ FLOAT_TYPE(data_b[b_offset + y_idx + l +112]) * FLOAT_TYPE(int8_t(((data_a[ib0 + i].scales[7] >> s_shift) & 0xF) | ((data_a[ib0 + i].scales[11] >> (s_shift + 2) & 0x3) << 4)) - 32) * FLOAT_TYPE(((data_a[ib0 + i].qs[q_offset + l+16] >> 6) & 3) - (((data_a[ib0 + i].hmask[l0 + l+16] & (m << 3)) != 0) ? 0 : 4));
}
tmp[16 * ix + tid] += d * sum;
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = 16; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier();
}
if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]);
}
}
"""
mul_mat_vec_q4_K_body = """
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32];
void main() {
const uint row = gl_WorkGroupID.x;
const uint batch_idx = gl_GlobalInvocationID.y;
#ifdef MUL_MAT_ID
const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
#endif
const uint i13 = batch_idx / p.ne12;
const uint i12 = batch_idx % p.ne12;
const uint i03 = i13 / p.broadcast3;
const uint i02 = i12 / p.broadcast2;
const uint batch_idx_a = i03 * p.ne02 + i02;
#ifdef MUL_MAT_ID
const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
#endif
const uint a_offset =
#ifdef MUL_MAT_ID
expert_id * p.expert_stride_a +
#endif
batch_idx_a * p.batch_stride_a;
const uint b_offset =
#ifdef MUL_MAT_ID
(expert_idx0 % p.ne11) * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_b;
const uint d_offset =
#ifdef MUL_MAT_ID
expert_idx0 * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_d;
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
const uint step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
const uint il = tid/step; // 0...3
const uint ir = tid - step*il; // 0...7 or 0...3
const uint n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const uint v_in = il % 2;
const uint l0 = n * (2 * ir + v_in); // 0...15
const uint q_offset = 32*v_im + l0;
const uint y_offset = 64*v_im + l0;
tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128;
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
const uint8_t sc0 = uint8_t( data_a[ib0 + i].scales[v_im * 2 ] & 0x3f);
const uint8_t sc1 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 1] & 0x3f);
const uint8_t sc2 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 4] & 0x3f);
const uint8_t sc3 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 5] & 0x3f);
const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 ] & 0xc0) >> 2));
const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2));
const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2));
const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2));
#if K_QUANTS_PER_ITERATION == 2
const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf);
const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf);
const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset + 2] & 0xf);
const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 3] & 0xf);
const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4);
const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4);
const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 2] >> 4);
const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 3] >> 4);
const uint8_t q4_8 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
const uint8_t q4_9 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 66] & 0xf);
const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 67] & 0xf);
const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4);
const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4);
const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 66] >> 4);
const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 67] >> 4);
const FLOAT_TYPE sx = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx]) * q4_0 + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * q4_1 + FLOAT_TYPE(data_b[b_offset + y1_idx + 2]) * q4_2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 3]) * q4_3);
const FLOAT_TYPE sy = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * q4_4 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * q4_5 + FLOAT_TYPE(data_b[b_offset + y1_idx + 34]) * q4_6 + FLOAT_TYPE(data_b[b_offset + y1_idx + 35]) * q4_7);
const FLOAT_TYPE sz = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx]) * q4_8 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * q4_9 + FLOAT_TYPE(data_b[b_offset + y2_idx + 2]) * q4_10 + FLOAT_TYPE(data_b[b_offset + y2_idx + 3]) * q4_11);
const FLOAT_TYPE sw = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * q4_12 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * q4_13 + FLOAT_TYPE(data_b[b_offset + y2_idx + 34]) * q4_14 + FLOAT_TYPE(data_b[b_offset + y2_idx + 35]) * q4_15);
const FLOAT_TYPE smin = FLOAT_TYPE(
FLOAT_TYPE(data_b[b_offset + y1_idx ]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx ]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * sc7
+ FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * sc7
+ FLOAT_TYPE(data_b[b_offset + y1_idx + 2]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 34]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 2]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 34]) * sc7
+ FLOAT_TYPE(data_b[b_offset + y1_idx + 3]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 35]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 3]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 35]) * sc7
);
tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * sc0 + sy * sc1 + sz * sc4 + sw * sc5) - dmin * smin);
#else
const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf);
const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf);
const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4);
const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4);
const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4);
const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4);
const FLOAT_TYPE sx = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx ]) * q4_0 + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * q4_1);
const FLOAT_TYPE sy = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * q4_2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * q4_3);
const FLOAT_TYPE sz = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx ]) * q4_4 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * q4_5);
const FLOAT_TYPE sw = FLOAT_TYPE(FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * q4_6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * q4_7);
const FLOAT_TYPE smin = FLOAT_TYPE(
FLOAT_TYPE(data_b[b_offset + y1_idx]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * sc7
+ FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * sc2 + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * sc3 + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * sc6 + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * sc7
);
tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * FLOAT_TYPE(data_a[ib0 + i].scales[v_im] & 0x3f) + sy * FLOAT_TYPE(data_a[ib0 + i].scales[v_im + 1] & 0x3f) + sz * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 4] & 0x0f) | ((data_a[ib0 + i].scales[v_im] & 0xc0) >> 2)) + sw * FLOAT_TYPE((data_a[ib0 + i].scales[v_im + 5] & 0x0f) | ((data_a[ib0 + i].scales[v_im + 1] & 0xc0) >> 2))) - dmin * smin);
#endif
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = 16; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier();
}
if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]);
}
}
"""
mul_mat_vec_q5_K_body = """
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32];
void main() {
const uint row = gl_WorkGroupID.x;
const uint batch_idx = gl_GlobalInvocationID.y;
#ifdef MUL_MAT_ID
const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
#endif
const uint i13 = batch_idx / p.ne12;
const uint i12 = batch_idx % p.ne12;
const uint i03 = i13 / p.broadcast3;
const uint i02 = i12 / p.broadcast2;
const uint batch_idx_a = i03 * p.ne02 + i02;
#ifdef MUL_MAT_ID
const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
#endif
const uint a_offset =
#ifdef MUL_MAT_ID
expert_id * p.expert_stride_a +
#endif
batch_idx_a * p.batch_stride_a;
const uint b_offset =
#ifdef MUL_MAT_ID
(expert_idx0 % p.ne11) * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_b;
const uint d_offset =
#ifdef MUL_MAT_ID
expert_idx0 * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_d;
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
const uint tid = gl_LocalInvocationID.x/2; // 0...31 or 0...16
const uint ix = gl_LocalInvocationID.x%2; // 0 or 0, 1
const uint il = tid/4; // 0...3
const uint ir = tid - 4*il; // 0...7 or 0...3
const uint v_im = il / 2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const uint v_in = il % 2;
const uint l0 = 4*ir + 2*v_in; // 0...15
const uint q_offset = 32*v_im + l0;
const uint y_offset = 64*v_im + l0;
const uint8_t hm1 = uint8_t(1 << (2*v_im));
const uint8_t hm2 = uint8_t(hm1 << 4);
tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += 2) {
const uint y1_idx = i * QUANT_K + y_offset;
const uint y2_idx = y1_idx + 128;
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib0 + i].d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib0 + i].d.y);
const uint8_t sc0 = uint8_t( data_a[ib0 + i].scales[v_im * 2 ] & 0x3f);
const uint8_t sc1 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 1] & 0x3f);
const uint8_t sc2 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 4] & 0x3f);
const uint8_t sc3 = uint8_t( data_a[ib0 + i].scales[v_im * 2 + 5] & 0x3f);
const uint8_t sc4 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 8] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 ] & 0xc0) >> 2));
const uint8_t sc5 = uint8_t(( data_a[ib0 + i].scales[v_im * 2 + 9] & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 1] & 0xc0) >> 2));
const uint8_t sc6 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 8] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 4] & 0xc0) >> 2));
const uint8_t sc7 = uint8_t(((data_a[ib0 + i].scales[v_im * 2 + 9] >> 4) & 0x0f) | ((data_a[ib0 + i].scales[v_im * 2 + 5] & 0xc0) >> 2));
const uint8_t q4_0 = uint8_t(data_a[ib0 + i].qs[q_offset ] & 0xf);
const uint8_t q4_1 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] & 0xf);
const uint8_t q4_2 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] & 0xf);
const uint8_t q4_3 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] & 0xf);
const uint8_t q4_4 = uint8_t(data_a[ib0 + i].qs[q_offset ] >> 4);
const uint8_t q4_5 = uint8_t(data_a[ib0 + i].qs[q_offset + 1] >> 4);
const uint8_t q4_6 = uint8_t(data_a[ib0 + i].qs[q_offset + 16] >> 4);
const uint8_t q4_7 = uint8_t(data_a[ib0 + i].qs[q_offset + 17] >> 4);
const uint8_t q4_8 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] & 0xf);
const uint8_t q4_9 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] & 0xf);
const uint8_t q4_10 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] & 0xf);
const uint8_t q4_11 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] & 0xf);
const uint8_t q4_12 = uint8_t(data_a[ib0 + i].qs[q_offset + 64] >> 4);
const uint8_t q4_13 = uint8_t(data_a[ib0 + i].qs[q_offset + 65] >> 4);
const uint8_t q4_14 = uint8_t(data_a[ib0 + i].qs[q_offset + 80] >> 4);
const uint8_t q4_15 = uint8_t(data_a[ib0 + i].qs[q_offset + 81] >> 4);
const FLOAT_TYPE sx = FLOAT_TYPE(
FLOAT_TYPE(data_b[b_offset + y1_idx ]) * (q4_0 + (((data_a[ib0 + i].qh[l0 ] & hm1) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) * (q4_1 + (((data_a[ib0 + i].qh[l0 + 1] & hm1) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y1_idx + 16]) * (q4_2 + (((data_a[ib0 + i].qh[l0 + 16] & hm1) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y1_idx + 17]) * (q4_3 + (((data_a[ib0 + i].qh[l0 + 17] & hm1) != 0) ? 16 : 0))
);
const FLOAT_TYPE sy = FLOAT_TYPE(
FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) * (q4_4 + (((data_a[ib0 + i].qh[l0 ] & (hm1 << 1)) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) * (q4_5 + (((data_a[ib0 + i].qh[l0 + 1] & (hm1 << 1)) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y1_idx + 48]) * (q4_6 + (((data_a[ib0 + i].qh[l0 + 16] & (hm1 << 1)) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y1_idx + 49]) * (q4_7 + (((data_a[ib0 + i].qh[l0 + 17] & (hm1 << 1)) != 0) ? 16 : 0))
);
const FLOAT_TYPE sz = FLOAT_TYPE(
FLOAT_TYPE(data_b[b_offset + y2_idx ]) * (q4_8 + (((data_a[ib0 + i].qh[l0 ] & hm2) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) * (q4_9 + (((data_a[ib0 + i].qh[l0 + 1] & hm2) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y2_idx + 16]) * (q4_10 + (((data_a[ib0 + i].qh[l0 + 16] & hm2) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y2_idx + 17]) * (q4_11 + (((data_a[ib0 + i].qh[l0 + 17] & hm2) != 0) ? 16 : 0))
);
const FLOAT_TYPE sw = FLOAT_TYPE(
FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) * (q4_12 + (((data_a[ib0 + i].qh[l0 ] & (hm2 << 1)) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) * (q4_13 + (((data_a[ib0 + i].qh[l0 + 1] & (hm2 << 1)) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y2_idx + 48]) * (q4_14 + (((data_a[ib0 + i].qh[l0 + 16] & (hm2 << 1)) != 0) ? 16 : 0))
+ FLOAT_TYPE(data_b[b_offset + y2_idx + 49]) * (q4_15 + (((data_a[ib0 + i].qh[l0 + 17] & (hm2 << 1)) != 0) ? 16 : 0))
);
const FLOAT_TYPE smin = FLOAT_TYPE(
(FLOAT_TYPE(data_b[b_offset + y1_idx]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 1]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 17])) * sc2 + (FLOAT_TYPE(data_b[b_offset + y1_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y1_idx + 49])) * sc3
+ (FLOAT_TYPE(data_b[b_offset + y2_idx]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 1]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 16]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 17])) * sc6 + (FLOAT_TYPE(data_b[b_offset + y2_idx + 32]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 33]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 48]) + FLOAT_TYPE(data_b[b_offset + y2_idx + 49])) * sc7
);
tmp[16 * ix + tid] += FLOAT_TYPE(dall * (sx * sc0 + sy * sc1 + sz * sc4 + sw * sc5) - dmin * smin);
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = 16; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier();
}
if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]);
}
}
"""
mul_mat_vec_q6_K_body = """
layout(local_size_x = 32, local_size_y = 1, local_size_z = 1) in;
shared FLOAT_TYPE tmp[32];
void main() {
const uint row = gl_WorkGroupID.x;
const uint batch_idx = gl_GlobalInvocationID.y;
#ifdef MUL_MAT_ID
const uint expert_idx1 = gl_GlobalInvocationID.z / p.nei0;
const uint expert_idx0 = gl_GlobalInvocationID.z % p.nei0;
#endif
const uint i13 = batch_idx / p.ne12;
const uint i12 = batch_idx % p.ne12;
const uint i03 = i13 / p.broadcast3;
const uint i02 = i12 / p.broadcast2;
const uint batch_idx_a = i03 * p.ne02 + i02;
#ifdef MUL_MAT_ID
const uint expert_id = data_ids[expert_idx1 * p.nbi1 + expert_idx0];
#endif
const uint a_offset =
#ifdef MUL_MAT_ID
expert_id * p.expert_stride_a +
#endif
batch_idx_a * p.batch_stride_a;
const uint b_offset =
#ifdef MUL_MAT_ID
(expert_idx0 % p.ne11) * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_b;
const uint d_offset =
#ifdef MUL_MAT_ID
expert_idx0 * p.expert_stride_b0 +
expert_idx1 * p.expert_stride_b1 +
#endif
batch_idx * p.batch_stride_d;
const uint num_blocks_per_row = p.ncols / QUANT_K;
const uint ib0 = a_offset / QUANT_K + row*num_blocks_per_row;
const uint tid = gl_LocalInvocationID.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const uint ix = gl_LocalInvocationID.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
const uint step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
const uint v_im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const uint v_in = tid - step*v_im; // 0...15 or 0...7
#if K_QUANTS_PER_ITERATION == 1
const uint l0 = v_in; // 0...15
const uint is = 0;
#else
const uint l0 = 4 * v_in; // 0, 4, 8, ..., 28
const uint is = v_in / 4;
#endif
const uint ql_offset = 64*v_im + l0;
const uint qh_offset = 32*v_im + l0;
const uint s_offset = 8*v_im + is;
const uint y_offset = 128*v_im + l0;
tmp[16 * ix + tid] = FLOAT_TYPE(0.0); // partial sum for thread in warp
[[unroll]] for (uint i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const uint y_idx = i * QUANT_K + y_offset;
const FLOAT_TYPE d = FLOAT_TYPE(data_a[ib0 + i].d);
#if K_QUANTS_PER_ITERATION == 1
FLOAT_TYPE sum = FLOAT_TYPE(data_b[b_offset + y_idx + 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x03) << 4)) - 32)
+ FLOAT_TYPE(data_b[b_offset + y_idx + 16]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 1]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x03) << 4)) - 32)
+ FLOAT_TYPE(data_b[b_offset + y_idx + 32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x0c) << 2)) - 32)
+ FLOAT_TYPE(data_b[b_offset + y_idx + 48]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 3]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] & 0xF) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x0c) << 2)) - 32)
+ FLOAT_TYPE(data_b[b_offset + y_idx + 64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 0] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0x30) >> 0)) - 32)
+ FLOAT_TYPE(data_b[b_offset + y_idx + 80]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 5]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 16] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0x30) >> 0)) - 32)
+ FLOAT_TYPE(data_b[b_offset + y_idx + 96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 32] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 0] & 0xc0) >> 2)) - 32)
+ FLOAT_TYPE(data_b[b_offset + y_idx +112]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 7]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + 48] >> 4) | ((data_a[ib0 + i].qh[qh_offset + 16] & 0xc0) >> 2)) - 32);
tmp[16 * ix + tid] += sum;
#else
FLOAT_TYPE sum = FLOAT_TYPE(0.0);
[[unroll]] for (int l = 0; l < 4; ++l) {
sum += FLOAT_TYPE(data_b[b_offset + y_idx + l+ 0]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 0]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 0) & 3) << 4)) - 32)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l+32]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 2]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] & 0xF) | (((data_a[ib0 + i].qh[qh_offset + l] >> 2) & 3) << 4)) - 32)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l+64]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 4]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+ 0] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 4) & 3) << 4)) - 32)
+ FLOAT_TYPE(data_b[b_offset + y_idx + l+96]) * FLOAT_TYPE(data_a[ib0 + i].scales[s_offset + 6]) * d * FLOAT_TYPE(int8_t((data_a[ib0 + i].ql[ql_offset + l+32] >> 4) | (((data_a[ib0 + i].qh[qh_offset + l] >> 6) & 3) << 4)) - 32);
}
tmp[16 * ix + tid] += sum;
#endif
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (uint s = 16; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier();
}
if (tid == 0) {
data_d[d_offset + row] = D_TYPE(tmp[0]);
}
}
"""
mul_mat_p021_src = """#version 450
#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#define BLOCK_SIZE 32
#define FLOAT_TYPE float
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
layout (push_constant) uniform parameter
{
uint ncols_x;
uint nrows_x;
uint nchannels_x;
uint nchannels_y;
uint b_offset;
uint d_offset;
} p;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {
const uint tid = gl_LocalInvocationID.x;
const uint row_x = gl_GlobalInvocationID.y;
const uint channel = gl_GlobalInvocationID.z;
const uint channel_x = channel / (p.nchannels_y / p.nchannels_x);
const uint nrows_y = p.ncols_x;
const uint nrows_dst = p.nrows_x;
const uint row_dst = row_x;
tmp[tid] = FLOAT_TYPE(0.0f);
for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) {
const uint col_x = col_x0 + tid;
if (col_x >= p.ncols_x) {
break;
}
// x is transposed and permuted
const uint ix = row_x*p.nchannels_x*p.ncols_x + channel_x*p.ncols_x + col_x;
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
const uint row_y = col_x;
// y is not transposed but permuted
const uint iy = channel*nrows_y + row_y;
tmp[tid] += xi * FLOAT_TYPE(data_b[iy]);
}
// dst is not transposed and not permuted
const uint idst = channel*nrows_dst + row_dst;
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier();
}
if (tid == 0) {
dst[idst] = tmp[0];
}
}
"""
mul_mat_nc_src = """#version 450
#extension GL_EXT_control_flow_attributes : enable
#extension GL_EXT_shader_16bit_storage : require
#define BLOCK_SIZE 32
#define FLOAT_TYPE float
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE dst[];};
layout (push_constant) uniform parameter
{
uint ncols_x;
uint nrows_x;
uint row_stride_x;
uint channel_stride_x;
uint channel_x_divisor;
uint b_offset;
uint d_offset;
} p;
shared FLOAT_TYPE tmp[BLOCK_SIZE];
void main() {
const uint tid = gl_LocalInvocationID.x;
const uint row_x = gl_GlobalInvocationID.y;
const uint channel = gl_GlobalInvocationID.z;
const uint channel_x = channel / p.channel_x_divisor;
const uint nrows_y = p.ncols_x;
const uint nrows_dst = p.nrows_x;
const uint row_dst = row_x;
const uint idst = channel*nrows_dst + row_dst;
tmp[tid] = 0.0f;
for (uint col_x0 = 0; col_x0 < p.ncols_x; col_x0 += BLOCK_SIZE) {
const uint col_x = col_x0 + tid;
if (col_x >= p.ncols_x) {
break;
}
const uint row_y = col_x;
const uint ix = channel_x*p.channel_stride_x + row_x*p.row_stride_x + col_x;
const uint iy = channel*nrows_y + row_y;
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[ix]);
tmp[tid] += xi * FLOAT_TYPE(data_b[iy]);
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
tmp[tid] += tmp[tid + s];
}
barrier();
}
if (tid == 0) {
dst[idst] = tmp[0];
}
}
"""
generic_head = """
#version 450
#extension GL_EXT_shader_16bit_storage : require
layout (push_constant) uniform parameter
{
uint KX;
uint KY;
float param1;
float param2;
} p;
"""
generic_unary_op_head = """#version 450
#extension GL_EXT_shader_16bit_storage : require
layout (push_constant) uniform parameter
{
uint ne;
uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03;
uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
uint d_offset;
float param1; float param2;
} p;"""
generic_unary_op_layout = """
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};"""
generic_unary_op_funcs = """
uint src0_idx(uint idx) {
const uint i03 = idx / (p.ne02*p.ne01*p.ne00);
const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
const uint i02 = (idx - i03_offset) / (p.ne01*p.ne00);
const uint i02_offset = i02*p.ne01*p.ne00;
const uint i01 = (idx - i03_offset - i02_offset) / p.ne00;
const uint i00 = idx - i03_offset - i02_offset - i01*p.ne00;
return i03*p.nb03 + i02*p.nb02 + i01*p.nb01 + i00*p.nb00;
}
uint dst_idx(uint idx) {
const uint i13 = idx / (p.ne12*p.ne11*p.ne10);
const uint i13_offset = i13 * p.ne12*p.ne11*p.ne10;
const uint i12 = (idx - i13_offset) / (p.ne11*p.ne10);
const uint i12_offset = i12*p.ne11*p.ne10;
const uint i11 = (idx - i13_offset - i12_offset) / p.ne10;
const uint i10 = idx - i13_offset - i12_offset - i11*p.ne10;
return i13*p.nb13 + i12*p.nb12 + i11*p.nb11 + i10*p.nb10;
}"""
generic_unary_op_main = """
void main() {
if (gl_GlobalInvocationID.x >= p.ne) {
return;
}
"""
generic_unary_op_combined = f"{generic_unary_op_head}\n{generic_unary_op_layout}\n{generic_unary_op_funcs}\n{generic_unary_op_main}"
generic_binary_op_head = """#version 450
#extension GL_EXT_shader_16bit_storage : require
layout (push_constant) uniform parameter
{
uint ne;
uint ne00; uint ne01; uint ne02; uint ne03; uint nb00; uint nb01; uint nb02; uint nb03;
uint ne10; uint ne11; uint ne12; uint ne13; uint nb10; uint nb11; uint nb12; uint nb13;
uint ne20; uint ne21; uint ne22; uint ne23; uint nb20; uint nb21; uint nb22; uint nb23;
uint d_offset;
float param1; float param2;
} p;"""
generic_binary_op_layout = """
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) readonly buffer B {B_TYPE data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};"""
generic_binary_op_funcs = """
uint src0_idx(uint idx) {
const uint i03 = idx / (p.ne02*p.ne01*p.ne00);
const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
const uint i02 = (idx - i03_offset) / (p.ne01*p.ne00);
const uint i02_offset = i02*p.ne01*p.ne00;
const uint i01 = (idx - i03_offset - i02_offset) / p.ne00;
const uint i00 = idx - i03_offset - i02_offset - i01*p.ne00;
return i03*p.nb03 + i02*p.nb02 + i01*p.nb01 + i00*p.nb00;
}
uint src1_idx(uint idx) {
const uint i03 = idx / (p.ne02*p.ne01*p.ne00);
const uint i03_offset = i03 * p.ne02*p.ne01*p.ne00;
const uint i02 = (idx - i03_offset) / (p.ne01*p.ne00);
const uint i02_offset = i02*p.ne01*p.ne00;
const uint i01 = (idx - i03_offset - i02_offset) / p.ne00;
const uint i00 = idx - i03_offset - i02_offset - i01*p.ne00;
return (i03 % p.ne13)*p.nb13 + (i02 % p.ne12)*p.nb12 + (i01 % p.ne11)*p.nb11 + (i00 % p.ne10)*p.nb10;
}
uint dst_idx(uint idx) {
const uint i23 = idx / (p.ne22*p.ne21*p.ne20);
const uint i23_offset = i23 * p.ne22*p.ne21*p.ne20;
const uint i22 = (idx - i23_offset) / (p.ne21*p.ne20);
const uint i22_offset = i22*p.ne21*p.ne20;
const uint i21 = (idx - i23_offset - i22_offset) / p.ne20;
const uint i20 = idx - i23_offset - i22_offset - i21*p.ne20;
return i23*p.nb23 + i22*p.nb22 + i21*p.nb21 + i20*p.nb20;
}"""
generic_binary_op_main = """
void main() {
if (gl_GlobalInvocationID.x >= p.ne) {
return;
}
"""
generic_binary_op_combined = f"{generic_binary_op_head}\n{generic_binary_op_layout}\n{generic_binary_op_funcs}\n{generic_binary_op_main}"
# MUL F32
mul_body = """
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) * FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)]));
}
"""
# ADD
add_body = """
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) + FLOAT_TYPE(data_b[src1_idx(gl_GlobalInvocationID.x)]));
}
"""
# SCALE
scale_body = """
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]) * FLOAT_TYPE(p.param1));
}
"""
# SQR
sqr_body = """
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val * val);
}
"""
# CLAMP
clamp_body = """
const FLOAT_TYPE val = FLOAT_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(val < p.param1 ? p.param1 : (val > p.param2 ? p.param2 : val));
}
"""
# CPY
cpy_end = """
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = D_TYPE(data_a[src0_idx(gl_GlobalInvocationID.x)]);
}
"""
# Causes an optimization error otherwise
cpy_f16_f16_end = """
data_d[p.d_offset + dst_idx(gl_GlobalInvocationID.x)] = data_a[src0_idx(gl_GlobalInvocationID.x)];
}
"""
# GET_ROWS
get_rows_float_body = """
void main() {
const uint i00 = gl_GlobalInvocationID.x;
const uint i10 = gl_GlobalInvocationID.y;
const uint i11 = (gl_GlobalInvocationID.z)/p.ne12;
const uint i12 = (gl_GlobalInvocationID.z)%p.ne12;
if (i00 >= p.ne00) {
return;
}
const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12];
const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
#ifndef OPTIMIZATION_ERROR_WORKAROUND
data_d[d_offset + i00] = D_TYPE(data_a[a_offset + i00]);
#else
data_d[d_offset + i00] = data_a[a_offset + i00];
#endif
}
"""
get_rows_body = """
void main() {
const uint i00 = (gl_GlobalInvocationID.x)*2;
const uint i10 = gl_GlobalInvocationID.y;
const uint i11 = (gl_GlobalInvocationID.z)/p.ne12;
const uint i12 = (gl_GlobalInvocationID.z)%p.ne12;
if (i00 >= p.ne00) {
return;
}
const uint i01 = data_b[i10*p.nb10 + i11*p.nb11 + i12*p.nb12];
const uint a_offset = i01*p.nb01 + i11*p.nb02 + i12*p.nb03;
const uint d_offset = i10*p.nb21 + i11*p.nb22 + i12*p.nb23;
const uint ib = a_offset + i00/QUANT_K; // block index
const uint iqs = (i00%QUANT_K)/QUANT_R; // quant index
const uint iybs = i00 - i00%QUANT_K; // dst block start index
const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
vec2 v = dequantize(ib, iqs, 0);
data_d[d_offset + iybs + iqs ] = D_TYPE(v.x);
data_d[d_offset + iybs + iqs + y_offset] = D_TYPE(v.y);
}
"""
# UNARY
gelu_body = """
#extension GL_EXT_control_flow_attributes : enable
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
void main() {
const float GELU_COEF_A = 0.044715f;
const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
const uint i = gl_GlobalInvocationID.x;
if (i >= p.KX) {
return;
}
const float xi = float(data_a[i]);
const float val = SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi);
data_d[i] = D_TYPE(0.5f*xi*(2.0f - 2.0f / (exp(2 * val) + 1)));
}
"""
silu_body = """
#extension GL_EXT_control_flow_attributes : enable
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
void main() {
const uint i = gl_GlobalInvocationID.x;
if (i >= p.KX) {
return;
}
const float xi = float(data_a[i]);
data_d[i] = D_TYPE(xi / (1.0f + exp(-xi)));
}
"""
relu_body = """
#extension GL_EXT_control_flow_attributes : enable
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
void main() {
const uint i = gl_GlobalInvocationID.x;
if (i >= p.KX) {
return;
}
data_d[i] = max(float(data_a[i]), 0);
}
"""
# DIAG_MASK_INF
diag_mask_inf_head = """#version 450
#extension GL_EXT_shader_16bit_storage : require
layout (push_constant) uniform parameter
{
uint ncols;
uint rows_per_channel;
uint n_past;
} p;
"""
diag_mask_inf_body = """
#extension GL_EXT_control_flow_attributes : enable
layout(local_size_x = 512, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
void main() {
const uint col = gl_GlobalInvocationID.y;
const uint row = gl_GlobalInvocationID.x;
if (col >= p.ncols) {
return;
}
const uint i = row*p.ncols + col;
if (col > p.n_past + row % p.rows_per_channel) {
data_d[i] = D_TYPE(uintBitsToFloat(0xFF800000));
} else {
data_d[i] = D_TYPE(data_a[i]);
}
}
"""
# NORMS
norm_body = """
#extension GL_EXT_control_flow_attributes : enable
#define BLOCK_SIZE 512
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
shared vec2 sum[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x;
const uint tid = gl_LocalInvocationID.x;
sum[tid] = vec2(0.0f, 0.0f);
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
const float xi = float(data_a[row*p.KX + col]);
sum[tid].x += xi;
sum[tid].y += xi * xi;
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
sum[tid] += sum[tid + s];
}
barrier();
}
const float mean = sum[0].x / p.KX;
const float var = sum[0].y / p.KX - mean * mean;
const float inv_std = inversesqrt(var + p.param1);
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
data_d[row*p.KX + col] = D_TYPE((float(data_a[row*p.KX + col]) - mean) * inv_std);
}
}
"""
rms_norm_body = """
#extension GL_EXT_control_flow_attributes : enable
#define BLOCK_SIZE 512
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) writeonly buffer D {D_TYPE data_d[];};
shared FLOAT_TYPE sum[BLOCK_SIZE];
void main() {
const uint row = gl_WorkGroupID.x;
const uint tid = gl_LocalInvocationID.x;
sum[tid] = FLOAT_TYPE(0.0f); // partial sum for thread in warp
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
const FLOAT_TYPE xi = FLOAT_TYPE(data_a[row*p.KX + col]);
sum[tid] += xi * xi;
}
// sum up partial sums and write back result
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
sum[tid] += sum[tid + s];
}
barrier();
}
const FLOAT_TYPE mean = sum[0] / FLOAT_TYPE(p.KX);
const FLOAT_TYPE scale = inversesqrt(mean + FLOAT_TYPE(p.param1));
[[unroll]] for (uint col = tid; col < p.KX; col += BLOCK_SIZE) {
data_d[row*p.KX + col] = D_TYPE(scale * FLOAT_TYPE(data_a[row*p.KX + col]));
}
}
"""
# SOFT_MAX
soft_max_head = """
#version 450
#extension GL_EXT_shader_16bit_storage : require
layout (push_constant) uniform parameter
{
uint KX;
uint KY;
float scale;
float max_bias;
float m0;
float m1;
uint n_head_log2;
} p;
"""
soft_max_body = """
#extension GL_EXT_control_flow_attributes : enable
#define BLOCK_SIZE 512
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {B_TYPE data_b[];};
layout (binding = 2) buffer D {D_TYPE data_d[];};
shared FLOAT_TYPE vals[BLOCK_SIZE];
void main() {
const uint tid = gl_LocalInvocationID.x;
const uint rowx = gl_WorkGroupID.x;
const uint rowy = rowx % p.KY;
float slope = 1.0f;
// ALiBi
if (p.max_bias > 0.0f) {
const uint h = rowx/p.KY; // head index
const float base = h < p.n_head_log2 ? p.m0 : p.m1;
const uint exp = h < p.n_head_log2 ? h + 1 : 2*(h - p.n_head_log2) + 1;
slope = pow(base, exp);
}
// Find max
FLOAT_TYPE max_val = uintBitsToFloat(0xFF800000);
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
const uint col = col0 + tid;
if (col >= p.KX) {
break;
}
max_val = max(max_val, FLOAT_TYPE(data_a[rowx * p.KX + col]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)));
}
vals[tid] = max_val;
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
vals[tid] = max(vals[tid], vals[tid + s]);
}
barrier();
}
max_val = vals[0];
barrier();
// Sum up values
vals[tid] = FLOAT_TYPE(0.0f);
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
const uint col = col0 + tid;
if (col >= p.KX) {
break;
}
const uint i = rowx * p.KX + col;
const FLOAT_TYPE val = exp(FLOAT_TYPE(data_a[i]) * p.scale + (p.KY > 0 ? slope * FLOAT_TYPE(data_b[rowy * p.KX + col]) : FLOAT_TYPE(0.0f)) - max_val);
vals[tid] += val;
data_d[i] = D_TYPE(val);
}
barrier();
[[unroll]] for (int s = BLOCK_SIZE / 2; s > 0; s >>= 1) {
if (tid < s) {
vals[tid] += vals[tid + s];
}
barrier();
}
const D_TYPE divisor = D_TYPE(vals[0]);
[[unroll]] for (uint col0 = 0; col0 < p.KX; col0 += BLOCK_SIZE) {
const uint col = col0 + tid;
if (col >= p.KX) {
break;
}
data_d[rowx*p.KX + col] /= divisor;
}
}
"""
# ROPE
rope_src = """
#version 450
#extension GL_EXT_shader_16bit_storage : require
layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {int data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
layout (push_constant) uniform parameter {
uint ncols;
float freq_scale;
uint p_delta_rows;
float freq_base;
float ext_factor;
float attn_factor;
float corr_dims[4];
} p;
float rope_yarn_ramp(const float low, const float high, const uint i0) {
const float y = (i0 / 2 - low) / max(0.001f, high - low);
return 1.0f - min(1.0f, max(0.0f, y));
}
void rope_yarn(const float theta_extrap, const uint i0, out float cos_theta, out float sin_theta) {
float mscale = p.attn_factor;
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = p.freq_scale * theta_extrap;
float theta = theta_interp;
if (p.ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(p.corr_dims[0], p.corr_dims[1], i0) * p.ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * log(1.0f / p.freq_scale);
}
cos_theta = cos(theta) * mscale;
sin_theta = sin(theta) * mscale;
}
void main() {
const uint col = gl_GlobalInvocationID.y * 2;
const uint row = gl_GlobalInvocationID.x;
if (col >= p.ncols) {
return;
}
const uint i = row*p.ncols + col;
const uint i2 = row/p.p_delta_rows;
const int pos = data_b[i2];
const float theta_base = pos * pow(p.freq_base, -float(col)/p.ncols);
float cos_theta, sin_theta;
rope_yarn(theta_base, col, cos_theta, sin_theta);
const float x0 = float(data_a[i + 0]);
const float x1 = float(data_a[i + 1]);
data_d[i + 0] = D_TYPE(x0*cos_theta - x1*sin_theta);
data_d[i + 1] = D_TYPE(x0*sin_theta + x1*cos_theta);
}
"""
rope_neox_src = """
#version 450
#extension GL_EXT_shader_16bit_storage : require
layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {int data_b[];};
layout (binding = 2) readonly buffer Z {float data_freq_factors[];};
layout (binding = 3) writeonly buffer D {D_TYPE data_d[];};
layout (push_constant) uniform parameter {
uint ncols;
uint ndims;
float freq_scale;
uint p_delta_rows;
float freq_base;
float ext_factor;
float attn_factor;
float corr_dims[4];
float theta_scale;
float inv_ndims;
uint has_freq_facs;
} p;
float rope_yarn_ramp(const float low, const float high, const uint i0) {
const float y = (i0 / 2 - low) / max(0.001f, high - low);
return 1.0f - min(1.0f, max(0.0f, y));
}
void rope_yarn(const float theta_extrap, const uint i0, out float cos_theta, out float sin_theta) {
float mscale = p.attn_factor;
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = p.freq_scale * theta_extrap;
float theta = theta_interp;
if (p.ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(p.corr_dims[0], p.corr_dims[1], i0) * p.ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * log(1.0f / p.freq_scale);
}
cos_theta = cos(theta) * mscale;
sin_theta = sin(theta) * mscale;
}
void main() {
const uint col = gl_GlobalInvocationID.y * 2;
const uint row = gl_GlobalInvocationID.x;
if (col >= p.ncols) {
return;
}
const uint ib = col / p.ndims;
const uint ic = col % p.ndims;
if (ib > 0) {
const uint i = row*p.ncols + ib*p.ndims + ic;
data_d[i + 0] = data_a[i + 0];
data_d[i + 1] = data_a[i + 1];
return;
}
const uint i = row*p.ncols + ib*p.ndims + ic/2;
const uint i2 = row/p.p_delta_rows;
const int pos = data_b[i2];
const float freq_factor = p.has_freq_facs != 0 ? data_freq_factors[ic/2] : 1.0f;
const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f) / freq_factor;
float cos_theta, sin_theta;
rope_yarn(theta_base, ic, cos_theta, sin_theta);
const float x0 = float(data_a[i + 0]);
const float x1 = float(data_a[i + p.ndims/2]);
data_d[i + 0] = D_TYPE(x0*cos_theta - x1*sin_theta);
data_d[i + p.ndims/2] = D_TYPE(x0*sin_theta + x1*cos_theta);
}
"""
argsort_src = """
#version 450
#extension GL_EXT_shader_16bit_storage : require
#define BLOCK_SIZE 1024
#define ASC 0
layout(local_size_x = BLOCK_SIZE, local_size_y = 1, local_size_z = 1) in;
layout (binding = 0) readonly buffer A {A_TYPE data_a[];};
layout (binding = 1) buffer D {int data_d[];};
layout (push_constant) uniform parameter {
uint ncols;
uint ncols_pad;
uint order;
} p;
shared int dst_row[BLOCK_SIZE];
void swap(uint idx0, uint idx1) {
int tmp = dst_row[idx0];
dst_row[idx0] = dst_row[idx1];
dst_row[idx1] = tmp;
}
void main() {
// bitonic sort
const int col = int(gl_LocalInvocationID.x);
const uint row = gl_WorkGroupID.y;
if (col >= p.ncols_pad) {
return;
}
const uint row_offset = row * p.ncols;
// initialize indices
dst_row[col] = col;
barrier();
for (uint k = 2; k <= p.ncols_pad; k *= 2) {
for (uint j = k / 2; j > 0; j /= 2) {
const uint ixj = col ^ j;
if (ixj > col) {
if ((col & k) == 0) {
if (dst_row[col] >= p.ncols ||
(dst_row[ixj] < p.ncols && (p.order == ASC ?
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]] :
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]]))
) {
swap(col, ixj);
}
} else {
if (dst_row[ixj] >= p.ncols ||
(dst_row[col] < p.ncols && (p.order == ASC ?
data_a[row_offset + dst_row[col]] < data_a[row_offset + dst_row[ixj]] :
data_a[row_offset + dst_row[col]] > data_a[row_offset + dst_row[ixj]]))
) {
swap(col, ixj);
}
}
}
barrier();
}
}
if (col < p.ncols) {
data_d[row_offset + col] = dst_row[col];
}
}
"""
GLSLC = "glslc"
VK_NUM_TYPES = 16
GGML_TYPE_F32 = 0
GGML_TYPE_F16 = 1
GGML_TYPE_Q4_0 = 2
GGML_TYPE_Q4_1 = 3
GGML_TYPE_Q5_0 = 6
GGML_TYPE_Q5_1 = 7
GGML_TYPE_Q8_0 = 8
GGML_TYPE_Q8_1 = 9
GGML_TYPE_Q2_K = 10
GGML_TYPE_Q3_K = 11
GGML_TYPE_Q4_K = 12
GGML_TYPE_Q5_K = 13
GGML_TYPE_Q6_K = 14
GGML_TYPE_Q8_K = 15
type_names = {
GGML_TYPE_F32: "f32",
GGML_TYPE_F16: "f16",
GGML_TYPE_Q4_0: "q4_0",
GGML_TYPE_Q4_1: "q4_1",
GGML_TYPE_Q5_0: "q5_0",
GGML_TYPE_Q5_1: "q5_1",
GGML_TYPE_Q8_0: "q8_0",
GGML_TYPE_Q8_1: "q8_1",
GGML_TYPE_Q2_K: "q2_K",
GGML_TYPE_Q3_K: "q3_K",
GGML_TYPE_Q4_K: "q4_K",
GGML_TYPE_Q5_K: "q5_K",
GGML_TYPE_Q6_K: "q6_K",
GGML_TYPE_Q8_K: "q8_K",
}
K_QUANTS_PER_ITERATION = 2
ASYNCIO_CONCURRENCY = 64
output_dir = gettempdir()
lock = asyncio.Lock()
shader_fnames = []
async def string_to_spv(name, code, defines, fp16=True):
f = NamedTemporaryFile(mode="w", delete=False)
f.write(code)
f.flush()
name = f"{name}{'_fp32' if not fp16 else ''}"
fname = os.path.join(output_dir, f"{name}.comp")
cmd = [GLSLC, "-fshader-stage=compute", "--target-env=vulkan1.2", "-O", f.name, "-o", fname]
cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
proc = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)
stdout, stderr = await proc.communicate()
stdout = stdout.decode()
error = stderr.decode()
if proc.returncode:
# Generate preprocessed code
cmd = [GLSLC, "-E", f.name]
cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
proc = await asyncio.create_subprocess_exec(*cmd, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE)
stdout, stderr = await proc.communicate()
logger.info(" ".join(cmd))
if proc.returncode:
raise RuntimeError(f"{name=} {f.name=} {stdout=} {stderr=}")
preprocessed_code = stdout.decode()
cmd.extend([f"-D{key}={value}" for key, value in defines.items()])
code_with_lines = "\n".join([f"{i + 1}: {line}" for i, line in enumerate(preprocessed_code.splitlines())])
logger.error(f"cannot compile {name}\n\n{code_with_lines}\n\n{error}")
f.close()
os.remove(f.name)
sys.exit(proc.returncode)
f.close()
os.remove(f.name)
async with lock:
shader_fnames.append((name, fname))
async def main():
logger.info("ggml_vulkan: Generating and compiling shaders to SPIR-V")
tasks = []
stream = []
for fp16 in (False, True):
# mulmat
if fp16:
shader_float_type = shader_f16
load_vec = "8"
vec_type_f16 = "f16mat2x4"
vec_type = "mat2x4"
else:
shader_float_type = shader_f32
load_vec = "4"
vec_type_f16 = "f16vec4"
vec_type = "vec4"
stream.clear()
stream.extend((mulmat_head, shader_float_type, mulmat_body1, mulmat_load_scalar, mulmat_body2))
tasks.append(string_to_spv("matmul_f32", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_f32_aligned", "".join(stream), {"LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_f32_f16", "".join(stream), {"A_TYPE": "float", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_f32_f16_aligned", "".join(stream), {"LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_f16", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_f16_aligned", "".join(stream), {"LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_f16_f32", "".join(stream), {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_f16_f32_aligned", "".join(stream), {"LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
stream.clear()
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_0_defines, mulmat_body1, mulmat_load_q4_0, mulmat_body2))
tasks.append(string_to_spv("matmul_q4_0_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q4_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_q4_0_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
stream.clear()
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_1_defines, mulmat_body1, mulmat_load_q4_1, mulmat_body2))
tasks.append(string_to_spv("matmul_q4_1_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q4_1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_q4_1_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_1", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
stream.clear()
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_0_defines, mulmat_body1, mulmat_load_q5_0, mulmat_body2))
tasks.append(string_to_spv("matmul_q5_0_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q5_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_q5_0_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
stream.clear()
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_1_defines, mulmat_body1, mulmat_load_q5_1, mulmat_body2))
tasks.append(string_to_spv("matmul_q5_1_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q5_1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_q5_1_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_1", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
stream.clear()
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q8_0_defines, mulmat_body1, mulmat_load_q8_0, mulmat_body2))
tasks.append(string_to_spv("matmul_q8_0_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q8_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_q8_0_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q8_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
stream.clear()
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q2_K_defines, mulmat_body1, mulmat_load_q2_K, mulmat_body2))
tasks.append(string_to_spv("matmul_q2_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q2_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_q2_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q2_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
stream.clear()
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q3_K_defines, mulmat_body1, mulmat_load_q3_K, mulmat_body2))
tasks.append(string_to_spv("matmul_q3_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q3_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_q3_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q3_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
stream.clear()
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_K_defines, mulmat_body1, mulmat_load_q4_K, mulmat_body2))
tasks.append(string_to_spv("matmul_q4_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q4_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_q4_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
stream.clear()
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_K_defines, mulmat_body1, mulmat_load_q5_K, mulmat_body2))
tasks.append(string_to_spv("matmul_q5_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q5_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_q5_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
stream.clear()
stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q6_K_defines, mulmat_body1, mulmat_load_q6_K, mulmat_body2))
tasks.append(string_to_spv("matmul_q6_k_f32", "".join(stream), {"LOAD_VEC_A": 2, "A_TYPE": "block_q6_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
tasks.append(string_to_spv("matmul_q6_k_f32_aligned", "".join(stream), {"LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q6_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# MUL_MAT_ID
# stream.clear()
# stream.extend((mulmat_head, shader_float_type, mulmat_body1, mulmat_load_scalar, mulmat_body2))
# tasks.append(string_to_spv("matmul_id_f32", "".join(stream), {"MUL_MAT_ID": "1", "A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_f16", "".join(stream), {"MUL_MAT_ID": "1", "A_TYPE": "float16_t", "B_TYPE": "float16_t", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_f16_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type_f16, "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_f16_f32", "".join(stream), {"MUL_MAT_ID": "1", "A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_f16_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": load_vec, "LOAD_VEC_B": load_vec, "A_TYPE": vec_type_f16, "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# stream.clear()
# stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_0_defines, mulmat_body1, mulmat_load_q4_0, mulmat_body2))
# tasks.append(string_to_spv("matmul_id_q4_0_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q4_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_q4_0_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# stream.clear()
# stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_1_defines, mulmat_body1, mulmat_load_q4_1, mulmat_body2))
# tasks.append(string_to_spv("matmul_id_q4_1_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q4_1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_q4_1_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_1", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# stream.clear()
# stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_0_defines, mulmat_body1, mulmat_load_q5_0, mulmat_body2))
# tasks.append(string_to_spv("matmul_id_q5_0_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q5_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_q5_0_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# stream.clear()
# stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_1_defines, mulmat_body1, mulmat_load_q5_1, mulmat_body2))
# tasks.append(string_to_spv("matmul_id_q5_1_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q5_1", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_q5_1_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_1", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# stream.clear()
# stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q8_0_defines, mulmat_body1, mulmat_load_q8_0, mulmat_body2))
# tasks.append(string_to_spv("matmul_id_q8_0_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q8_0", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_q8_0_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q8_0", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# stream.clear()
# stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q2_K_defines, mulmat_body1, mulmat_load_q2_K, mulmat_body2))
# tasks.append(string_to_spv("matmul_id_q2_k_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q2_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_q2_k_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q2_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# stream.clear()
# stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q3_K_defines, mulmat_body1, mulmat_load_q3_K, mulmat_body2))
# tasks.append(string_to_spv("matmul_id_q3_k_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q3_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_q3_k_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q3_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# stream.clear()
# stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q4_K_defines, mulmat_body1, mulmat_load_q4_K, mulmat_body2))
# tasks.append(string_to_spv("matmul_id_q4_k_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q4_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_q4_k_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q4_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# stream.clear()
# stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q5_K_defines, mulmat_body1, mulmat_load_q5_K, mulmat_body2))
# tasks.append(string_to_spv("matmul_id_q5_k_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q5_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_q5_k_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q5_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# stream.clear()
# stream.extend((mulmat_head, shader_int8_ext, shader_float_type, shader_q6_K_defines, mulmat_body1, mulmat_load_q6_K, mulmat_body2))
# tasks.append(string_to_spv("matmul_id_q6_k_f32", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "A_TYPE": "block_q6_K", "B_TYPE": "float", "D_TYPE": "float"}, fp16))
# tasks.append(string_to_spv("matmul_id_q6_k_f32_aligned", "".join(stream), {"MUL_MAT_ID": "1", "LOAD_VEC_A": 2, "LOAD_VEC_B": load_vec, "A_TYPE": "block_q6_K", "B_TYPE": vec_type, "D_TYPE": "float"}, fp16))
# Shaders where precision is needed, so no fp16 version
# mul mat vec
for i in range(0, VK_NUM_TYPES):
stream.clear()
stream.extend((mul_mat_vec_head, shader_int8_ext, shader_f32))
if i == GGML_TYPE_F16:
stream.extend((shader_f16_defines, mul_mat_vec_layout, shader_float_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q4_0:
stream.extend((shader_q4_0_defines, mul_mat_vec_layout, shader_q4_0_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q4_1:
stream.extend((shader_q4_1_defines, mul_mat_vec_layout, shader_q4_1_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q5_0:
stream.extend((shader_q5_0_defines, mul_mat_vec_layout, shader_q5_0_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q5_1:
stream.extend((shader_q5_1_defines, mul_mat_vec_layout, shader_q5_1_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q8_0:
stream.extend((shader_q8_0_defines, mul_mat_vec_layout, shader_q8_0_dequant_func, mul_mat_vec_body))
elif i == GGML_TYPE_Q2_K:
stream.extend((shader_q2_K_defines, mul_mat_vec_layout, mul_mat_vec_q2_K_body))
elif i == GGML_TYPE_Q3_K:
stream.extend((shader_q3_K_defines, mul_mat_vec_layout, mul_mat_vec_q3_K_body))
elif i == GGML_TYPE_Q4_K:
stream.extend((shader_q4_K_defines, mul_mat_vec_layout, mul_mat_vec_q4_K_body))
elif i == GGML_TYPE_Q5_K:
stream.extend((shader_q5_K_defines, mul_mat_vec_layout, mul_mat_vec_q5_K_body))
elif i == GGML_TYPE_Q6_K:
stream.extend((shader_q6_K_defines, mul_mat_vec_layout, mul_mat_vec_q6_K_body))
else:
continue
tasks.append(string_to_spv(f"mul_mat_vec_{type_names[i]}_f32_f32", "".join(stream), {"B_TYPE": "float", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}))
tasks.append(string_to_spv(f"mul_mat_vec_{type_names[i]}_f16_f32", "".join(stream), {"B_TYPE": "float16_t", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}))
# tasks.append(string_to_spv(f"mul_mat_vec_id_{type_names[i]}_f32", "".join(stream), {"MUL_MAT_ID": "1", "B_TYPE": "float", "D_TYPE": "float", "K_QUANTS_PER_ITERATION": K_QUANTS_PER_ITERATION}))
# Dequant shaders
for i in range(0, VK_NUM_TYPES):
stream.clear()
stream.extend((dequant_head, shader_int8_ext, shader_f32))
if i == GGML_TYPE_F32:
stream.append(dequant_f32_body)
elif i == GGML_TYPE_Q4_0:
stream.extend((shader_q4_0_defines, dequant_q4_0_body))
elif i == GGML_TYPE_Q4_1:
stream.extend((shader_q4_1_defines, dequant_q4_1_body))
elif i == GGML_TYPE_Q5_0:
stream.extend((shader_q5_0_defines, dequant_q5_0_body))
elif i == GGML_TYPE_Q5_1:
stream.extend((shader_q5_1_defines, dequant_q5_1_body))
elif i == GGML_TYPE_Q8_0:
stream.extend((shader_q8_0_defines, dequant_q8_0_body))
elif i == GGML_TYPE_Q2_K:
stream.extend((shader_q2_K_defines, dequant_q2_K_body))
elif i == GGML_TYPE_Q3_K:
stream.extend((shader_q3_K_defines, dequant_q3_K_body))
elif i == GGML_TYPE_Q4_K:
stream.extend((shader_q4_K_defines, dequant_q4_K_body))
elif i == GGML_TYPE_Q5_K:
stream.extend((shader_q5_K_defines, dequant_q5_K_body))
elif i == GGML_TYPE_Q6_K:
stream.extend((shader_q6_K_defines, dequant_q6_K_body))
else:
continue
tasks.append(string_to_spv(f"dequant_{type_names[i]}", "".join(stream), {"D_TYPE": "float16_t"}))
# get_rows
for i in range(0, VK_NUM_TYPES):
stream.clear()
stream.extend((generic_binary_op_head, shader_int8_ext, shader_f32))
optimization_workaround = False
if i == GGML_TYPE_F32:
stream.extend((shader_f32_defines, generic_binary_op_layout, generic_binary_op_funcs, get_rows_float_body))
elif i == GGML_TYPE_F16:
stream.extend((shader_f16_defines, generic_binary_op_layout, generic_binary_op_funcs, get_rows_float_body))
optimization_workaround = True
elif i == GGML_TYPE_Q4_0:
stream.extend((shader_q4_0_defines, generic_binary_op_layout, shader_q4_0_dequant_func, generic_binary_op_funcs, get_rows_body))
elif i == GGML_TYPE_Q4_1:
stream.extend((shader_q4_1_defines, generic_binary_op_layout, shader_q4_1_dequant_func, generic_binary_op_funcs, get_rows_body))
elif i == GGML_TYPE_Q5_0:
stream.extend((shader_q5_0_defines, generic_binary_op_layout, shader_q5_0_dequant_func, generic_binary_op_funcs, get_rows_body))
elif i == GGML_TYPE_Q5_1:
stream.extend((shader_q5_1_defines, generic_binary_op_layout, shader_q5_1_dequant_func, generic_binary_op_funcs, get_rows_body))
elif i == GGML_TYPE_Q8_0:
stream.extend((shader_q8_0_defines, generic_binary_op_layout, shader_q8_0_dequant_func, generic_binary_op_funcs, get_rows_body))
else:
continue
if optimization_workaround:
tasks.append(string_to_spv(f"get_rows_{type_names[i]}", "".join(stream), {"B_TYPE": "int", "D_TYPE": "float16_t", "OPTIMIZATION_ERROR_WORKAROUND": "1"}))
else:
tasks.append(string_to_spv(f"get_rows_{type_names[i]}", "".join(stream), {"B_TYPE": "int", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv(f"get_rows_{type_names[i]}_f32", "".join(stream), {"B_TYPE": "int", "D_TYPE": "float"}))
tasks.append(string_to_spv("mul_mat_vec_p021_f16_f32", mul_mat_p021_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("mul_mat_vec_nc_f16_f32", mul_mat_nc_src, {"A_TYPE": "float16_t", "B_TYPE": "float", "D_TYPE": "float"}))
# Norms
tasks.append(string_to_spv("norm_f32", f"{generic_head}\n{shader_f32}\n{norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rms_norm_f32", f"{generic_head}\n{shader_f32}\n{rms_norm_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("cpy_f32_f32", f"{generic_unary_op_combined}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("cpy_f32_f16", f"{generic_unary_op_combined}\n{cpy_end}", {"A_TYPE": "float", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("cpy_f16_f16", f"{generic_unary_op_combined}\n{cpy_f16_f16_end}", {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("add_f32", f"{generic_binary_op_combined}\n{add_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("split_k_reduce", mulmat_split_k_reduce_src, {}))
tasks.append(string_to_spv("mul_f32", f"{generic_binary_op_combined}\n{mul_body}", {"A_TYPE": "float", "B_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("scale_f32", f"{generic_unary_op_combined}\n{scale_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("sqr_f32", f"{generic_unary_op_combined}\n{sqr_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("clamp_f32", f"{generic_unary_op_combined}\n{clamp_body}", {"A_TYPE": "float", "D_TYPE": "float", "FLOAT_TYPE": "float"}))
tasks.append(string_to_spv("gelu_f32", f"{generic_head}\n{shader_f32}\n{gelu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("silu_f32", f"{generic_head}\n{shader_f32}\n{silu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("relu_f32", f"{generic_head}\n{shader_f32}\n{relu_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("diag_mask_inf_f32", f"{diag_mask_inf_head}\n{shader_f32}\n{diag_mask_inf_body}", {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("soft_max_f32", f"{soft_max_head}\n{shader_f32}\n{soft_max_body}", {"A_TYPE": "float", "B_TYPE": "float", "C_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("soft_max_f32_f16", f"{soft_max_head}\n{shader_f32}\n{soft_max_body}", {"A_TYPE": "float", "B_TYPE": "float16_t", "C_TYPE": "float16_t", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_f32", rope_src, {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_f16", rope_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("rope_neox_f32", rope_neox_src, {"A_TYPE": "float", "D_TYPE": "float"}))
tasks.append(string_to_spv("rope_neox_f16", rope_neox_src, {"A_TYPE": "float16_t", "D_TYPE": "float16_t"}))
tasks.append(string_to_spv("argsort_f32", argsort_src, {"A_TYPE": "float"}))
# Helper to decorate tasks with semaphore acquisition.
async def withSemaphore(sem, task):
async with sem:
return await task
# Run tasks concurrently guarded by a concurrency limit.
sem = asyncio.Semaphore(ASYNCIO_CONCURRENCY)
await asyncio.gather(*(withSemaphore(sem, task) for task in tasks))
with open("ggml-vulkan-shaders.hpp", "w") as f:
f.write("#include <cstdint>\n\n")
for name, path in sorted(shader_fnames):
with open(path, "rb") as spv:
counter = 0
newline_counter = 0
f.write(f"unsigned char {name}_data[] = {{\n")
for val in spv.read():
f.write(f"0x{val:02x},")
newline_counter += 1
counter += 1
if newline_counter >= 12:
newline_counter = 0
f.write("\n")
f.write("\n};\n")
f.write(f"const uint64_t {name}_len = {counter};\n\n")
os.remove(path)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="GGML Vulkan Shader Generator")
parser.add_argument("--glslc", help="Path to glslc")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args()
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
if args.glslc:
GLSLC = args.glslc
asyncio.run(main())
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import os
import sys
from tqdm import tqdm
from pathlib import Path
import numpy as np
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent))
import gguf
logger = logging.getLogger("gguf-convert-endian")
def convert_byteorder(reader: gguf.GGUFReader, args: argparse.Namespace) -> None:
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
# Host is little endian
host_endian = "little"
swapped_endian = "big"
else:
# Sorry PDP or other weird systems that don't use BE or LE.
host_endian = "big"
swapped_endian = "little"
if reader.byte_order == "S":
file_endian = swapped_endian
else:
file_endian = host_endian
order = host_endian if args.order == "native" else args.order
logger.info(f"* Host is {host_endian.upper()} endian, GGUF file seems to be {file_endian.upper()} endian")
if file_endian == order:
logger.info(f"* File is already {order.upper()} endian. Nothing to do.")
sys.exit(0)
logger.info("* Checking tensors for conversion compatibility")
for tensor in reader.tensors:
if tensor.tensor_type not in (
gguf.GGMLQuantizationType.F32,
gguf.GGMLQuantizationType.F16,
gguf.GGMLQuantizationType.Q8_0,
):
raise ValueError(f"Cannot handle type {tensor.tensor_type.name} for tensor {repr(tensor.name)}")
logger.info(f"* Preparing to convert from {file_endian.upper()} to {order.upper()}")
if args.dry_run:
return
logger.warning("*** Warning *** Warning *** Warning **")
logger.warning("* This conversion process may damage the file. Ensure you have a backup.")
if order != host_endian:
logger.warning("* Requested endian differs from host, you will not be able to load the model on this machine.")
logger.warning("* The file will be modified immediately, so if conversion fails or is interrupted")
logger.warning("* the file will be corrupted. Enter exactly YES if you are positive you want to proceed:")
response = input("YES, I am sure> ")
if response != "YES":
logger.warning("You didn't enter YES. Okay then, see ya!")
sys.exit(0)
logger.info(f"* Converting fields ({len(reader.fields)})")
for idx, field in enumerate(reader.fields.values()):
logger.info(f"- {idx:4}: Converting field {repr(field.name)}, part count: {len(field.parts)}")
for part in field.parts:
part.byteswap(inplace=True)
logger.info(f"* Converting tensors ({len(reader.tensors)})")
for idx, tensor in enumerate(pbar := tqdm(reader.tensors, desc="Converting tensor")):
log_message = (
f"Converting tensor {repr(tensor.name)}, "
f"type={tensor.tensor_type.name}, "
f"elements={tensor.n_elements} "
)
# Byte-swap each part of the tensor's field
for part in tensor.field.parts:
part.byteswap(inplace=True)
# Byte-swap tensor data if necessary
if tensor.tensor_type == gguf.GGMLQuantizationType.Q8_0:
# Handle Q8_0 tensor blocks (block_q8_0)
# Specific handling of block_q8_0 is required.
# Each block_q8_0 consists of an f16 delta (scaling factor) followed by 32 int8 quantizations.
block_size = 34 # 34 bytes = <f16 delta scaling factor> + 32 * <int8 quant>
n_blocks = len(tensor.data) // block_size
for block_num in (inner_pbar := tqdm(range(n_blocks), desc="Byte-swapping Blocks", leave=False)):
block_offs = block_num * block_size
# Byte-Swap f16 sized delta field
delta = tensor.data[block_offs:block_offs + 2].view(dtype=np.uint16)
delta.byteswap(inplace=True)
# Byte-Swap Q8 weights
if block_num % 100000 == 0:
inner_pbar.set_description(f"Byte-swapping Blocks [{(n_blocks - block_num) // n_blocks}]")
else:
# Handle other tensor types
tensor.data.byteswap(inplace=True)
pbar.set_description(log_message)
logger.info("* Completion")
def main() -> None:
parser = argparse.ArgumentParser(description="Convert GGUF file byte order")
parser.add_argument(
"model", type=str,
help="GGUF format model filename",
)
parser.add_argument(
"order", type=str, choices=['big', 'little', 'native'],
help="Requested byte order",
)
parser.add_argument(
"--dry-run", action="store_true",
help="Don't actually change anything",
)
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
logger.info(f'* Loading: {args.model}')
reader = gguf.GGUFReader(args.model, 'r' if args.dry_run else 'r+')
convert_byteorder(reader, args)
if __name__ == "__main__":
main()
#!/usr/bin/env python3
from __future__ import annotations
import logging
import argparse
import os
import sys
from pathlib import Path
from typing import Any
import numpy as np
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent))
from gguf import GGUFReader, GGUFValueType # noqa: E402
logger = logging.getLogger("gguf-dump")
def get_file_host_endian(reader: GGUFReader) -> tuple[str, str]:
host_endian = 'LITTLE' if np.uint32(1) == np.uint32(1).newbyteorder("<") else 'BIG'
if reader.byte_order == 'S':
file_endian = 'BIG' if host_endian == 'LITTLE' else 'LITTLE'
else:
file_endian = host_endian
return (host_endian, file_endian)
# For more information about what field.parts and field.data represent,
# please see the comments in the modify_gguf.py example.
def dump_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
host_endian, file_endian = get_file_host_endian(reader)
print(f'* File is {file_endian} endian, script is running on a {host_endian} endian host.') # noqa: NP100
print(f'* Dumping {len(reader.fields)} key/value pair(s)') # noqa: NP100
for n, field in enumerate(reader.fields.values(), 1):
if not field.types:
pretty_type = 'N/A'
elif field.types[0] == GGUFValueType.ARRAY:
nest_count = len(field.types) - 1
pretty_type = '[' * nest_count + str(field.types[-1].name) + ']' * nest_count
else:
pretty_type = str(field.types[-1].name)
log_message = f' {n:5}: {pretty_type:10} | {len(field.data):8} | {field.name}'
if len(field.types) == 1:
curr_type = field.types[0]
if curr_type == GGUFValueType.STRING:
log_message += ' = {0}'.format(repr(str(bytes(field.parts[-1]), encoding='utf-8')[:60]))
elif field.types[0] in reader.gguf_scalar_to_np:
log_message += ' = {0}'.format(field.parts[-1][0])
print(log_message) # noqa: NP100
if args.no_tensors:
return
print(f'* Dumping {len(reader.tensors)} tensor(s)') # noqa: NP100
for n, tensor in enumerate(reader.tensors, 1):
prettydims = ', '.join('{0:5}'.format(d) for d in list(tensor.shape) + [1] * (4 - len(tensor.shape)))
print(f' {n:5}: {tensor.n_elements:10} | {prettydims} | {tensor.tensor_type.name:7} | {tensor.name}') # noqa: NP100
def dump_metadata_json(reader: GGUFReader, args: argparse.Namespace) -> None:
import json
host_endian, file_endian = get_file_host_endian(reader)
metadata: dict[str, Any] = {}
tensors: dict[str, Any] = {}
result = {
"filename": args.model,
"endian": file_endian,
"metadata": metadata,
"tensors": tensors,
}
for idx, field in enumerate(reader.fields.values()):
curr: dict[str, Any] = {
"index": idx,
"type": field.types[0].name if field.types else 'UNKNOWN',
"offset": field.offset,
}
metadata[field.name] = curr
if field.types[:1] == [GGUFValueType.ARRAY]:
curr["array_types"] = [t.name for t in field.types][1:]
if not args.json_array:
continue
itype = field.types[-1]
if itype == GGUFValueType.STRING:
curr["value"] = [str(bytes(field.parts[idx]), encoding="utf-8") for idx in field.data]
else:
curr["value"] = [pv for idx in field.data for pv in field.parts[idx].tolist()]
elif field.types[0] == GGUFValueType.STRING:
curr["value"] = str(bytes(field.parts[-1]), encoding="utf-8")
else:
curr["value"] = field.parts[-1].tolist()[0]
if not args.no_tensors:
for idx, tensor in enumerate(reader.tensors):
tensors[tensor.name] = {
"index": idx,
"shape": tensor.shape.tolist(),
"type": tensor.tensor_type.name,
"offset": tensor.field.offset,
}
json.dump(result, sys.stdout)
def main() -> None:
parser = argparse.ArgumentParser(description="Dump GGUF file metadata")
parser.add_argument("model", type=str, help="GGUF format model filename")
parser.add_argument("--no-tensors", action="store_true", help="Don't dump tensor metadata")
parser.add_argument("--json", action="store_true", help="Produce JSON output")
parser.add_argument("--json-array", action="store_true", help="Include full array values in JSON output (long)")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
if not args.json:
logger.info(f'* Loading: {args.model}')
reader = GGUFReader(args.model, 'r')
if args.json:
dump_metadata_json(reader, args)
else:
dump_metadata(reader, args)
if __name__ == '__main__':
main()
#!/usr/bin/env python3
import logging
import argparse
import os
import sys
import json
from pathlib import Path
import numpy as np
from tqdm import tqdm
from typing import Any, Sequence, NamedTuple
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent))
import gguf
logger = logging.getLogger("gguf-new-metadata")
class MetadataDetails(NamedTuple):
type: gguf.GGUFValueType
value: Any
description: str = ''
def get_byteorder(reader: gguf.GGUFReader) -> gguf.GGUFEndian:
if np.uint32(1) == np.uint32(1).newbyteorder("<"):
# Host is little endian
host_endian = gguf.GGUFEndian.LITTLE
swapped_endian = gguf.GGUFEndian.BIG
else:
# Sorry PDP or other weird systems that don't use BE or LE.
host_endian = gguf.GGUFEndian.BIG
swapped_endian = gguf.GGUFEndian.LITTLE
if reader.byte_order == "S":
return swapped_endian
else:
return host_endian
def decode_field(field: gguf.ReaderField | None) -> Any:
if field and field.types:
main_type = field.types[0]
if main_type == gguf.GGUFValueType.ARRAY:
sub_type = field.types[-1]
if sub_type == gguf.GGUFValueType.STRING:
return [str(bytes(field.parts[idx]), encoding='utf-8') for idx in field.data]
else:
return [pv for idx in field.data for pv in field.parts[idx].tolist()]
if main_type == gguf.GGUFValueType.STRING:
return str(bytes(field.parts[-1]), encoding='utf-8')
else:
return field.parts[-1][0]
return None
def get_field_data(reader: gguf.GGUFReader, key: str) -> Any:
field = reader.get_field(key)
return decode_field(field)
def find_token(token_list: Sequence[int], token: str) -> Sequence[int]:
token_ids = [index for index, value in enumerate(token_list) if value == token]
if len(token_ids) == 0:
raise LookupError(f'Unable to find "{token}" in token list!')
return token_ids
def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new_metadata: dict[str, MetadataDetails], remove_metadata: Sequence[str]) -> None:
for field in reader.fields.values():
# Suppress virtual fields and fields written by GGUFWriter
if field.name == gguf.Keys.General.ARCHITECTURE or field.name.startswith('GGUF.'):
logger.debug(f'Suppressing {field.name}')
continue
# Skip old chat templates if we have new ones
if field.name.startswith(gguf.Keys.Tokenizer.CHAT_TEMPLATE) and gguf.Keys.Tokenizer.CHAT_TEMPLATE in new_metadata:
logger.debug(f'Skipping {field.name}')
continue
if field.name in remove_metadata:
logger.debug(f'Removing {field.name}')
continue
old_val = MetadataDetails(field.types[0], decode_field(field))
val = new_metadata.get(field.name, old_val)
if field.name in new_metadata:
logger.debug(f'Modifying {field.name}: "{old_val.value}" -> "{val.value}" {val.description}')
del new_metadata[field.name]
elif val.value is not None:
logger.debug(f'Copying {field.name}')
if val.value is not None:
writer.add_key(field.name)
writer.add_val(val.value, val.type)
if gguf.Keys.Tokenizer.CHAT_TEMPLATE in new_metadata:
logger.debug('Adding chat template(s)')
writer.add_chat_template(new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE].value)
del new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE]
for key, val in new_metadata.items():
logger.debug(f'Adding {key}: "{val.value}" {val.description}')
writer.add_key(key)
writer.add_val(val.value, val.type)
total_bytes = 0
for tensor in reader.tensors:
total_bytes += tensor.n_bytes
writer.add_tensor_info(tensor.name, tensor.data.shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
writer.write_header_to_file()
writer.write_kv_data_to_file()
writer.write_ti_data_to_file()
for tensor in reader.tensors:
writer.write_tensor_data(tensor.data)
bar.update(tensor.n_bytes)
writer.close()
def main() -> None:
tokenizer_metadata = (getattr(gguf.Keys.Tokenizer, n) for n in gguf.Keys.Tokenizer.__dict__.keys() if not n.startswith('_'))
token_names = dict((n.split('.')[-1][:-len('_token_id')], n) for n in tokenizer_metadata if n.endswith('_token_id'))
parser = argparse.ArgumentParser(description="Make a copy of a GGUF file with new metadata")
parser.add_argument("input", type=Path, help="GGUF format model input filename")
parser.add_argument("output", type=Path, help="GGUF format model output filename")
parser.add_argument("--general-name", type=str, help="The models general.name", metavar='"name"')
parser.add_argument("--general-description", type=str, help="The models general.description", metavar='"Description ..."')
parser.add_argument("--chat-template", type=str, help="Chat template string (or JSON string containing templates)", metavar='"{% ... %} ..."')
parser.add_argument("--chat-template-config", type=Path, help="Config file containing chat template(s)", metavar='tokenizer_config.json')
parser.add_argument("--pre-tokenizer", type=str, help="The models tokenizer.ggml.pre", metavar='"pre tokenizer"')
parser.add_argument("--remove-metadata", action="append", type=str, help="Remove metadata (by key name) from output model", metavar='general.url')
parser.add_argument("--special-token", action="append", type=str, help="Special token by value", nargs=2, metavar=(' | '.join(token_names.keys()), '"<token>"'))
parser.add_argument("--special-token-by-id", action="append", type=str, help="Special token by id", nargs=2, metavar=(' | '.join(token_names.keys()), '0'))
parser.add_argument("--force", action="store_true", help="Bypass warnings without confirmation")
parser.add_argument("--verbose", action="store_true", help="Increase output verbosity")
args = parser.parse_args(None if len(sys.argv) > 2 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
new_metadata = {}
remove_metadata = args.remove_metadata or []
if args.general_name:
new_metadata[gguf.Keys.General.NAME] = MetadataDetails(gguf.GGUFValueType.STRING, args.general_name)
if args.general_description:
new_metadata[gguf.Keys.General.DESCRIPTION] = MetadataDetails(gguf.GGUFValueType.STRING, args.general_description)
if args.chat_template:
new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE] = MetadataDetails(gguf.GGUFValueType.STRING, json.loads(args.chat_template) if args.chat_template.startswith('[') else args.chat_template)
if args.chat_template_config:
with open(args.chat_template_config, 'r') as fp:
config = json.load(fp)
template = config.get('chat_template')
if template:
new_metadata[gguf.Keys.Tokenizer.CHAT_TEMPLATE] = MetadataDetails(gguf.GGUFValueType.STRING, template)
if args.pre_tokenizer:
new_metadata[gguf.Keys.Tokenizer.PRE] = MetadataDetails(gguf.GGUFValueType.STRING, args.pre_tokenizer)
if remove_metadata:
logger.warning('*** Warning *** Warning *** Warning **')
logger.warning('* Most metadata is required for a fully functional GGUF file,')
logger.warning('* removing crucial metadata may result in a corrupt output file!')
if not args.force:
logger.warning('* Enter exactly YES if you are positive you want to proceed:')
response = input('YES, I am sure> ')
if response != 'YES':
logger.info("You didn't enter YES. Okay then, see ya!")
sys.exit(0)
logger.info(f'* Loading: {args.input}')
reader = gguf.GGUFReader(args.input, 'r')
arch = get_field_data(reader, gguf.Keys.General.ARCHITECTURE)
endianess = get_byteorder(reader)
token_list = get_field_data(reader, gguf.Keys.Tokenizer.LIST) or []
for name, token in args.special_token or []:
if name not in token_names:
logger.warning(f'Unknown special token "{name}", ignoring...')
else:
ids = find_token(token_list, token)
new_metadata[token_names[name]] = MetadataDetails(gguf.GGUFValueType.UINT32, ids[0], f'= {token}')
if len(ids) > 1:
logger.warning(f'Multiple "{token}" tokens found, choosing ID {ids[0]}, use --special-token-by-id if you want another:')
logger.warning(', '.join(str(i) for i in ids))
for name, id_string in args.special_token_by_id or []:
if name not in token_names:
logger.warning(f'Unknown special token "{name}", ignoring...')
elif not id_string.isdecimal():
raise LookupError(f'Token ID "{id_string}" is not a valid ID!')
else:
id_int = int(id_string)
if id_int >= 0 and id_int < len(token_list):
new_metadata[token_names[name]] = MetadataDetails(gguf.GGUFValueType.UINT32, id_int, f'= {token_list[id_int]}')
else:
raise LookupError(f'Token ID {id_int} is not within token list!')
if os.path.isfile(args.output) and not args.force:
logger.warning('*** Warning *** Warning *** Warning **')
logger.warning(f'* The "{args.output}" GGUF file already exists, it will be overwritten!')
logger.warning('* Enter exactly YES if you are positive you want to proceed:')
response = input('YES, I am sure> ')
if response != 'YES':
logger.info("You didn't enter YES. Okay then, see ya!")
sys.exit(0)
logger.info(f'* Writing: {args.output}')
writer = gguf.GGUFWriter(args.output, arch=arch, endianess=endianess)
alignment = get_field_data(reader, gguf.Keys.General.ALIGNMENT)
if alignment is not None:
logger.debug(f'Setting custom alignment: {alignment}')
writer.data_alignment = alignment
copy_with_new_metadata(reader, writer, new_metadata, remove_metadata)
if __name__ == '__main__':
main()
#!/usr/bin/env python3
import logging
import argparse
import os
import sys
from pathlib import Path
# Necessary to load the local gguf package
if "NO_LOCAL_GGUF" not in os.environ and (Path(__file__).parent.parent.parent / 'gguf-py').exists():
sys.path.insert(0, str(Path(__file__).parent.parent))
from gguf import GGUFReader # noqa: E402
logger = logging.getLogger("gguf-set-metadata")
def minimal_example(filename: str) -> None:
reader = GGUFReader(filename, 'r+')
field = reader.fields['tokenizer.ggml.bos_token_id']
if field is None:
return
part_index = field.data[0]
field.parts[part_index][0] = 2 # Set tokenizer.ggml.bos_token_id to 2
#
# So what's this field.data thing? It's helpful because field.parts contains
# _every_ part of the GGUF field. For example, tokenizer.ggml.bos_token_id consists
# of:
#
# Part index 0: Key length (27)
# Part index 1: Key data ("tokenizer.ggml.bos_token_id")
# Part index 2: Field type (4, the id for GGUFValueType.UINT32)
# Part index 3: Field value
#
# Note also that each part is an NDArray slice, so even a part that
# is only a single value like the key length will be a NDArray of
# the key length type (numpy.uint32).
#
# The .data attribute in the Field is a list of relevant part indexes
# and doesn't contain internal GGUF details like the key length part.
# In this case, .data will be [3] - just the part index of the
# field value itself.
def set_metadata(reader: GGUFReader, args: argparse.Namespace) -> None:
field = reader.get_field(args.key)
if field is None:
logger.error(f'! Field {repr(args.key)} not found')
sys.exit(1)
# Note that field.types is a list of types. This is because the GGUF
# format supports arrays. For example, an array of UINT32 would
# look like [GGUFValueType.ARRAY, GGUFValueType.UINT32]
handler = reader.gguf_scalar_to_np.get(field.types[0]) if field.types else None
if handler is None:
logger.error(f'! This tool only supports changing simple values, {repr(args.key)} has unsupported type {field.types}')
sys.exit(1)
current_value = field.parts[field.data[0]][0]
new_value = handler(args.value)
logger.info(f'* Preparing to change field {repr(args.key)} from {current_value} to {new_value}')
if current_value == new_value:
logger.info(f'- Key {repr(args.key)} already set to requested value {current_value}')
sys.exit(0)
if args.dry_run:
sys.exit(0)
if not args.force:
logger.warning('*** Warning *** Warning *** Warning **')
logger.warning('* Changing fields in a GGUF file can make it unusable. Proceed at your own risk.')
logger.warning('* Enter exactly YES if you are positive you want to proceed:')
response = input('YES, I am sure> ')
if response != 'YES':
logger.info("You didn't enter YES. Okay then, see ya!")
sys.exit(0)
field.parts[field.data[0]][0] = new_value
logger.info('* Field changed. Successful completion.')
def main() -> None:
parser = argparse.ArgumentParser(description="Set a simple value in GGUF file metadata")
parser.add_argument("model", type=str, help="GGUF format model filename")
parser.add_argument("key", type=str, help="Metadata key to set")
parser.add_argument("value", type=str, help="Metadata value to set")
parser.add_argument("--dry-run", action="store_true", help="Don't actually change anything")
parser.add_argument("--force", action="store_true", help="Change the field without confirmation")
parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
args = parser.parse_args(None if len(sys.argv) > 1 else ["--help"])
logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
logger.info(f'* Loading: {args.model}')
reader = GGUFReader(args.model, 'r' if args.dry_run else 'r+')
set_metadata(reader, args)
if __name__ == '__main__':
main()
import gguf # noqa: F401
# TODO: add tests
def test_write_gguf() -> None:
pass
#extension GL_EXT_shader_16bit_storage: require
#extension GL_EXT_shader_8bit_storage: require
#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
#extension GL_EXT_shader_explicit_arithmetic_types_int8: require
#extension GL_EXT_shader_explicit_arithmetic_types_int16: require
#extension GL_EXT_control_flow_attributes: enable
#extension GL_KHR_shader_subgroup_arithmetic : require
#extension GL_EXT_debug_printf : enable
#define QK4_0 32
#define QK4_1 32
#define GELU_COEF_A 0.044715
#define SQRT_2_OVER_PI 0.79788456080286535587989211986876
#define TWOPI_F 6.283185307179586f
#define QK_K 256
#define u8BufToU16(buf, idx) (((uint16_t(buf[idx + 1]) << 8)) | buf[idx])
#define u8BufToFloat16(buf, idx) uint16BitsToHalf u8BufToU16(buf, idx)
#define u8BufToU32(buf, idx) (((uint32_t u8BufToU16(buf, idx + 2) << 8 | buf[idx + 1]) << 8) | buf[idx])
#define u8BufToFloat(buf, idx) uintBitsToFloat u8BufToU32(buf, idx)
#define sizeof_block_q4_0 0x12
struct block_q4_0 {
float16_t d;
uint8_t qs[QK4_0 / 2];
};
mat4 dequantize_q4_0(const block_q4_0 xb, uint il) {
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
const float d2 = d1 / 256.f;
const float md = -8.f * xb.d;
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
const uint16_t mask1 = mask0 << 8;
mat4 reg;
for (int i=0;i<8;i++) {
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
reg[i/2][2*(i%2)+0] = d1 * (b & mask0) + md;
reg[i/2][2*(i%2)+1] = d2 * (b & mask1) + md;
}
return reg;
}
#define sizeof_block_q4_1 0x14
struct block_q4_1 {
float16_t d;
float16_t m;
uint8_t qs[QK4_1 / 2];
};
mat4 dequantize_q4_1(const block_q4_1 xb, uint il) {
const float d1 = il != 0 ? (xb.d / 16.f) : xb.d;
const float d2 = d1 / 256.f;
const float m = xb.m;
const uint16_t mask0 = il != 0 ? uint16_t(0x00F0) : uint16_t(0x000F);
const uint16_t mask1 = mask0 << 8;
mat4 reg;
for (int i=0;i<8;i++) {
uint16_t b = (uint16_t(xb.qs[2 * i + 1]) << 8) | uint16_t(xb.qs[2 * i]);
reg[i/2][2*(i%2)+0] = ((b & mask0) * d1) + m;
reg[i/2][2*(i%2)+1] = ((b & mask1) * d2) + m;
}
return reg;
}
#define sizeof_block_q6_k 210
struct block_q6_k {
uint8_t ql[QK_K/2]; // quants, lower 4 bits
uint8_t qh[QK_K/4]; // quants, upper 2 bits
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
float16_t d; // super-block scale
};
mat4 dequantize_q6_k(const block_q6_k xb, uint il) {
const float16_t d_all = xb.d;
const uint qlIndex = 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
const uint qhIndex = 32*(il/8) + 16*(il&1);
float16_t sc = xb.scales[(il%2) + 2 * ((il/2))];
il = (il/2) & 3;
const uint16_t kmask1 = il>1 ? uint16_t(il>2 ? 192 : 48) : uint16_t(il>0 ? 12 : 3);
const uint16_t kmask2 = il>1 ? uint8_t(0xF0) : uint8_t(0x0F);
const float16_t coef = il>1 ? float16_t(1.f/16.f) : float16_t(1.f);
const float16_t ml = float16_t(d_all * sc * 32.f);
const float16_t dl = float16_t(d_all * sc * coef);
mat4 reg;
for (int i = 0; i < 16; ++i) {
const float16_t q = (il&1) != 0 ? ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 2))
: ((xb.ql[qlIndex + i] & kmask2) | ((xb.qh[qhIndex + i] & kmask1) << 4));
reg[i/4][i%4] = dl * q - ml;
}
return reg;
}
#define QK8_0 32
// struct block_q8_0 {
// float16_t d; // delta
// int8_t qs[QK8_0]; // quants
// };
#define sizeof_block_q8_0 34
#version 450
#include "common.comp"
layout(local_size_x = 1024) in;
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
layout(push_constant) uniform PushConstants {
uint inAOff;
uint inBOff;
uint outOff;
int ne00;
int nb00;
int nb01;
int nb02;
int nb03;
int ne10;
int ne11;
int ne12;
int ne13;
int nb10;
int nb11;
int nb12;
int nb13;
int ne0;
int nb0;
int nb1;
int nb2;
int nb3;
//int offs; // TODO: needed for GGML_OP_ACC, see metal code
} pcs;
// general-purpose kernel for addition of two tensors
// pros: works for non-contiguous tensors, supports broadcast across dims 1, 2 and 3
// cons: not very efficient
void main() {
const uint i03 = gl_WorkGroupID.z;
const uint i02 = gl_WorkGroupID.y;
const uint i01 = gl_WorkGroupID.x;
const uint i13 = i03 % pcs.ne13;
const uint i12 = i02 % pcs.ne12;
const uint i11 = i01 % pcs.ne11;
int offs = 0; // TMP (see above)
uint src0_off = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + offs) / 4);
uint src1_off = uint((i13*pcs.nb13 + i12*pcs.nb12 + i11*pcs.nb11 ) / 4);
uint dst_off = uint((i03*pcs.nb3 + i02*pcs.nb2 + i01*pcs.nb1 + offs) / 4);
for (uint i0 = gl_LocalInvocationID.x; i0 < pcs.ne0; i0 += gl_WorkGroupSize.x) {
const uint i10 = i0 % pcs.ne10;
out_[pcs.outOff + dst_off + i0] = inA[pcs.inAOff + src0_off + i0] + inB[pcs.inBOff + src1_off + i10];
}
}
#version 450
#include "common.comp"
layout(local_size_x = 1) in;
layout(binding = 0) buffer restrict readonly tensorInA { float inA[]; };
layout(binding = 1) buffer restrict readonly tensorInB { float inB[]; };
layout(binding = 2) buffer restrict writeonly tensorOut { float out_[]; };
layout(push_constant) uniform PushConstants {
uint inAOff;
uint inBOff;
uint outOff;
uint row;
} pcs;
void main() {
const uint baseIndex = gl_WorkGroupID.x * 4;
for (uint x = 0; x < 4; x++) {
const uint i = baseIndex + x;
out_[i + pcs.outOff] = inA[i + pcs.inAOff] + inB[(i % pcs.row) + pcs.inBOff];
}
}
#version 450
#include "common.comp"
#define IN_TYPE float16_t
#define IN_TYPE_SIZE 2
#define OUT_TYPE float16_t
#define OUT_TYPE_SIZE 2
layout(local_size_x = 1024) in;
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
layout (push_constant) uniform parameter {
uint inOff;
uint outOff;
int ne00;
int ne01;
int ne02;
uint nb00;
uint nb01;
uint nb02;
uint nb03;
int ne0;
int ne1;
int ne2;
uint nb0;
uint nb1;
uint nb2;
uint nb3;
} pcs;
void main() {
const uint i03 = gl_WorkGroupID.z;
const uint i02 = gl_WorkGroupID.y;
const uint i01 = gl_WorkGroupID.x;
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
out_[dst_data+i00] = OUT_TYPE(in_[src]);
}
}
#version 450
#include "common.comp"
#define IN_TYPE float16_t
#define IN_TYPE_SIZE 2
#define OUT_TYPE float
#define OUT_TYPE_SIZE 4
layout(local_size_x = 1024) in;
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
layout (push_constant) uniform parameter {
uint inOff;
uint outOff;
int ne00;
int ne01;
int ne02;
uint nb00;
uint nb01;
uint nb02;
uint nb03;
int ne0;
int ne1;
int ne2;
uint nb0;
uint nb1;
uint nb2;
uint nb3;
} pcs;
void main() {
const uint i03 = gl_WorkGroupID.z;
const uint i02 = gl_WorkGroupID.y;
const uint i01 = gl_WorkGroupID.x;
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
out_[dst_data+i00] = OUT_TYPE(in_[src]);
}
}
#version 450
#include "common.comp"
#define IN_TYPE float
#define IN_TYPE_SIZE 4
#define OUT_TYPE float16_t
#define OUT_TYPE_SIZE 2
layout(local_size_x = 1024) in;
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
layout (push_constant) uniform parameter {
uint inOff;
uint outOff;
int ne00;
int ne01;
int ne02;
uint nb00;
uint nb01;
uint nb02;
uint nb03;
int ne0;
int ne1;
int ne2;
uint nb0;
uint nb1;
uint nb2;
uint nb3;
} pcs;
void main() {
const uint i03 = gl_WorkGroupID.z;
const uint i02 = gl_WorkGroupID.y;
const uint i01 = gl_WorkGroupID.x;
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
out_[dst_data+i00] = OUT_TYPE(in_[src]);
}
}
#version 450
#include "common.comp"
#define IN_TYPE float
#define IN_TYPE_SIZE 4
#define OUT_TYPE float
#define OUT_TYPE_SIZE 4
layout(local_size_x = 1024) in;
layout (binding = 0) readonly buffer tensorIn { IN_TYPE in_[]; };
layout (binding = 1) writeonly buffer tensorOut { OUT_TYPE out_[]; };
layout (push_constant) uniform parameter {
uint inOff;
uint outOff;
int ne00;
int ne01;
int ne02;
uint nb00;
uint nb01;
uint nb02;
uint nb03;
int ne0;
int ne1;
int ne2;
uint nb0;
uint nb1;
uint nb2;
uint nb3;
} pcs;
void main() {
const uint i03 = gl_WorkGroupID.z;
const uint i02 = gl_WorkGroupID.y;
const uint i01 = gl_WorkGroupID.x;
const int n = int(i03)*pcs.ne02*pcs.ne01*pcs.ne00 + int(i02)*pcs.ne01*pcs.ne00 + int(i01)*pcs.ne00;
const int i3 = n / (pcs.ne2*pcs.ne1*pcs.ne0);
const int i2 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0) / (pcs.ne1*pcs.ne0);
const int i1 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0) / pcs.ne0;
const int i0 = (n - i3*pcs.ne2*pcs.ne1*pcs.ne0 - i2*pcs.ne1*pcs.ne0 - i1*pcs.ne0);
const uint dst_data = (i3*pcs.nb3 + i2*pcs.nb2 + i1*pcs.nb1 + i0*pcs.nb0) / OUT_TYPE_SIZE + pcs.outOff; // Based from out_
for (uint i00 = gl_LocalInvocationID.x; i00 < pcs.ne00; i00 += gl_WorkGroupSize.x) {
const uint src = uint((i03*pcs.nb03 + i02*pcs.nb02 + i01*pcs.nb01 + i00*pcs.nb00) / IN_TYPE_SIZE) + pcs.inOff; // Based from in_
out_[dst_data+i00] = OUT_TYPE(in_[src]);
}
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment