Commit d3ad6274 authored by xuxzh1's avatar xuxzh1 🎱
Browse files

init

parent 97b02a89
#include "im2col.cuh"
template <typename T>
static __global__ void im2col_kernel(
const float * x, T * dst, int64_t batch_offset,
int64_t offset_delta, int64_t IC, int64_t IW, int64_t IH, int64_t OH, int64_t OW, int64_t KW, int64_t KH, int64_t pelements, int64_t CHW,
int s0, int s1, int p0, int p1, int d0, int d1) {
const int64_t i = threadIdx.x + blockIdx.x * blockDim.x;
if (i >= pelements) {
return;
}
const int64_t ksize = OW * (KH > 1 ? KW : 1);
const int64_t kx = i / ksize;
const int64_t kd = kx * ksize;
const int64_t ky = (i - kd) / OW;
const int64_t ix = i % OW;
const int64_t oh = blockIdx.y;
const int64_t batch = blockIdx.z / IC;
const int64_t ic = blockIdx.z % IC;
const int64_t iiw = ix * s0 + kx * d0 - p0;
const int64_t iih = oh * s1 + ky * d1 - p1;
const int64_t offset_dst =
((batch * OH + oh) * OW + ix) * CHW +
(ic * (KW * KH) + ky * KW + kx);
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
dst[offset_dst] = 0.0f;
} else {
const int64_t offset_src = ic * offset_delta + batch * batch_offset;
dst[offset_dst] = x[offset_src + iih * IW + iiw];
}
}
template <typename T>
static void im2col_cuda(const float * x, T* dst,
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
int64_t batch, int64_t batch_offset, int64_t offset_delta,
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
const int parallel_elements = OW * KW * KH;
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
dim3 block_nums(num_blocks, OH, batch * IC);
im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
}
static void im2col_cuda_f16(const float * x, half * dst,
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
int64_t batch, int64_t batch_offset, int64_t offset_delta,
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
im2col_cuda<half>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
}
static void im2col_cuda_f32(const float * x, float * dst,
int64_t IW, int64_t IH, int64_t OW, int64_t OH, int64_t KW, int64_t KH, int64_t IC,
int64_t batch, int64_t batch_offset, int64_t offset_delta,
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
im2col_cuda<float>(x, dst, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, offset_delta, s0, s1, p0, p1, d0, d1, stream);
}
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F16);
GGML_ASSERT(src1->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
const bool is_2D = ((const int32_t*)(dst->op_params))[6] == 1;
const int64_t IC = src1->ne[is_2D ? 2 : 1];
const int64_t IH = is_2D ? src1->ne[1] : 1;
const int64_t IW = src1->ne[0];
const int64_t KH = is_2D ? src0->ne[1] : 1;
const int64_t KW = src0->ne[0];
const int64_t OH = is_2D ? dst->ne[2] : 1;
const int64_t OW = dst->ne[1];
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
const int64_t batch = src1->ne[3];
const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
if(dst->type == GGML_TYPE_F16) {
im2col_cuda_f16(src1_d, (half *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
} else {
im2col_cuda_f32(src1_d, (float *) dst_d, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, stream);
}
}
#include "common.cuh"
#define CUDA_IM2COL_BLOCK_SIZE 256
void ggml_cuda_op_im2col(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "mmq.cuh"
#include "vecdotq.cuh"
typedef void (*allocate_tiles_cuda_t)(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc);
typedef void (*load_tiles_cuda_t)(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row);
typedef float (*vec_dot_q_mul_mat_cuda_t)(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ms, const int & i, const int & j, const int & k);
typedef void (*dot_kernel_k_t)(const void * __restrict__ vx, const int ib, const int iqs, const float * __restrict__ y, float & v);
typedef void (mul_mat_q_t)(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst);
struct mmq_arch_config_t {
int x;
int y;
int nwarps;
};
struct mmq_config_t {
mmq_arch_config_t rdna2;
mmq_arch_config_t rdna1;
mmq_arch_config_t ampere;
mmq_arch_config_t pascal;
};
constexpr mmq_config_t MMQ_CONFIG_Q4_0 = {
// x y nwarps
{ 64, 128, 8},
{ 64, 64, 8},
#ifdef CUDA_USE_TENSOR_CORES
{ 4, 32, 4},
#else
{ 64, 128, 4},
#endif // CUDA_USE_TENSOR_CORES
{ 64, 64, 8},
};
constexpr mmq_config_t MMQ_CONFIG_Q4_1 = {
// x y nwarps
{ 64, 128, 8},
{ 64, 64, 8},
#ifdef CUDA_USE_TENSOR_CORES
{ 4, 32, 4},
#else
{ 64, 128, 4},
#endif // CUDA_USE_TENSOR_CORES
{ 64, 64, 8},
};
constexpr mmq_config_t MMQ_CONFIG_Q5_0 = {
// x y nwarps
{ 64, 128, 8},
{ 64, 64, 8},
#ifdef CUDA_USE_TENSOR_CORES
{ 4, 32, 4},
#else
{128, 64, 4},
#endif // CUDA_USE_TENSOR_CORES
{ 64, 64, 8},
};
constexpr mmq_config_t MMQ_CONFIG_Q5_1 = {
// x y nwarps
{ 64, 128, 8},
{ 64, 64, 8},
#ifdef CUDA_USE_TENSOR_CORES
{ 4, 32, 4},
#else
{128, 64, 4},
#endif // CUDA_USE_TENSOR_CORES
{ 64, 64, 8},
};
constexpr mmq_config_t MMQ_CONFIG_Q8_0 = {
// x y nwarps
{ 64, 128, 8},
{ 64, 64, 8},
#ifdef CUDA_USE_TENSOR_CORES
{ 4, 32, 4},
#else
{128, 64, 4},
#endif // CUDA_USE_TENSOR_CORES
{ 64, 64, 8},
};
constexpr mmq_config_t MMQ_CONFIG_Q2_K = {
// x y nwarps
{ 64, 128, 8},
{128, 32, 8},
#ifdef CUDA_USE_TENSOR_CORES
{ 4, 32, 4},
#else
{ 64, 128, 4},
#endif // CUDA_USE_TENSOR_CORES
{ 64, 64, 8},
};
constexpr mmq_config_t MMQ_CONFIG_Q3_K = {
// x y nwarps
{128, 64, 8},
{ 32, 128, 8},
#ifdef CUDA_USE_TENSOR_CORES
{ 4, 32, 4},
#else
{128, 128, 4},
#endif // CUDA_USE_TENSOR_CORES
{ 64, 64, 8},
};
constexpr mmq_config_t MMQ_CONFIG_Q4_K = {
// x y nwarps
{ 64, 128, 8},
{ 32, 64, 8},
#ifdef CUDA_USE_TENSOR_CORES
{ 4, 32, 4},
#else
{ 64, 128, 4},
#endif // CUDA_USE_TENSOR_CORES
{ 64, 64, 8},
};
constexpr mmq_config_t MMQ_CONFIG_Q5_K = {
// x y nwarps
{ 64, 128, 8},
{ 32, 64, 8},
#ifdef CUDA_USE_TENSOR_CORES
{ 4, 32, 4},
#else
{ 64, 128, 4},
#endif // CUDA_USE_TENSOR_CORES
{ 64, 64, 8},
};
constexpr mmq_config_t MMQ_CONFIG_Q6_K = {
// x y nwarps
{ 64, 128, 8},
{ 32, 64, 8},
#ifdef CUDA_USE_TENSOR_CORES
{ 4, 32, 4},
#else
{ 64, 64, 4},
#endif // CUDA_USE_TENSOR_CORES
{ 64, 64, 8},
};
// ------------------------------------------------------------
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh);
GGML_UNUSED(x_sc);
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI4_0) + mmq_y/QI4_0];
*x_ql = tile_x_qs;
*x_dm = (half2 *) tile_x_d;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_0(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI4_0;
const int kqsx = k % QI4_0;
const block_q4_0 * bx0 = (const block_q4_0 *) vx;
float * x_dmf = (float *) x_dm;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
// x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbx] = bxi->d;
}
const int blocks_per_tile_x_row = WARP_SIZE / QI4_0;
const int kbxd = k % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) {
int i = i0 + i_offset * QI4_0 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q4_0 * bxi = bx0 + i*blocks_per_row + kbxd;
x_dmf[i * (WARP_SIZE/QI4_0) + i / QI4_0 + kbxd] = bxi->d;
}
}
static __device__ __forceinline__ float vec_dot_q4_0_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
const float * x_dmf = (const float *) x_dm;
int u[2*VDR_Q4_0_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_0) % WARP_SIZE];
}
return vec_dot_q4_0_q8_1_impl<VDR_Q4_0_Q8_1_MMQ>
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dmf[i * (WARP_SIZE/QI4_0) + i/QI4_0 + k/QI4_0],
y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_1) + mmq_y/QI4_1];
*x_ql = tile_x_qs;
*x_dm = tile_x_dm;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_1(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI4_1;
const int kqsx = k % QI4_1;
const block_q4_1 * bx0 = (const block_q4_1 *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI4_1;
const int kbxd = k % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) {
int i = i0 + i_offset * QI4_1 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q4_1 * bxi = bx0 + i*blocks_per_row + kbxd;
x_dm[i * (WARP_SIZE/QI4_1) + i / QI4_1 + kbxd] = bxi->dm;
}
}
static __device__ __forceinline__ float vec_dot_q4_1_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
int u[2*VDR_Q4_1_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI4_1) % WARP_SIZE];
}
return vec_dot_q4_1_q8_1_impl<VDR_Q4_1_Q8_1_MMQ>
(&x_ql[i * (WARP_SIZE + 1) + k], u, x_dm[i * (WARP_SIZE/QI4_1) + i/QI4_1 + k/QI4_1],
y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI5_0) + mmq_y/QI5_0];
*x_ql = tile_x_ql;
*x_dm = (half2 *) tile_x_d;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_0(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI5_0;
const int kqsx = k % QI5_0;
const block_q5_0 * bx0 = (const block_q5_0 *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbx;
const int ql = get_int_from_uint8(bxi->qs, kqsx);
const int qh = get_int_from_uint8(bxi->qh, 0) >> (4 * (k % QI5_0));
int qs0 = (ql >> 0) & 0x0F0F0F0F;
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
qs0 = __vsubss4(qs0, 0x10101010); // subtract 16
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
int qs1 = (ql >> 4) & 0x0F0F0F0F;
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
qs1 = __vsubss4(qs1, 0x10101010); // subtract 16
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
}
const int blocks_per_tile_x_row = WARP_SIZE / QI5_0;
const int kbxd = k % blocks_per_tile_x_row;
float * x_dmf = (float *) x_dm;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) {
int i = i0 + i_offset * QI5_0 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q5_0 * bxi = bx0 + i*blocks_per_row + kbxd;
x_dmf[i * (WARP_SIZE/QI5_0) + i / QI5_0 + kbxd] = bxi->d;
}
}
static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
const int index_bx = i * (WARP_SIZE/QI5_0) + i/QI5_0 + k/QI5_0;
const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds;
int u[2*VDR_Q5_0_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q5_0_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
}
return vec_dot_q8_0_q8_1_impl<QR5_0*VDR_Q5_0_Q8_1_MMQ>
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_1(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_1) + mmq_y/QI5_1];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_1(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI5_1;
const int kqsx = k % QI5_1;
const block_q5_1 * bx0 = (const block_q5_1 *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbx;
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
const int qh = get_int_from_uint8_aligned(bxi->qh, 0) >> (4 * (k % QI5_1));
int qs0 = (ql >> 0) & 0x0F0F0F0F;
qs0 |= (qh << 4) & 0x00000010; // 0 -> 4
qs0 |= (qh << 11) & 0x00001000; // 1 -> 12
qs0 |= (qh << 18) & 0x00100000; // 2 -> 20
qs0 |= (qh << 25) & 0x10000000; // 3 -> 28
x_ql[i * (2*WARP_SIZE + 1) + 2*k+0] = qs0;
int qs1 = (ql >> 4) & 0x0F0F0F0F;
qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4
qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12
qs1 |= (qh << 2) & 0x00100000; // 18 -> 20
qs1 |= (qh << 9) & 0x10000000; // 19 -> 28
x_ql[i * (2*WARP_SIZE + 1) + 2*k+1] = qs1;
}
const int blocks_per_tile_x_row = WARP_SIZE / QI5_1;
const int kbxd = k % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) {
int i = i0 + i_offset * QI5_1 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q5_1 * bxi = bx0 + i*blocks_per_row + kbxd;
x_dm[i * (WARP_SIZE/QI5_1) + i / QI5_1 + kbxd] = bxi->dm;
}
}
static __device__ __forceinline__ float vec_dot_q5_1_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
const int kyqs = k % (QI8_1/2) + QI8_1 * (k / (QI8_1/2));
const int index_bx = i * (WARP_SIZE/QI5_1) + + i/QI5_1 + k/QI5_1;
int u[2*VDR_Q5_1_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < VDR_Q5_1_Q8_1_MMQ; ++l) {
u[2*l+0] = y_qs[j * WARP_SIZE + (kyqs + l) % WARP_SIZE];
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_1) % WARP_SIZE];
}
return vec_dot_q8_1_q8_1_impl<QR5_1*VDR_Q5_1_Q8_1_MMQ>
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dm[index_bx], y_ds[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q8_0(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
__shared__ int tile_x_qs[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ float tile_x_d[mmq_y * (WARP_SIZE/QI8_0) + mmq_y/QI8_0];
*x_ql = tile_x_qs;
*x_dm = (half2 *) tile_x_d;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q8_0(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI8_0;
const int kqsx = k % QI8_0;
float * x_dmf = (float *) x_dm;
const block_q8_0 * bx0 = (const block_q8_0 *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_int8(bxi->qs, kqsx);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI8_0;
const int kbxd = k % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0) {
int i = i0 + i_offset * QI8_0 + k / blocks_per_tile_x_row;
if (need_check) {
i = min(i, i_max);
}
const block_q8_0 * bxi = bx0 + i*blocks_per_row + kbxd;
x_dmf[i * (WARP_SIZE/QI8_0) + i / QI8_0 + kbxd] = bxi->d;
}
}
static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh); GGML_UNUSED(x_sc);
const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds;
return vec_dot_q8_0_q8_1_impl<VDR_Q8_0_Q8_1_MMQ>
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q2_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh);
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI2_K) + mmq_y/QI2_K];
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
*x_sc = tile_x_sc;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q2_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI2_K;
const int kqsx = k % QI2_K;
const block_q2_K * bx0 = (const block_q2_K *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI2_K;
const int kbxd = k % blocks_per_tile_x_row;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI2_K) {
int i = (i0 + i_offset * QI2_K + k / blocks_per_tile_x_row) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q2_K * bxi = bx0 + i*blocks_per_row + kbxd;
x_dm[i * (WARP_SIZE/QI2_K) + i / QI2_K + kbxd] = bxi->dm;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
if (need_check) {
i = min(i, i_max);
}
const block_q2_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI2_K/4);
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = get_int_from_uint8_aligned(bxi->scales, k % (QI2_K/4));
}
}
static __device__ __forceinline__ float vec_dot_q2_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh);
const int kbx = k / QI2_K;
const int ky = (k % QI2_K) * QR2_K;
const float * y_df = (const float *) y_ds;
int v[QR2_K*VDR_Q2_K_Q8_1_MMQ];
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI2_K + (QI2_K/2) * (ky/(2*QI2_K)) + ky % (QI2_K/2);
const int shift = 2 * ((ky % (2*QI2_K)) / (QI2_K/2));
#pragma unroll
for (int l = 0; l < QR2_K*VDR_Q2_K_Q8_1_MMQ; ++l) {
v[l] = (x_ql[kqsx + l] >> shift) & 0x03030303;
}
const uint8_t * scales = ((const uint8_t *) &x_sc[i * (WARP_SIZE/4) + i/4 + kbx*4]) + ky/4;
const int index_y = j * WARP_SIZE + (QR2_K*k) % WARP_SIZE;
return vec_dot_q2_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dm[i * (WARP_SIZE/QI2_K) + i/QI2_K + kbx], y_df[index_y/QI8_1]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q3_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI3_K) + mmq_y/QI3_K];
__shared__ int tile_x_qh[mmq_y * (WARP_SIZE/2) + mmq_y/2];
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/4) + mmq_y/4];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
*x_qh = tile_x_qh;
*x_sc = tile_x_sc;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q3_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI3_K;
const int kqsx = k % QI3_K;
const block_q3_K * bx0 = (const block_q3_K *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8(bxi->qs, kqsx);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI3_K;
const int kbxd = k % blocks_per_tile_x_row;
float * x_dmf = (float *) x_dm;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI3_K) {
int i = (i0 + i_offset * QI3_K + k / blocks_per_tile_x_row) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = bx0 + i*blocks_per_row + kbxd;
x_dmf[i * (WARP_SIZE/QI3_K) + i / QI3_K + kbxd] = bxi->d;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 2) {
int i = i0 + i_offset * 2 + k / (WARP_SIZE/2);
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/2)) / (QI3_K/2);
// invert the mask with ~ so that a 0/1 results in 4/0 being subtracted
x_qh[i * (WARP_SIZE/2) + i / 2 + k % (WARP_SIZE/2)] = ~get_int_from_uint8(bxi->hmask, k % (QI3_K/2));
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) {
int i = i0 + i_offset * 4 + k / (WARP_SIZE/4);
if (need_check) {
i = min(i, i_max);
}
const block_q3_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/4)) / (QI3_K/4);
const int ksc = k % (QI3_K/4);
const int ksc_low = ksc % (QI3_K/8);
const int shift_low = 4 * (ksc / (QI3_K/8));
const int sc_low = (get_int_from_uint8(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F;
const int ksc_high = QI3_K/8;
const int shift_high = 2 * ksc;
const int sc_high = ((get_int_from_uint8(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030;
const int sc = __vsubss4(sc_low | sc_high, 0x20202020);
x_sc[i * (WARP_SIZE/4) + i / 4 + k % (WARP_SIZE/4)] = sc;
}
}
static __device__ __forceinline__ float vec_dot_q3_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
const int kbx = k / QI3_K;
const int ky = (k % QI3_K) * QR3_K;
const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds;
const int8_t * scales = ((const int8_t *) (x_sc + i * (WARP_SIZE/4) + i/4 + kbx*4)) + ky/4;
int v[QR3_K*VDR_Q3_K_Q8_1_MMQ];
#pragma unroll
for (int l = 0; l < QR3_K*VDR_Q3_K_Q8_1_MMQ; ++l) {
const int kqsx = i * (WARP_SIZE + 1) + kbx*QI3_K + (QI3_K/2) * (ky/(2*QI3_K)) + ky % (QI3_K/2);
const int shift = 2 * ((ky % 32) / 8);
const int vll = (x_ql[kqsx + l] >> shift) & 0x03030303;
const int vh = x_qh[i * (WARP_SIZE/2) + i/2 + kbx * (QI3_K/2) + (ky+l)%8] >> ((ky+l) / 8);
const int vlh = (vh << 2) & 0x04040404;
v[l] = __vsubss4(vll, vlh);
}
const int index_y = j * WARP_SIZE + (k*QR3_K) % WARP_SIZE;
return vec_dot_q3_K_q8_1_impl_mmq(v, &y_qs[index_y], scales, x_dmf[i * (WARP_SIZE/QI3_K) + i/QI3_K + kbx], y_df[index_y/QI8_1]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q4_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh);
__shared__ int tile_x_ql[mmq_y * (WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI4_K) + mmq_y/QI4_K];
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
*x_sc = tile_x_sc;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q4_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI4_K; // == 0 if QK_K == 256
const int kqsx = k % QI4_K; // == k if QK_K == 256
const block_q4_K * bx0 = (const block_q4_K *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbx;
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_K) {
int i = (i0 + i_offset * QI4_K + k / blocks_per_tile_x_row) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q4_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI4_K/8);
const int * scales = (const int *) bxi->scales;
const int ksc = k % (WARP_SIZE/8);
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
}
}
static __device__ __forceinline__ float vec_dot_q4_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh);
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2*((k % 16) / 8);
const int index_y = j * WARP_SIZE + (QR4_K*k) % WARP_SIZE;
return vec_dot_q4_K_q8_1_impl_mmq(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[index_y], sc, sc+8,
x_dm[i * (WARP_SIZE/QI4_K) + i/QI4_K], &y_ds[index_y/QI8_1]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q5_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh);
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI5_K) + mmq_y/QI5_K];
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
*x_sc = tile_x_sc;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q5_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI5_K; // == 0 if QK_K == 256
const int kqsx = k % QI5_K; // == k if QK_K == 256
const block_q5_K * bx0 = (const block_q5_K *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbx;
const int ky = QR5_K*kqsx;
const int ql = get_int_from_uint8_aligned(bxi->qs, kqsx);
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
const int qh = get_int_from_uint8_aligned(bxi->qh, kqsx % (QI5_K/4));
const int qh0 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 0)) << 4) & 0x10101010;
const int qh1 = ((qh >> (2 * (kqsx / (QI5_K/4)) + 1)) << 4) & 0x10101010;
const int kq0 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + 0;
const int kq1 = ky - ky % (QI5_K/2) + k % (QI5_K/4) + (QI5_K/4);
x_ql[i * (2*WARP_SIZE + 1) + kq0] = ql0 | qh0;
x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
}
const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_K) {
int i = (i0 + i_offset * QI5_K + k / blocks_per_tile_x_row) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q5_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / (QI5_K/8);
const int * scales = (const int *) bxi->scales;
const int ksc = k % (WARP_SIZE/8);
// scale arrangement after the following two lines: sc0,...,sc3, sc4,...,sc7, m0,...,m3, m4,...,m8
int scales8 = (scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F; // lower 4 bits
scales8 |= (scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030; // upper 2 bits
x_sc[i * (WARP_SIZE/8) + i / 8 + ksc] = scales8;
}
}
static __device__ __forceinline__ float vec_dot_q5_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh);
const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/16]) + 2 * ((k % 16) / 8);
const int index_x = i * (QR5_K*WARP_SIZE + 1) + QR5_K*k;
const int index_y = j * WARP_SIZE + (QR5_K*k) % WARP_SIZE;
return vec_dot_q5_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, sc+8,
x_dm[i * (WARP_SIZE/QI5_K) + i/QI5_K], &y_ds[index_y/QI8_1]);
}
template <int mmq_y> static __device__ __forceinline__ void allocate_tiles_q6_K(int ** x_ql, half2 ** x_dm, int ** x_qh, int ** x_sc) {
GGML_UNUSED(x_qh);
__shared__ int tile_x_ql[mmq_y * (2*WARP_SIZE) + mmq_y];
__shared__ half2 tile_x_dm[mmq_y * (WARP_SIZE/QI6_K) + mmq_y/QI6_K];
__shared__ int tile_x_sc[mmq_y * (WARP_SIZE/8) + mmq_y/8];
*x_ql = tile_x_ql;
*x_dm = tile_x_dm;
*x_sc = tile_x_sc;
}
template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinline__ void load_tiles_q6_K(
const void * __restrict__ vx, int * __restrict__ x_ql, half2 * __restrict__ x_dm, int * __restrict__ x_qh,
int * __restrict__ x_sc, const int & i_offset, const int & i_max, const int & k, const int & blocks_per_row) {
GGML_UNUSED(x_qh);
GGML_CUDA_ASSUME(i_offset >= 0);
GGML_CUDA_ASSUME(i_offset < nwarps);
GGML_CUDA_ASSUME(k >= 0);
GGML_CUDA_ASSUME(k < WARP_SIZE);
const int kbx = k / QI6_K; // == 0 if QK_K == 256
const int kqsx = k % QI6_K; // == k if QK_K == 256
const block_q6_K * bx0 = (const block_q6_K *) vx;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps) {
int i = i0 + i_offset;
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbx;
const int ky = QR6_K*kqsx;
const int ql = get_int_from_uint8(bxi->ql, kqsx);
const int ql0 = (ql >> 0) & 0x0F0F0F0F;
const int ql1 = (ql >> 4) & 0x0F0F0F0F;
const int qh = get_int_from_uint8(bxi->qh, (QI6_K/4) * (kqsx / (QI6_K/2)) + kqsx % (QI6_K/4));
const int qh0 = ((qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) << 4) & 0x30303030;
const int qh1 = (qh >> (2 * ((kqsx % (QI6_K/2)) / (QI6_K/4)))) & 0x30303030;
const int kq0 = ky - ky % QI6_K + k % (QI6_K/2) + 0;
const int kq1 = ky - ky % QI6_K + k % (QI6_K/2) + (QI6_K/2);
x_ql[i * (2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020);
x_ql[i * (2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
float * x_dmf = (float *) x_dm;
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) {
int i = (i0 + i_offset * QI6_K + k / blocks_per_tile_x_row) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = bx0 + i*blocks_per_row + kbxd;
x_dmf[i * (WARP_SIZE/QI6_K) + i / QI6_K + kbxd] = bxi->d;
}
#pragma unroll
for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) {
int i = (i0 + i_offset * 8 + k / (WARP_SIZE/8)) % mmq_y;
if (need_check) {
i = min(i, i_max);
}
const block_q6_K * bxi = bx0 + i*blocks_per_row + (k % (WARP_SIZE/8)) / 4;
x_sc[i * (WARP_SIZE/8) + i / 8 + k % (WARP_SIZE/8)] = get_int_from_int8(bxi->scales, k % (QI6_K/8));
}
}
static __device__ __forceinline__ float vec_dot_q6_K_q8_1_mul_mat(
const int * __restrict__ x_ql, const half2 * __restrict__ x_dm, const int * __restrict__ x_qh, const int * __restrict__ x_sc,
const int * __restrict__ y_qs, const half2 * __restrict__ y_ds, const int & i, const int & j, const int & k) {
GGML_UNUSED(x_qh);
const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds;
const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k/8]);
const int index_x = i * (QR6_K*WARP_SIZE + 1) + QR6_K*k;
const int index_y = j * WARP_SIZE + (QR6_K*k) % WARP_SIZE;
return vec_dot_q6_K_q8_1_impl_mmq(&x_ql[index_x], &y_qs[index_y], sc, x_dmf[i * (WARP_SIZE/QI6_K) + i/QI6_K], &y_df[index_y/QI8_1]);
}
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x, int mmq_y, int nwarps,
allocate_tiles_cuda_t allocate_tiles, load_tiles_cuda_t load_tiles, int vdr, vec_dot_q_mul_mat_cuda_t vec_dot>
static __device__ __forceinline__ void mul_mat_q(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
const block_q_t * x = (const block_q_t *) vx;
const block_q8_1 * y = (const block_q8_1 *) vy;
const int blocks_per_row_x = ncols_x / qk;
const int blocks_per_col_y = nrows_y / QK8_1;
const int blocks_per_warp = WARP_SIZE / qi;
const int & ncols_dst = ncols_y;
const int row_dst_0 = blockIdx.x*mmq_y;
const int & row_x_0 = row_dst_0;
const int col_dst_0 = blockIdx.y*mmq_x;
const int & col_y_0 = col_dst_0;
int * tile_x_ql = nullptr;
half2 * tile_x_dm = nullptr;
int * tile_x_qh = nullptr;
int * tile_x_sc = nullptr;
allocate_tiles(&tile_x_ql, &tile_x_dm, &tile_x_qh, &tile_x_sc);
__shared__ int tile_y_qs[mmq_x * WARP_SIZE];
__shared__ half2 tile_y_ds[mmq_x * WARP_SIZE/QI8_1];
float sum[mmq_y/WARP_SIZE][mmq_x/nwarps] = {{0.0f}};
for (int ib0 = 0; ib0 < blocks_per_row_x; ib0 += blocks_per_warp) {
load_tiles(x + row_x_0*blocks_per_row_x + ib0, tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc,
threadIdx.y, nrows_x-row_x_0-1, threadIdx.x, blocks_per_row_x);
#pragma unroll
for (int ir = 0; ir < qr; ++ir) {
const int kqs = ir*WARP_SIZE + threadIdx.x;
const int kbxd = kqs / QI8_1;
#pragma unroll
for (int i = 0; i < mmq_x; i += nwarps) {
const int col_y_eff = min(col_y_0 + threadIdx.y + i, ncols_y-1); // to prevent out-of-bounds memory accesses
const block_q8_1 * by0 = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + kbxd];
const int index_y = (threadIdx.y + i) * WARP_SIZE + kqs % WARP_SIZE;
tile_y_qs[index_y] = get_int_from_int8_aligned(by0->qs, threadIdx.x % QI8_1);
}
#pragma unroll
for (int ids0 = 0; ids0 < mmq_x; ids0 += nwarps * QI8_1) {
const int ids = (ids0 + threadIdx.y * QI8_1 + threadIdx.x / (WARP_SIZE/QI8_1)) % mmq_x;
const int kby = threadIdx.x % (WARP_SIZE/QI8_1);
const int col_y_eff = min(col_y_0 + ids, ncols_y-1);
// if the sum is not needed it's faster to transform the scale to f32 ahead of time
const half2 * dsi_src = &y[col_y_eff*blocks_per_col_y + ib0 * (qk/QK8_1) + ir*(WARP_SIZE/QI8_1) + kby].ds;
half2 * dsi_dst = &tile_y_ds[ids * (WARP_SIZE/QI8_1) + kby];
if (need_sum) {
*dsi_dst = *dsi_src;
} else {
float * dfi_dst = (float *) dsi_dst;
*dfi_dst = __low2float(*dsi_src);
}
}
__syncthreads();
// #pragma unroll // unrolling this loop causes too much register pressure
for (int k = ir*WARP_SIZE/qr; k < (ir+1)*WARP_SIZE/qr; k += vdr) {
#pragma unroll
for (int j = 0; j < mmq_x; j += nwarps) {
#pragma unroll
for (int i = 0; i < mmq_y; i += WARP_SIZE) {
sum[i/WARP_SIZE][j/nwarps] += vec_dot(
tile_x_ql, tile_x_dm, tile_x_qh, tile_x_sc, tile_y_qs, tile_y_ds,
threadIdx.x + i, threadIdx.y + j, k);
}
}
}
__syncthreads();
}
}
#pragma unroll
for (int j = 0; j < mmq_x; j += nwarps) {
const int col_dst = col_dst_0 + j + threadIdx.y;
if (col_dst >= ncols_dst) {
return;
}
#pragma unroll
for (int i = 0; i < mmq_y; i += WARP_SIZE) {
const int row_dst = row_dst_0 + threadIdx.x + i;
if (row_dst >= nrows_dst) {
continue;
}
dst[col_dst*nrows_dst + row_dst] = sum[i/WARP_SIZE][j/nwarps];
}
}
}
static constexpr __device__ mmq_arch_config_t get_arch_config_device(mmq_config_t mmq_config) {
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
return mmq_config.rdna2;
#else
return mmq_config.rdna1;
#endif // defined(RDNA3) || defined(RDNA2)
#else
#if __CUDA_ARCH__ >= CC_VOLTA
return mmq_config.ampere;
#else
return mmq_config.pascal;
#endif // __CUDA_ARCH__ >= CC_VOLTA
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
}
template <bool need_check> static __global__ __launch_bounds__(1024) void
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_0.rdna2.nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
mul_mat_q4_0(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_0);
mul_mat_q<QK4_0, QR4_0, QI4_0, true, block_q4_0, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q4_0<arch_config.y>,
load_tiles_q4_0<arch_config.y, arch_config.nwarps, need_check>, VDR_Q4_0_Q8_1_MMQ, vec_dot_q4_0_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
GGML_UNUSED(get_arch_config_device);
GGML_UNUSED(vec_dot_q4_0_q8_1_mul_mat);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
template <bool need_check> static __global__ __launch_bounds__(1024) void
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.rdna2.nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#elif __CUDA_ARCH__ < CC_VOLTA
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_1.pascal.nwarps, 2)
#endif // __CUDA_ARCH__ < CC_VOLTA
mul_mat_q4_1(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_1);
mul_mat_q<QK4_1, QR4_1, QI4_1, true, block_q4_1, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q4_1<arch_config.y>,
load_tiles_q4_1<arch_config.y, arch_config.nwarps, need_check>, VDR_Q4_1_Q8_1_MMQ, vec_dot_q4_1_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
GGML_UNUSED(get_arch_config_device);
GGML_UNUSED(vec_dot_q4_1_q8_1_mul_mat);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
template <bool need_check> static __global__ __launch_bounds__(1024) void
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_0.rdna2.nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
mul_mat_q5_0(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_0);
mul_mat_q<QK5_0, QR5_0, QI5_0, false, block_q5_0, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q5_0<arch_config.y>,
load_tiles_q5_0<arch_config.y, arch_config.nwarps, need_check>, VDR_Q5_0_Q8_1_MMQ, vec_dot_q5_0_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
GGML_UNUSED(get_arch_config_device);
GGML_UNUSED(vec_dot_q5_0_q8_1_mul_mat);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
template <bool need_check> static __global__ __launch_bounds__(1024) void
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_1.rdna2.nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
mul_mat_q5_1(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_1);
mul_mat_q<QK5_1, QR5_1, QI5_1, true, block_q5_1, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q5_1<arch_config.y>,
load_tiles_q5_1<arch_config.y, arch_config.nwarps, need_check>, VDR_Q5_1_Q8_1_MMQ, vec_dot_q5_1_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
GGML_UNUSED(get_arch_config_device);
GGML_UNUSED(vec_dot_q5_1_q8_1_mul_mat);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
template <bool need_check> static __global__ __launch_bounds__(1024) void
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q8_0.rdna2.nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
mul_mat_q8_0(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q8_0);
mul_mat_q<QK8_0, QR8_0, QI8_0, false, block_q8_0, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q8_0<arch_config.y>,
load_tiles_q8_0<arch_config.y, arch_config.nwarps, need_check>, VDR_Q8_0_Q8_1_MMQ, vec_dot_q8_0_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
GGML_UNUSED(get_arch_config_device);
GGML_UNUSED(vec_dot_q8_0_q8_1_mul_mat);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
template <bool need_check> static __global__ __launch_bounds__(1024) void
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q2_K.rdna2.nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
mul_mat_q2_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q2_K);
mul_mat_q<QK_K, QR2_K, QI2_K, false, block_q2_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q2_K<arch_config.y>,
load_tiles_q2_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q2_K_Q8_1_MMQ, vec_dot_q2_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
GGML_UNUSED(get_arch_config_device);
GGML_UNUSED(vec_dot_q2_K_q8_1_mul_mat);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
template <bool need_check> static __global__ __launch_bounds__(1024) void
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.rdna2.nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#elif __CUDA_ARCH__ < CC_VOLTA
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q3_K.pascal.nwarps, 2)
#endif // __CUDA_ARCH__ < CC_VOLTA
mul_mat_q3_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q3_K);
mul_mat_q<QK_K, QR3_K, QI3_K, false, block_q3_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q3_K<arch_config.y>,
load_tiles_q3_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q3_K_Q8_1_MMQ, vec_dot_q3_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
GGML_UNUSED(get_arch_config_device);
GGML_UNUSED(vec_dot_q3_K_q8_1_mul_mat);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
template <bool need_check> static __global__ __launch_bounds__(1024) void
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.rdna2.nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#elif __CUDA_ARCH__ < CC_VOLTA
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2)
#endif // __CUDA_ARCH__ < CC_VOLTA
mul_mat_q4_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q4_K);
mul_mat_q<QK_K, QR4_K, QI4_K, true, block_q4_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q4_K<arch_config.y>,
load_tiles_q4_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q4_K_Q8_1_MMQ, vec_dot_q4_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
GGML_UNUSED(get_arch_config_device);
GGML_UNUSED(vec_dot_q4_K_q8_1_mul_mat);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
template <bool need_check> static __global__ __launch_bounds__(1024) void
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q5_K.rdna2.nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
mul_mat_q5_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q5_K);
mul_mat_q<QK_K, QR5_K, QI5_K, true, block_q5_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q5_K<arch_config.y>,
load_tiles_q5_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q5_K_Q8_1_MMQ, vec_dot_q5_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
GGML_UNUSED(get_arch_config_device);
GGML_UNUSED(vec_dot_q5_K_q8_1_mul_mat);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
template <bool need_check> static __global__ __launch_bounds__(1024) void
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
#if defined(RDNA3) || defined(RDNA2)
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q6_K.rdna2.nwarps, 2)
#endif // defined(RDNA3) || defined(RDNA2)
#elif __CUDA_ARCH__ < CC_VOLTA
__launch_bounds__(WARP_SIZE*MMQ_CONFIG_Q4_K.pascal.nwarps, 2)
#endif // __CUDA_ARCH__ < CC_VOLTA
mul_mat_q6_K(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int ncols_y, const int nrows_y, const int nrows_dst) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A
constexpr mmq_arch_config_t arch_config = get_arch_config_device(MMQ_CONFIG_Q6_K);
mul_mat_q<QK_K, QR6_K, QI6_K, false, block_q6_K, arch_config.x, arch_config.y, arch_config.nwarps, allocate_tiles_q6_K<arch_config.y>,
load_tiles_q6_K<arch_config.y, arch_config.nwarps, need_check>, VDR_Q6_K_Q8_1_MMQ, vec_dot_q6_K_q8_1_mul_mat>
(vx, vy, dst, ncols_x, nrows_x, ncols_y, nrows_y, nrows_dst);
#else
GGML_UNUSED(get_arch_config_device);
GGML_UNUSED(vec_dot_q6_K_q8_1_mul_mat);
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
}
#define MMQ_SWITCH_CASE(type_suffix) \
case GGML_TYPE_Q##type_suffix: if (row_diff % arch_config.y == 0) { \
const bool need_check = false; \
mul_mat_q##type_suffix<need_check><<<block_nums, block_dims, 0, stream>>> \
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \
} else { \
const bool need_check = true; \
mul_mat_q##type_suffix<need_check><<<block_nums, block_dims, 0, stream>>> \
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_ncols, src1_padded_row_size, nrows_dst); \
} break; \
void ggml_cuda_op_mul_mat_q(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream) {
const int64_t ne00 = src0->ne[0];
const int64_t ne10 = src1->ne[0];
GGML_ASSERT(ne10 % QK8_1 == 0);
const int64_t ne0 = dst->ne[0];
const int64_t row_diff = row_high - row_low;
int id = ggml_cuda_get_device();
const int compute_capability = ggml_cuda_info().devices[id].cc;
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
mmq_config_t mmq_config;
switch (src0->type) {
case GGML_TYPE_Q4_0:
mmq_config = MMQ_CONFIG_Q4_0;
break;
case GGML_TYPE_Q4_1:
mmq_config = MMQ_CONFIG_Q4_1;
break;
case GGML_TYPE_Q5_0:
mmq_config = MMQ_CONFIG_Q5_0;
break;
case GGML_TYPE_Q5_1:
mmq_config = MMQ_CONFIG_Q5_1;
break;
case GGML_TYPE_Q8_0:
mmq_config = MMQ_CONFIG_Q8_0;
break;
case GGML_TYPE_Q2_K:
mmq_config = MMQ_CONFIG_Q2_K;
break;
case GGML_TYPE_Q3_K:
mmq_config = MMQ_CONFIG_Q3_K;
break;
case GGML_TYPE_Q4_K:
mmq_config = MMQ_CONFIG_Q4_K;
break;
case GGML_TYPE_Q5_K:
mmq_config = MMQ_CONFIG_Q5_K;
break;
case GGML_TYPE_Q6_K:
mmq_config = MMQ_CONFIG_Q6_K;
break;
default:
GGML_ASSERT(false);
break;
}
mmq_arch_config_t arch_config;
if (compute_capability >= CC_RDNA2) {
arch_config = mmq_config.rdna2;
} else if (compute_capability >= CC_OFFSET_AMD) {
arch_config = mmq_config.rdna1;
} else if (compute_capability >= CC_VOLTA) {
arch_config = mmq_config.ampere;
} else if (compute_capability >= MIN_CC_DP4A) {
arch_config = mmq_config.pascal;
} else {
GGML_ASSERT(false);
}
const int block_num_x = (row_diff + arch_config.y - 1) / arch_config.y;
const int block_num_y = (src1_ncols + arch_config.x - 1) / arch_config.x;
const dim3 block_nums(block_num_x, block_num_y, 1);
const dim3 block_dims(WARP_SIZE, arch_config.nwarps, 1);
switch (src0->type) {
MMQ_SWITCH_CASE(4_0)
MMQ_SWITCH_CASE(4_1)
MMQ_SWITCH_CASE(5_0)
MMQ_SWITCH_CASE(5_1)
MMQ_SWITCH_CASE(8_0)
MMQ_SWITCH_CASE(2_K)
MMQ_SWITCH_CASE(3_K)
MMQ_SWITCH_CASE(4_K)
MMQ_SWITCH_CASE(5_K)
MMQ_SWITCH_CASE(6_K)
default:
GGML_ASSERT(false);
break;
}
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddf_i);
}
bool ggml_cuda_supports_mmq(enum ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
return true;
default:
return false;
}
}
#include "common.cuh"
void ggml_cuda_op_mul_mat_q(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream);
bool ggml_cuda_supports_mmq(enum ggml_type type);
#include "mmvq.cuh"
#include "vecdotq.cuh"
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs);
template <int ncols_y, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
// tell the compiler to use as many registers as it wants, see nwarps definition below
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static __global__ __launch_bounds__(1024) void mul_mat_vec_q(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
constexpr int nwarps = 1;
constexpr int rows_per_cuda_block = 1;
#else
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
const int row0 = rows_per_cuda_block*blockIdx.x;
const int blocks_per_row_x = ncols_x / qk;
const int blocks_per_col_y = nrows_y / QK8_1;
constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
// partial sum for each thread
float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
const block_q_t * x = (const block_q_t *) vx;
const block_q8_1 * y = (const block_q8_1 *) vy;
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
// x block quant index when casting the quants to int
const int kqs = vdr * (tid % (qi/vdr));
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp[j][i] += vec_dot_q_cuda(
&x[kbx + (row0 + i)*blocks_per_row_x], &y[j*blocks_per_col_y + kby], kqs);
}
}
}
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
if (threadIdx.y > 0) {
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
}
}
}
__syncthreads();
if (threadIdx.y > 0) {
return;
}
// sum up partial sums and write back result
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
#pragma unroll
for (int l = 0; l < nwarps-1; ++l) {
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
}
tmp[j][i] = warp_reduce_sum(tmp[j][i]);
}
if (threadIdx.x < rows_per_cuda_block) {
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
}
}
}
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
static void mul_mat_vec_q_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
GGML_ASSERT(ncols_x % qk == 0);
GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
int id = ggml_cuda_get_device();
int64_t nwarps = 1;
int64_t rows_per_cuda_block = 1;
if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
switch(ncols_y) {
case 1:
nwarps = 4;
rows_per_cuda_block = 1;
break;
case 2:
case 3:
case 4:
nwarps = 4;
rows_per_cuda_block = 2;
break;
case 5:
case 6:
case 7:
case 8:
nwarps = 2;
rows_per_cuda_block = 2;
break;
default:
GGML_ASSERT(false);
break;
}
}
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
const dim3 block_nums(nblocks, 1, 1);
const dim3 block_dims(WARP_SIZE, nwarps, 1);
switch (ncols_y) {
case 1:
mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 2:
mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 3:
mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 4:
mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 5:
mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 6:
mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 7:
mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 8:
mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
default:
GGML_ASSERT(false);
break;
}
}
static void mul_mat_vec_q4_0_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q4_1_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q5_0_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q5_1_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q8_0_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q2_K_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q3_K_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q4_K_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q5_K_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_q6_K_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq2_xxs_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq2_xs_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq2_s_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI2_S, block_iq2_s, 1, vec_dot_iq2_s_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq3_xxs_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq1_s_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_s, 1, vec_dot_iq1_s_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq1_m_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI1_S, block_iq1_m, 1, vec_dot_iq1_m_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq4_nl_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK4_NL, QI4_NL, block_iq4_nl, VDR_Q4_0_Q8_1_MMVQ, vec_dot_iq4_nl_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq4_xs_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI4_XS, block_iq4_xs, 1, vec_dot_iq4_xs_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq3_s_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<QK_K, QI3_XS, block_iq3_s, 1, vec_dot_iq3_s_q8_1>
(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
void ggml_cuda_op_mul_mat_vec_q(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream) {
const int64_t ne00 = src0->ne[0];
const int64_t row_diff = row_high - row_low;
const int64_t ne10 = src1->ne[0];
GGML_ASSERT(ne10 % QK8_1 == 0);
const int64_t ne0 = dst->ne[0];
int id = ggml_cuda_get_device();
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff;
switch (src0->type) {
case GGML_TYPE_Q4_0:
mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q4_1:
mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q5_0:
mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q5_1:
mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q8_0:
mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q3_K:
mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q4_K:
mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q5_K:
mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q6_K:
mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ2_XXS:
mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ2_XS:
mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ2_S:
mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ3_XXS:
mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ1_S:
mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ1_M:
mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ4_NL:
mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ4_XS:
mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ3_S:
mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
default:
GGML_ASSERT(false);
break;
}
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddf_i);
GGML_UNUSED(src1_ncols);
GGML_UNUSED(src1_padded_row_size);
}
#include "common.cuh"
void ggml_cuda_op_mul_mat_vec_q(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream);
#include "norm.cuh"
template <int block_size>
static __global__ __launch_bounds__(1024) void norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
float2 mean_var = make_float2(0.f, 0.f);
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
mean_var.x += xi;
mean_var.y += xi * xi;
}
// sum up partial sums
mean_var = warp_reduce_sum(mean_var);
if (block_size > WARP_SIZE) {
__shared__ float2 s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = mean_var;
}
__syncthreads();
mean_var = s_sum[lane_id];
mean_var = warp_reduce_sum(mean_var);
}
const float mean = mean_var.x / ncols;
const float var = mean_var.y / ncols - mean * mean;
const float inv_std = rsqrtf(var + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = (x[row*ncols + col] - mean) * inv_std;
}
}
template <int block_size>
static __global__ __launch_bounds__(1024) void group_norm_f32(const float * x, float * dst, const int group_size, const int ne_elements, const float eps) {
// blockIdx.x: num_groups idx
// threadIdx.x: block_size idx
int start = blockIdx.x * group_size;
int end = start + group_size;
start += threadIdx.x;
if (end >= ne_elements) {
end = ne_elements;
}
float tmp = 0.0f; // partial sum for thread in warp
for (int j = start; j < end; j += block_size) {
tmp += x[j];
}
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
__shared__ float s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
__syncthreads();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp);
}
float mean = tmp / group_size;
tmp = 0.0f;
for (int j = start; j < end; j += block_size) {
float xi = x[j] - mean;
dst[j] = xi;
tmp += xi * xi;
}
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
__shared__ float s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
__syncthreads();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp);
}
float variance = tmp / group_size;
float scale = rsqrtf(variance + eps);
for (int j = start; j < end; j += block_size) {
dst[j] *= scale;
}
}
template <int block_size>
static __global__ __launch_bounds__(1024) void rms_norm_f32(const float * x, float * dst, const int ncols, const float eps) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
const int tid = threadIdx.x;
float tmp = 0.0f; // partial sum for thread in warp
for (int col = tid; col < ncols; col += block_size) {
const float xi = x[row*ncols + col];
tmp += xi * xi;
}
// sum up partial sums
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
__shared__ float s_sum[32];
int warp_id = threadIdx.x / WARP_SIZE;
int lane_id = threadIdx.x % WARP_SIZE;
if (lane_id == 0) {
s_sum[warp_id] = tmp;
}
__syncthreads();
tmp = s_sum[lane_id];
tmp = warp_reduce_sum(tmp);
}
const float mean = tmp / ncols;
const float scale = rsqrtf(mean + eps);
for (int col = tid; col < ncols; col += block_size) {
dst[row*ncols + col] = scale * x[row*ncols + col];
}
}
static void norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
} else {
const dim3 block_dims(1024, 1, 1);
norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
}
}
static void group_norm_f32_cuda(const float * x, float * dst, const int num_groups, const int group_size, const int ne_elements, cudaStream_t stream) {
static const float eps = 1e-6f;
if (group_size < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
group_norm_f32<WARP_SIZE><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
} else {
const dim3 block_dims(1024, 1, 1);
group_norm_f32<1024><<<num_groups, block_dims, 0, stream>>>(x, dst, group_size, ne_elements, eps);
}
}
static void rms_norm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float eps, cudaStream_t stream) {
GGML_ASSERT(ncols % WARP_SIZE == 0);
if (ncols < 1024) {
const dim3 block_dims(WARP_SIZE, 1, 1);
rms_norm_f32<WARP_SIZE><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
} else {
const dim3 block_dims(1024, 1, 1);
rms_norm_f32<1024><<<nrows, block_dims, 0, stream>>>(x, dst, ncols, eps);
}
}
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
}
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
int num_groups = dst->op_params[0];
int group_size = src0->ne[0] * src0->ne[1] * ((src0->ne[2] + num_groups - 1) / num_groups);
group_norm_f32_cuda(src0_d, dst_d, num_groups * src0->ne[3], group_size, ggml_nelements(src0), stream);
}
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t nrows = ggml_nrows(src0);
float eps;
memcpy(&eps, dst->op_params, sizeof(float));
rms_norm_f32_cuda(src0_d, dst_d, ne00, nrows, eps, stream);
}
#include "common.cuh"
void ggml_cuda_op_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_group_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_op_rms_norm(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "pad.cuh"
static __global__ __launch_bounds__(1024) void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) {
// blockIdx.z: idx of ne2*ne3, aka ne02*ne03
// blockIdx.y: idx of ne1
// blockIDx.x: idx of ne0 / BLOCK_SIZE
int nidx = threadIdx.x + blockIdx.x * blockDim.x;
if (nidx >= ne0) {
return;
}
// operation
int offset_dst =
nidx +
blockIdx.y * ne0 +
blockIdx.z * ne0 * gridDim.y;
if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) {
int offset_src =
nidx +
blockIdx.y * ne00 +
blockIdx.z * ne00 * ne01;
dst[offset_dst] = x[offset_src];
} else {
dst[offset_dst] = 0.0f;
}
}
static void pad_f32_cuda(const float * x, float * dst,
const int ne00, const int ne01, const int ne02, const int ne03,
const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) {
int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE;
dim3 gridDim(num_blocks, ne1, ne2*ne3);
pad_f32<<<gridDim, CUDA_PAD_BLOCK_SIZE, 0, stream>>>(x, dst, ne0, ne00, ne01, ne02, ne03);
}
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors
pad_f32_cuda(src0_d, dst_d,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream);
}
#include "common.cuh"
#define CUDA_PAD_BLOCK_SIZE 256
void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "pool2d.cuh"
template <typename Ti, typename To>
static __global__ void pool2d_nchw_kernel(
const int ih, const int iw, const int oh, const int ow,
const int kh, const int kw, const int sh, const int sw,
const int ph, const int pw, const int parallel_elements,
const Ti* src, To* dst, const enum ggml_op_pool op) {
int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx >= parallel_elements) {
return;
}
const int I_HW = ih * iw;
const int O_HW = oh * ow;
const int nc = idx / O_HW;
const int cur_oh = idx % O_HW / ow;
const int cur_ow = idx % O_HW % ow;
const Ti* i_ptr = src + nc * I_HW;
To* o_ptr = dst + nc * O_HW;
const int start_h = cur_oh * sh - ph;
const int bh = max(0, start_h);
const int eh = min(ih, start_h + kh);
const int start_w = cur_ow * sw - pw;
const int bw = max(0, start_w);
const int ew = min(iw, start_w + kw);
const To scale = 1. / (kh * kw);
To res = 0;
switch (op) {
case GGML_OP_POOL_AVG: res = 0; break;
case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
default: assert(false);
}
for (int i = bh; i < eh; i += 1) {
for (int j = bw; j < ew; j += 1) {
#if __CUDA_ARCH__ >= 350
Ti cur = __ldg(i_ptr + i * iw + j);
#else
Ti cur = i_ptr[i * iw + j];
#endif
switch (op) {
case GGML_OP_POOL_AVG: res += cur * scale; break;
case GGML_OP_POOL_MAX: res = max(res, (To)cur); break;
default: assert(false);
}
}
}
o_ptr[cur_oh * ow + cur_ow] = res;
}
static void pool2d_nchw_kernel_f32_f32_cuda(
const int ih, const int iw, const int oh, const int ow,
const int kh, const int kw, const int sh, const int sw,
const int ph, const int pw, const int parallel_elements,
const float * src, float * dst, const enum ggml_op_pool op,
cudaStream_t stream) {
const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE;
dim3 block_nums(num_blocks);
pool2d_nchw_kernel<<<block_nums, CUDA_POOL2D_BLOCK_SIZE, 0, stream>>>(ih, iw, oh, ow, kh, kw, sh, sw, ph, pw, parallel_elements, src, dst, op);
}
void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int32_t * opts = (const int32_t *)dst->op_params;
enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
const int k0 = opts[1];
const int k1 = opts[2];
const int s0 = opts[3];
const int s1 = opts[4];
const int p0 = opts[5];
const int p1 = opts[6];
const int64_t IH = src0->ne[1];
const int64_t IW = src0->ne[0];
const int64_t N = dst->ne[3];
const int64_t OC = dst->ne[2];
const int64_t OH = dst->ne[1];
const int64_t OW = dst->ne[0];
const int parallel_elements = N * OC * OH * OW;
pool2d_nchw_kernel_f32_f32_cuda(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_d, dst_d, op, stream);
}
#include "common.cuh"
#define CUDA_POOL2D_BLOCK_SIZE 256
void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "quantize.cuh"
static __global__ __launch_bounds__(1024) void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy, const int64_t kx, const int64_t kx_padded) {
const int64_t ix = (int64_t)blockDim.x*blockIdx.x + threadIdx.x;
if (ix >= kx_padded) {
return;
}
const int64_t iy = (int64_t)blockDim.y*blockIdx.y + threadIdx.y;
const int64_t i_padded = (int64_t)iy*kx_padded + ix;
block_q8_1 * y = (block_q8_1 *) vy;
const int64_t ib = i_padded / QK8_1; // block index
const int64_t iqs = i_padded % QK8_1; // quant index
const float xi = ix < kx ? x[iy*kx + ix] : 0.0f;
float amax = fabsf(xi);
float sum = xi;
amax = warp_reduce_max(amax);
sum = warp_reduce_sum(sum);
const float d = amax / 127;
const int8_t q = amax == 0.0f ? 0 : roundf(xi / d);
y[ib].qs[iqs] = q;
if (iqs > 0) {
return;
}
reinterpret_cast<half&>(y[ib].ds.x) = d;
reinterpret_cast<half&>(y[ib].ds.y) = sum;
}
void quantize_row_q8_1_cuda(const float * x, void * vy, const int64_t kx, const int64_t ky, const int64_t kx_padded, cudaStream_t stream) {
const int64_t block_num_x = (kx_padded + CUDA_QUANTIZE_BLOCK_SIZE - 1) / CUDA_QUANTIZE_BLOCK_SIZE;
const dim3 num_blocks(block_num_x, ky, 1);
const dim3 block_size(CUDA_QUANTIZE_BLOCK_SIZE, 1, 1);
quantize_q8_1<<<num_blocks, block_size, 0, stream>>>(x, vy, kx, kx_padded);
}
#include "common.cuh"
#define CUDA_QUANTIZE_BLOCK_SIZE 256
void quantize_row_q8_1_cuda(const float * x, void * vy, const int64_t kx, const int64_t ky, const int64_t kx_padded, cudaStream_t stream);
#include "rope.cuh"
struct rope_corr_dims {
float v[4];
};
static __device__ float rope_yarn_ramp(const float low, const float high, const int i0) {
const float y = (i0 / 2 - low) / max(0.001f, high - low);
return 1.0f - min(1.0f, max(0.0f, y));
}
// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
static __device__ void rope_yarn(
float theta_extrap, float freq_scale, rope_corr_dims corr_dims, int64_t i0, float ext_factor, float mscale,
float * cos_theta, float * sin_theta
) {
// Get n-d rotational scaling corrected for extrapolation
float theta_interp = freq_scale * theta_extrap;
float theta = theta_interp;
if (ext_factor != 0.0f) {
float ramp_mix = rope_yarn_ramp(corr_dims.v[0], corr_dims.v[1], i0) * ext_factor;
theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
// Get n-d magnitude scaling corrected for interpolation
mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
}
*cos_theta = cosf(theta) * mscale;
*sin_theta = sinf(theta) * mscale;
}
// rope == RoPE == rotary positional embedding
template<typename T, bool has_pos>
static __global__ __launch_bounds__(1024) void rope(
const T * x, T * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
float ext_factor, float attn_factor, rope_corr_dims corr_dims
) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (col >= ncols) {
return;
}
const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int i = row*ncols + col;
const int i2 = row/p_delta_rows;
const int p = has_pos ? pos[i2] : 0;
const float theta_base = p*powf(freq_base, -float(col)/ncols);
float cos_theta, sin_theta;
rope_yarn(theta_base, freq_scale, corr_dims, col, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i + 0];
const float x1 = x[i + 1];
dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + 1] = x0*sin_theta + x1*cos_theta;
}
template<typename T, bool has_pos, bool has_freq_facs>
static __global__ __launch_bounds__(1024) void rope_neox(
const T * x, T * dst, int ncols, int n_dims, const int32_t * pos, float freq_scale, int p_delta_rows,
float ext_factor, float attn_factor, rope_corr_dims corr_dims, float theta_scale, const float * freq_factors
) {
const int col = 2*(blockDim.y*blockIdx.y + threadIdx.y);
if (col >= ncols) {
return;
}
const int row = blockDim.x*blockIdx.x + threadIdx.x;
const int ib = col / n_dims;
const int ic = col % n_dims;
if (ib > 0) {
const int i = row*ncols + ib*n_dims + ic;
dst[i + 0] = x[i + 0];
dst[i + 1] = x[i + 1];
return;
}
const int i = row*ncols + ib*n_dims + ic/2;
const int i2 = row/p_delta_rows;
const int p = has_pos ? pos[i2] : 0;
const float freq_factor = has_freq_facs ? freq_factors[ic/2] : 1.0f;
const float theta_base = p*powf(theta_scale, col/2.0f)/freq_factor;
float cos_theta, sin_theta;
rope_yarn(theta_base, freq_scale, corr_dims, ic, ext_factor, attn_factor, &cos_theta, &sin_theta);
const float x0 = x[i + 0];
const float x1 = x[i + n_dims/2];
dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
}
static __global__ __launch_bounds__(1024) void rope_glm_f32(
const float * x, float * dst, int ncols, const int32_t * pos, float freq_scale, int p_delta_rows, float freq_base,
int n_ctx
) {
const int col = blockDim.x*blockIdx.x + threadIdx.x;
const int half_n_dims = ncols/4;
if (col >= half_n_dims) {
return;
}
const int row = blockDim.y*blockIdx.y + threadIdx.y;
const int i = row*ncols + col;
const int i2 = row/p_delta_rows;
const float col_theta_scale = powf(freq_base, -2.0f*col/ncols);
// FIXME: this is likely wrong
const int p = pos != nullptr ? pos[i2] : 0;
const float theta = min(p, n_ctx - 2)*freq_scale*col_theta_scale;
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
const float x0 = x[i + 0];
const float x1 = x[i + half_n_dims];
dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
const float block_theta = ((float)max(p - n_ctx - 2, 0))*col_theta_scale;
const float sin_block_theta = sinf(block_theta);
const float cos_block_theta = cosf(block_theta);
const float x2 = x[i + half_n_dims * 2];
const float x3 = x[i + half_n_dims * 3];
dst[i + half_n_dims * 2] = x2*cos_block_theta - x3*sin_block_theta;
dst[i + half_n_dims * 3] = x2*sin_block_theta + x3*cos_block_theta;
}
template<typename T>
static void rope_cuda(
const T * x, T * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream
) {
GGML_ASSERT(ncols % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1);
if (pos == nullptr) {
rope<T, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
);
} else {
rope<T, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims
);
}
}
template<typename T>
static void rope_neox_cuda(
const T * x, T * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
) {
GGML_ASSERT(ncols % 2 == 0);
const dim3 block_dims(1, CUDA_ROPE_BLOCK_SIZE, 1);
const int num_blocks_x = (ncols + 2*CUDA_ROPE_BLOCK_SIZE - 1) / (2*CUDA_ROPE_BLOCK_SIZE);
const dim3 block_nums(nrows, num_blocks_x, 1);
const float theta_scale = powf(freq_base, -2.0f/n_dims);
if (pos == nullptr) {
if (freq_factors == nullptr) {
rope_neox<T, false, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors
);
} else {
rope_neox<T, false, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors
);
}
} else {
if (freq_factors == nullptr) {
rope_neox<T, true, false><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors
);
} else {
rope_neox<T, true, true><<<block_nums, block_dims, 0, stream>>>(
x, dst, ncols, n_dims, pos, freq_scale, p_delta_rows, ext_factor, attn_factor, corr_dims,
theta_scale, freq_factors
);
}
}
}
static void rope_glm_f32_cuda(
const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, int n_ctx, cudaStream_t stream
) {
GGML_ASSERT(ncols % 4 == 0);
const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
const dim3 block_nums(num_blocks_x, nrows, 1);
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, pos, freq_scale, p_delta_rows, freq_base, n_ctx);
}
static void rope_cuda_f16(
const half * x, half * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
rope_cuda<half>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
}
static void rope_cuda_f32(
const float * x, float * dst, int ncols, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, cudaStream_t stream) {
rope_cuda<float>(x, dst, ncols, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, stream);
}
static void rope_neox_cuda_f16(
const half * x, half * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream) {
rope_neox_cuda<half>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
}
static void rope_neox_cuda_f32(
const float * x, float * dst, int ncols, int n_dims, int nrows, const int32_t * pos, float freq_scale, int p_delta_rows,
float freq_base, float ext_factor, float attn_factor, rope_corr_dims corr_dims, const float * freq_factors, cudaStream_t stream
) {
rope_neox_cuda<float>(x, dst, ncols, n_dims, nrows, pos, freq_scale, p_delta_rows, freq_base, ext_factor, attn_factor, corr_dims, freq_factors, stream);
}
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const ggml_tensor * src2 = dst->src[2];
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16);
GGML_ASSERT( dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
GGML_ASSERT(src0->type == dst->type);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t nrows = ggml_nrows(src0);
//const int n_past = ((int32_t *) dst->op_params)[0];
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
const int n_ctx = ((int32_t *) dst->op_params)[3];
const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
// RoPE alteration for extended context
float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
const float * freq_factors = nullptr;
const int32_t * pos = nullptr;
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
pos = (const int32_t *) src1_d;
if (is_neox) {
if (src2 != nullptr) {
freq_factors = (const float *) src2->data;
}
} else {
GGML_ASSERT(src2 == nullptr && "TODO: freq_factors not implemented for !is_neox");
}
rope_corr_dims corr_dims;
ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims.v);
// compute
if (is_glm) {
GGML_ASSERT(false);
rope_glm_f32_cuda(src0_d, dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, n_ctx, stream);
} else if (is_neox) {
if (src0->type == GGML_TYPE_F32) {
rope_neox_cuda_f32(
(const float *)src0_d, (float *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, stream
);
} else if (src0->type == GGML_TYPE_F16) {
rope_neox_cuda_f16(
(const half *)src0_d, (half *)dst_d, ne00, n_dims, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, freq_factors, stream
);
} else {
GGML_ASSERT(false);
}
} else {
if (src0->type == GGML_TYPE_F32) {
rope_cuda_f32(
(const float *)src0_d, (float *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, stream
);
} else if (src0->type == GGML_TYPE_F16) {
rope_cuda_f16(
(const half *)src0_d, (half *)dst_d, ne00, nrows, pos, freq_scale, ne01, freq_base, ext_factor,
attn_factor, corr_dims, stream
);
} else {
GGML_ASSERT(false);
}
}
}
#include "common.cuh"
#define CUDA_ROPE_BLOCK_SIZE 256
void ggml_cuda_op_rope(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "scale.cuh"
static __global__ __launch_bounds__(1024) void scale_f32(const float * x, float * dst, const float scale, const int k) {
const int i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= k) {
return;
}
dst[i] = scale * x[i];
}
static void scale_f32_cuda(const float * x, float * dst, const float scale, const int k, cudaStream_t stream) {
const int num_blocks = (k + CUDA_SCALE_BLOCK_SIZE - 1) / CUDA_SCALE_BLOCK_SIZE;
scale_f32<<<num_blocks, CUDA_SCALE_BLOCK_SIZE, 0, stream>>>(x, dst, scale, k);
}
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
float scale;
memcpy(&scale, dst->op_params, sizeof(float));
scale_f32_cuda(src0_d, dst_d, scale, ggml_nelements(src0), stream);
}
#include "common.cuh"
#define CUDA_SCALE_BLOCK_SIZE 256
void ggml_cuda_op_scale(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "common.cuh"
#include "softmax.cuh"
template <typename T>
static __device__ __forceinline__ float t2f32(T val) {
return (float) val;
}
template <>
__device__ float __forceinline__ t2f32<half>(half val) {
return __half2float(val);
}
template <bool vals_smem, int ncols_template, int block_size_template, typename T>
static __global__ __launch_bounds__(1024) void soft_max_f32(const float * x, const T * mask, float * dst, const int ncols_par, const int nrows_y, const float scale, const float max_bias, const float m0, const float m1, uint32_t n_head_log2) {
const int ncols = ncols_template == 0 ? ncols_par : ncols_template;
const int tid = threadIdx.x;
const int rowx = blockIdx.x;
const int rowy = rowx % nrows_y; // broadcast the mask in the row dimension
const int block_size = block_size_template == 0 ? blockDim.x : block_size_template;
const int warp_id = threadIdx.x / WARP_SIZE;
const int lane_id = threadIdx.x % WARP_SIZE;
const float slope = get_alibi_slope(max_bias, rowx/nrows_y, n_head_log2, m0, m1);
extern __shared__ float data_soft_max_f32[];
float * buf_iw = data_soft_max_f32; // shared memory buffer for inter-warp communication
// shared memory buffer to cache values between iterations:
float * vals = vals_smem ? buf_iw + WARP_SIZE : dst + (int64_t)rowx*ncols;
float max_val = -INFINITY;
#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
break;
}
const int64_t ix = (int64_t)rowx*ncols + col;
const int64_t iy = (int64_t)rowy*ncols + col;
const float val = x[ix]*scale + (mask ? slope*t2f32(mask[iy]) : 0.0f);
vals[col] = val;
max_val = max(max_val, val);
}
// find the max value in the block
max_val = warp_reduce_max(max_val);
if (block_size > WARP_SIZE) {
if (warp_id == 0) {
buf_iw[lane_id] = -INFINITY;
}
__syncthreads();
if (lane_id == 0) {
buf_iw[warp_id] = max_val;
}
__syncthreads();
max_val = buf_iw[lane_id];
max_val = warp_reduce_max(max_val);
}
float tmp = 0.0f; // partial sum
#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
break;
}
const float val = expf(vals[col] - max_val);
tmp += val;
vals[col] = val;
}
// find the sum of exps in the block
tmp = warp_reduce_sum(tmp);
if (block_size > WARP_SIZE) {
__syncthreads();
if (warp_id == 0) {
buf_iw[lane_id] = 0.0f;
}
__syncthreads();
if (lane_id == 0) {
buf_iw[warp_id] = tmp;
}
__syncthreads();
tmp = buf_iw[lane_id];
tmp = warp_reduce_sum(tmp);
}
const float inv_sum = 1.0f / tmp;
#pragma unroll
for (int col0 = 0; col0 < ncols; col0 += block_size) {
const int col = col0 + tid;
if (ncols_template == 0 && col >= ncols) {
return;
}
const int64_t idst = (int64_t)rowx*ncols + col;
dst[idst] = vals[col] * inv_sum;
}
}
template<typename T>
static void soft_max_f32_cuda(const float * x, const T * mask, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const float scale, const float max_bias, cudaStream_t stream) {
int nth = WARP_SIZE; //32
// printf("warpsize: %d\n", WARP_SIZE);
// printf("softmax size: %d\n", CUDA_SOFT_MAX_BLOCK_SIZE); // 256
while (nth < ncols_x && nth < CUDA_SOFT_MAX_BLOCK_SIZE) nth *= 2;
// printf("ncols_x: %d\n", ncols_x);
// printf("nth: %d\n", nth);
const dim3 block_dims(nth, 1, 1);
const dim3 block_nums(nrows_x, 1, 1);
const size_t shmem = (GGML_PAD(ncols_x, WARP_SIZE) + WARP_SIZE)*sizeof(float);
static_assert(CUDA_SOFT_MAX_BLOCK_SIZE == 1024, "These values need to be adjusted.");
const uint32_t n_head = nrows_x/nrows_y;
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
if (shmem < ggml_cuda_info().devices[ggml_cuda_get_device()].smpb) {
switch (ncols_x) {
case 32:
soft_max_f32<true, 32, 32><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 64:
soft_max_f32<true, 64, 64><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 128:
soft_max_f32<true, 128, 128><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 256:
soft_max_f32<true, 256, 256><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 512:
soft_max_f32<true, 512, 512><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 1024:
soft_max_f32<true, 1024, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 2048:
soft_max_f32<true, 2048, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
case 4096:
soft_max_f32<true, 4096, 1024><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
default:
soft_max_f32<true, 0, 0><<<block_nums, block_dims, shmem, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
break;
}
} else {
const size_t shmem_low = WARP_SIZE*sizeof(float);
printf("%d\n", ncols_x);
// printf("%d, %d, %d", block_nums, block_dims, shmem_low);
soft_max_f32<false, 0, 0><<<block_nums, block_dims, shmem_low, stream>>>(x, mask, dst, ncols_x, nrows_y, scale, max_bias, m0, m1, n_head_log2);
}
}
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const float * src0_d = (const float *)src0->data;
const void * src1_d = src1 ? (const void *)src1->data : nullptr;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
GGML_ASSERT(!src1 || src1->type == GGML_TYPE_F16 || src1->type == GGML_TYPE_F32); // src1 contains mask and it is optional
const int64_t ne00 = src0->ne[0];
const int64_t nrows_x = ggml_nrows(src0);
const int64_t nrows_y = src0->ne[1];
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
if (use_f16) {
const half * src1_dd = (const half *)src1_d;
soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
} else {
const float * src1_dd = (const float *)src1_d;
soft_max_f32_cuda(src0_d, src1_dd, dst_d, ne00, nrows_x, nrows_y, scale, max_bias, stream);
}
}
#include "common.cuh"
#define CUDA_SOFT_MAX_BLOCK_SIZE 1024
void ggml_cuda_op_soft_max(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment