Commit d3ad6274 authored by xuxzh1's avatar xuxzh1 🎱
Browse files

init

parent 97b02a89
#include "cpy.cuh"
typedef void (*cpy_kernel_t)(const char * cx, char * cdst);
static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
float * dsti = (float *) cdsti;
*dsti = *xi;
}
static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
half * dsti = (half *) cdsti;
*dsti = __float2half(*xi);
}
static __device__ void cpy_1_f16_f16(const char * cxi, char * cdsti) {
const half * xi = (const half *) cxi;
half * dsti = (half *) cdsti;
*dsti = *xi;
}
static __device__ void cpy_1_f16_f32(const char * cxi, char * cdsti) {
const half * xi = (const half *) cxi;
float * dsti = (float *) cdsti;
*dsti = *xi;
}
template <cpy_kernel_t cpy_1>
static __global__ __launch_bounds__(1024) void cpy_f32_f16(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13) {
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
if (i >= ne) {
return;
}
// determine indices i03/i13, i02/i12, i01/i11, i00/i10 as a function of index i of flattened tensor
// then combine those indices with the corresponding byte offsets to get the total offsets
const int64_t i03 = i/(ne00 * ne01 * ne02);
const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int64_t x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int64_t i13 = i/(ne10 * ne11 * ne12);
const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13 * nb13;
cpy_1(cx + x_offset, cdst + dst_offset);
}
static __device__ void cpy_blck_f32_q8_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q8_0 * dsti = (block_q8_0 *) cdsti;
float amax = 0.0f; // absolute max
for (int j = 0; j < QK8_0; j++) {
const float v = xi[j];
amax = fmaxf(amax, fabsf(v));
}
const float d = amax / ((1 << 7) - 1);
const float id = d ? 1.0f/d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK8_0; ++j) {
const float x0 = xi[j]*id;
dsti->qs[j] = roundf(x0);
}
}
static __device__ void cpy_blck_f32_q4_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_0 * dsti = (block_q4_0 *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_0; ++j) {
const float v = xi[j];
if (amax < fabsf(v)) {
amax = fabsf(v);
vmax = v;
}
}
const float d = vmax / -8;
const float id = d ? 1.0f/d : 0.0f;
dsti->d = d;
for (int j = 0; j < QK4_0/2; ++j) {
const float x0 = xi[0 + j]*id;
const float x1 = xi[QK4_0/2 + j]*id;
const uint8_t xi0 = min(15, (int8_t)(x0 + 8.5f));
const uint8_t xi1 = min(15, (int8_t)(x1 + 8.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
static __device__ void cpy_blck_f32_q4_1(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q4_1 * dsti = (block_q4_1 *) cdsti;
float vmin = FLT_MAX;
float vmax = -FLT_MAX;
for (int j = 0; j < QK4_1; ++j) {
const float v = xi[j];
if (v < vmin) vmin = v;
if (v > vmax) vmax = v;
}
const float d = (vmax - vmin) / ((1 << 4) - 1);
const float id = d ? 1.0f/d : 0.0f;
dsti->dm.x = d;
dsti->dm.y = vmin;
for (int j = 0; j < QK4_1/2; ++j) {
const float x0 = (xi[0 + j] - vmin)*id;
const float x1 = (xi[QK4_1/2 + j] - vmin)*id;
const uint8_t xi0 = min(15, (int8_t)(x0 + 0.5f));
const uint8_t xi1 = min(15, (int8_t)(x1 + 0.5f));
dsti->qs[j] = xi0;
dsti->qs[j] |= xi1 << 4;
}
}
static __device__ void cpy_blck_f32_q5_0(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q5_0 * dsti = (block_q5_0 *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK5_0; ++j) {
const float v = xi[j];
if (amax < fabsf(v)) {
amax = fabsf(v);
vmax = v;
}
}
const float d = vmax / -16;
const float id = d ? 1.0f/d : 0.0f;
dsti->d = d;
uint32_t qh = 0;
for (int j = 0; j < QK5_0/2; ++j) {
const float x0 = xi[0 + j]*id;
const float x1 = xi[QK5_0/2 + j]*id;
const uint8_t xi0 = min(31, (int8_t)(x0 + 16.5f));
const uint8_t xi1 = min(31, (int8_t)(x1 + 16.5f));
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2);
}
memcpy(dsti->qh, &qh, sizeof(qh));
}
static __device__ void cpy_blck_f32_q5_1(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_q5_1 * dsti = (block_q5_1 *) cdsti;
float min = xi[0];
float max = xi[0];
for (int j = 1; j < QK5_1; ++j) {
const float v = xi[j];
min = v < min ? v : min;
max = v > max ? v : max;
}
const float d = (max - min) / 31;
const float id = d ? 1.0f/d : 0.0f;
dsti->dm.x = d;
dsti->dm.y = min;
uint32_t qh = 0;
for (int j = 0; j < QK5_1/2; ++j) {
const float x0 = (xi[0 + j] - min)*id;
const float x1 = (xi[QK5_1/2 + j] - min)*id;
const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
dsti->qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4);
qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2);
}
memcpy(dsti->qh, &qh, sizeof(qh));
}
static __device__ __forceinline__ int best_index_int8(int n, const int8_t * val, float x) {
if (x <= val[0]) return 0;
if (x >= val[n-1]) return n-1;
int ml = 0, mu = n-1;
while (mu-ml > 1) {
int mav = (ml+mu)/2;
if (x < val[mav]) mu = mav; else ml = mav;
}
return x - val[mu-1] < val[mu] - x ? mu-1 : mu;
}
static __device__ void cpy_blck_f32_iq4_nl(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
block_iq4_nl * dsti = (block_iq4_nl *) cdsti;
float amax = 0.0f;
float vmax = 0.0f;
for (int j = 0; j < QK4_NL; ++j) {
const float v = xi[j];
if (amax < fabsf(v)) {
amax = fabsf(v);
vmax = v;
}
}
float d = vmax / kvalues_iq4nl[0];
const float id = d ? 1.0f/d : 0.0f;
float sumqx = 0, sumq2 = 0;
for (int j = 0; j < QK4_NL/2; ++j) {
const float x0 = xi[0 + j]*id;
const float x1 = xi[QK4_NL/2 + j]*id;
const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl, x0);
const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl, x1);
dsti->qs[j] = xi0 | (xi1 << 4);
const float v0 = kvalues_iq4nl[xi0];
const float v1 = kvalues_iq4nl[xi1];
const float w0 = xi[0 + j]*xi[0 + j];
const float w1 = xi[QK4_NL/2 + j]*xi[QK4_NL/2 + j];
sumqx += w0*v0*xi[j] + w1*v1*xi[QK4_NL/2 + j];
sumq2 += w0*v0*v0 + w1*v1*v1;
}
dsti->d = sumq2 > 0 ? sumqx/sumq2 : d;
}
template <cpy_kernel_t cpy_blck, int qk>
static __global__ __launch_bounds__(1024) void cpy_f32_q(const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11,
const int nb12, const int nb13) {
const int i = (blockDim.x*blockIdx.x + threadIdx.x)*qk;
if (i >= ne) {
return;
}
const int i03 = i/(ne00 * ne01 * ne02);
const int i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
const int i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
const int i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
const int x_offset = i00*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
const int i13 = i/(ne10 * ne11 * ne12);
const int i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
const int i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
const int i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
const int dst_offset = (i10/qk)*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
cpy_blck(cx + x_offset, cdst + dst_offset);
}
static void ggml_cpy_f16_f32_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f16_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_f32_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f32_f32><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_f16_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f32_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q8_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK8_0 == 0);
const int num_blocks = ne / QK8_0;
cpy_f32_q<cpy_blck_f32_q8_0, QK8_0><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q4_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK4_0 == 0);
const int num_blocks = ne / QK4_0;
cpy_f32_q<cpy_blck_f32_q4_0, QK4_0><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q4_1_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK4_1 == 0);
const int num_blocks = ne / QK4_1;
cpy_f32_q<cpy_blck_f32_q4_1, QK4_1><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q5_0_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK5_0 == 0);
const int num_blocks = ne / QK5_0;
cpy_f32_q<cpy_blck_f32_q5_0, QK5_0><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_q5_1_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK5_1 == 0);
const int num_blocks = ne / QK5_1;
cpy_f32_q<cpy_blck_f32_q5_1, QK5_1><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f32_iq4_nl_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
GGML_ASSERT(ne % QK4_NL == 0);
const int num_blocks = ne / QK4_NL;
cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL><<<num_blocks, 1, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
static void ggml_cpy_f16_f16_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f16_f16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13);
}
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1) {
const int64_t ne = ggml_nelements(src0);
GGML_ASSERT(ne == ggml_nelements(src1));
GGML_ASSERT(ggml_nbytes(src0) <= INT_MAX);
GGML_ASSERT(ggml_nbytes(src1) <= INT_MAX);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2];
//GGML_ASSERT(src0->ne[3] == 1);
const int64_t nb00 = src0->nb[0];
const int64_t nb01 = src0->nb[1];
const int64_t nb02 = src0->nb[2];
const int64_t nb03 = src0->nb[3];
const int64_t ne10 = src1->ne[0];
const int64_t ne11 = src1->ne[1];
const int64_t ne12 = src1->ne[2];
//GGML_ASSERT(src1->ne[3] == 1);
const int64_t nb10 = src1->nb[0];
const int64_t nb11 = src1->nb[1];
const int64_t nb12 = src1->nb[2];
const int64_t nb13 = src1->nb[3];
cudaStream_t main_stream = ctx.stream();
char * src0_ddc = (char *) src0->data;
char * src1_ddc = (char *) src1->data;
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
ggml_cpy_f32_q4_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
ggml_cpy_f32_q4_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
ggml_cpy_f32_q5_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
ggml_cpy_f32_iq4_nl_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
ggml_cpy_f32_q5_1_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f16_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f16_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream);
} else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false);
}
}
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
ggml_cuda_cpy(ctx, src0, dst);
}
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f32_f32>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
return (void*) cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_0) {
return (void*) cpy_f32_q<cpy_blck_f32_q4_0, QK4_0>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q4_1) {
return (void*) cpy_f32_q<cpy_blck_f32_q4_1, QK4_1>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_0) {
return (void*) cpy_f32_q<cpy_blck_f32_q5_0, QK5_0>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_IQ4_NL) {
return (void*) cpy_f32_q<cpy_blck_f32_iq4_nl, QK4_NL>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q5_1) {
return (void*) cpy_f32_q<cpy_blck_f32_q5_1, QK5_1>;
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F16) {
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
} else if (src0->type == GGML_TYPE_F16 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f16_f32>;
} else {
fprintf(stderr, "%s: unsupported type combination (%s to %s)\n", __func__,
ggml_type_name(src0->type), ggml_type_name(src1->type));
GGML_ASSERT(false);
}
}
#include "common.cuh"
#define CUDA_CPY_BLOCK_SIZE 32
void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, ggml_tensor * src1);
void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1);
#include "common.cuh"
static __device__ __forceinline__ void dequantize_q4_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
const block_q4_0 * x = (const block_q4_0 *) vx;
const dfloat d = x[ib].d;
const int vui = x[ib].qs[iqs];
v.x = vui & 0xF;
v.y = vui >> 4;
#ifdef GGML_CUDA_F16
v = __hsub2(v, {8.0f, 8.0f});
v = __hmul2(v, {d, d});
#else
v.x = (v.x - 8.0f) * d;
v.y = (v.y - 8.0f) * d;
#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q4_1(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
const block_q4_1 * x = (const block_q4_1 *) vx;
const dfloat d = __low2half(x[ib].dm);
const dfloat m = __high2half(x[ib].dm);
const int vui = x[ib].qs[iqs];
v.x = vui & 0xF;
v.y = vui >> 4;
#ifdef GGML_CUDA_F16
v = __hmul2(v, {d, d});
v = __hadd2(v, {m, m});
#else
v.x = (v.x * d) + m;
v.y = (v.y * d) + m;
#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q5_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
const block_q5_0 * x = (const block_q5_0 *) vx;
const dfloat d = x[ib].d;
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
#ifdef GGML_CUDA_F16
v = __hsub2(v, {16.0f, 16.0f});
v = __hmul2(v, {d, d});
#else
v.x = (v.x - 16.0f) * d;
v.y = (v.y - 16.0f) * d;
#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q5_1(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
const block_q5_1 * x = (const block_q5_1 *) vx;
const dfloat d = __low2half(x[ib].dm);
const dfloat m = __high2half(x[ib].dm);
uint32_t qh;
memcpy(&qh, x[ib].qh, sizeof(qh));
const int xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10;
const int xh_1 = ((qh >> (iqs + 12)) ) & 0x10;
v.x = ((x[ib].qs[iqs] & 0xf) | xh_0);
v.y = ((x[ib].qs[iqs] >> 4) | xh_1);
#ifdef GGML_CUDA_F16
v = __hmul2(v, {d, d});
v = __hadd2(v, {m, m});
#else
v.x = (v.x * d) + m;
v.y = (v.y * d) + m;
#endif // GGML_CUDA_F16
}
static __device__ __forceinline__ void dequantize_q8_0(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
const block_q8_0 * x = (const block_q8_0 *) vx;
const dfloat d = x[ib].d;
v.x = x[ib].qs[iqs + 0];
v.y = x[ib].qs[iqs + 1];
#ifdef GGML_CUDA_F16
v = __hmul2(v, {d, d});
#else
v.x *= d;
v.y *= d;
#endif // GGML_CUDA_F16
}
#include "diagmask.cuh"
static __global__ __launch_bounds__(1024) void diag_mask_inf_f32(const float * x, float * dst, const int ncols, const int rows_per_channel, const int n_past) {
const int col = blockDim.y*blockIdx.y + threadIdx.y;
const int row = blockDim.x*blockIdx.x + threadIdx.x;
if (col >= ncols) {
return;
}
const int i = row*ncols + col;
//dst[i] = col > (n_past + row % rows_per_channel) ? -INFINITY : x[i];
//dst[i] = x[i] - (col > n_past + row % rows_per_channel) * INT_MAX; // equivalent within rounding error but slightly faster on GPU
dst[i] = x[i] - (col > n_past + row % rows_per_channel) * FLT_MAX;
}
static void diag_mask_inf_f32_cuda(const float * x, float * dst, const int ncols_x, const int nrows_x, const int rows_per_channel, const int n_past, cudaStream_t stream) {
const dim3 block_dims(1, CUDA_DIAG_MASK_INF_BLOCK_SIZE, 1);
const int block_num_x = (ncols_x + CUDA_DIAG_MASK_INF_BLOCK_SIZE - 1) / CUDA_DIAG_MASK_INF_BLOCK_SIZE;
const dim3 block_nums(nrows_x, block_num_x, 1);
diag_mask_inf_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols_x, rows_per_channel, n_past);
}
void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const float * src0_d = (const float *)src0->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src0->type == GGML_TYPE_F32);
GGML_ASSERT( dst->type == GGML_TYPE_F32);
const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1];
const int nrows0 = ggml_nrows(src0);
const int n_past = ((int32_t *) dst->op_params)[0];
diag_mask_inf_f32_cuda(src0_d, dst_d, ne00, nrows0, ne01, n_past, stream);
}
#include "common.cuh"
#define CUDA_DIAG_MASK_INF_BLOCK_SIZE 32
void ggml_cuda_op_diag_mask_inf(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "dmmv.cuh"
#include "dequantize.cuh"
#include "convert.cuh"
#ifndef K_QUANTS_PER_ITERATION
#define K_QUANTS_PER_ITERATION 2
#else
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
#endif
static __global__ __launch_bounds__(1024) void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q2_K * x = (const block_q2_K *)vx + ib0;
float tmp = 0; // partial sum for thread in warp
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int step = 16/K_QUANTS_PER_ITERATION;
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0...15 or 0...7
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
const int q_offset = 32*im + l0;
const int s_offset = 8*im;
const int y_offset = 128*im + l0;
uint32_t aux[4];
const uint8_t * d = (const uint8_t *)aux;
const uint8_t * m = (const uint8_t *)(aux + 2);
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + y_offset;
const uint8_t * q = x[i].qs + q_offset;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
aux[0] = a[0] & 0x0f0f0f0f;
aux[1] = a[1] & 0x0f0f0f0f;
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
float sum1 = 0, sum2 = 0;
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
}
tmp += dall * sum1 - dmin * sum2;
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (threadIdx.x == 0) {
dst[row] = tmp;
}
}
static __global__ __launch_bounds__(1024) void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q3_K * x = (const block_q3_K *)vx + ib0;
float tmp = 0; // partial sum for thread in warp
const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f;
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
const int step = 16/K_QUANTS_PER_ITERATION;
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0....15 or 0...7
const uint8_t m = 1 << (4*im);
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
const int q_offset = 32*im + l0;
const int y_offset = 128*im + l0;
uint16_t utmp[4];
const int8_t * s = (const int8_t *)utmp;
const uint16_t s_shift = 4*im;
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + y_offset;
const uint8_t * q = x[i].qs + q_offset;
const uint8_t * h = x[i].hmask + l0;
const uint16_t * a = (const uint16_t *)x[i].scales;
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
const float d = x[i].d;
float sum = 0;
for (int l = 0; l < n; ++l) {
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
}
tmp += d * sum;
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (threadIdx.x == 0) {
dst[row] = tmp;
}
}
static __global__ __launch_bounds__(1024) void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q4_K * x = (const block_q4_K *)vx + ib0;
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
const int il = tid/step; // 0...3
const int ir = tid - step*il; // 0...7 or 0...3
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const int in = il%2;
const int l0 = n*(2*ir + in);
const int q_offset = 32*im + l0;
const int y_offset = 64*im + l0;
uint16_t aux[4];
const uint8_t * sc = (const uint8_t *)aux;
#if K_QUANTS_PER_ITERATION == 2
uint32_t q32[4];
const uint8_t * q4 = (const uint8_t *)q32;
#else
uint16_t q16[4];
const uint8_t * q4 = (const uint8_t *)q16;
#endif
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
const uint16_t * a = (const uint16_t *)x[i].scales;
aux[0] = a[im+0] & kmask1;
aux[1] = a[im+2] & kmask1;
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
#if K_QUANTS_PER_ITERATION == 2
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
const uint32_t * q2 = q1 + 16;
q32[0] = q1[0] & 0x0f0f0f0f;
q32[1] = q1[0] & 0xf0f0f0f0;
q32[2] = q2[0] & 0x0f0f0f0f;
q32[3] = q2[0] & 0xf0f0f0f0;
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < 4; ++l) {
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
}
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
#else
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
const uint16_t * q2 = q1 + 32;
q16[0] = q1[0] & 0x0f0f;
q16[1] = q1[0] & 0xf0f0;
q16[2] = q2[0] & 0x0f0f;
q16[3] = q2[0] & 0xf0f0;
float4 s = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
for (int l = 0; l < 2; ++l) {
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
}
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
#endif
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (tid == 0) {
dst[row] = tmp;
}
}
static __global__ __launch_bounds__(1024) void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
const int row = blockIdx.x;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q5_K * x = (const block_q5_K *)vx + ib0;
float tmp = 0; // partial sum for thread in warp
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
const int tid = threadIdx.x/2; // 0...15
const int ix = threadIdx.x%2;
const int il = tid/4; // 0...3
const int ir = tid - 4*il;// 0...3
const int n = 2;
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
const int in = il%2;
const int l0 = n*(2*ir + in);
const int q_offset = 32*im + l0;
const int y_offset = 64*im + l0;
const uint8_t hm1 = 1 << (2*im);
const uint8_t hm2 = hm1 << 4;
uint16_t aux[4];
const uint8_t * sc = (const uint8_t *)aux;
uint16_t q16[8];
const uint8_t * q4 = (const uint8_t *)q16;
for (int i = ix; i < num_blocks_per_row; i += 2) {
const uint8_t * ql1 = x[i].qs + q_offset;
const uint8_t * qh = x[i].qh + l0;
const float * y1 = yy + i*QK_K + y_offset;
const float * y2 = y1 + 128;
const float dall = __low2half(x[i].dm);
const float dmin = __high2half(x[i].dm);
const uint16_t * a = (const uint16_t *)x[i].scales;
aux[0] = a[im+0] & kmask1;
aux[1] = a[im+2] & kmask1;
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
float4 sum = {0.f, 0.f, 0.f, 0.f};
float smin = 0;
const uint16_t * q1 = (const uint16_t *)ql1;
const uint16_t * q2 = q1 + 32;
q16[0] = q1[0] & 0x0f0f;
q16[1] = q1[8] & 0x0f0f;
q16[2] = (q1[0] >> 4) & 0x0f0f;
q16[3] = (q1[8] >> 4) & 0x0f0f;
q16[4] = q2[0] & 0x0f0f;
q16[5] = q2[8] & 0x0f0f;
q16[6] = (q2[0] >> 4) & 0x0f0f;
q16[7] = (q2[8] >> 4) & 0x0f0f;
for (int l = 0; l < n; ++l) {
sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
+ y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
+ y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
+ y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
+ y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
}
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (threadIdx.x == 0) {
dst[row] = tmp;
}
}
static __global__ __launch_bounds__(1024) void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row > nrows) return;
const int num_blocks_per_row = ncols / QK_K;
const int ib0 = row*num_blocks_per_row;
const block_q6_K * x = (const block_q6_K *)vx + ib0;
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
const int in = tid - step*im; // 0...15 or 0...7
#if K_QUANTS_PER_ITERATION == 1
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
const int is = 0;
#else
const int l0 = 4 * in; // 0, 4, 8, ..., 28
const int is = in / 4;
#endif
const int ql_offset = 64*im + l0;
const int qh_offset = 32*im + l0;
const int s_offset = 8*im + is;
const int y_offset = 128*im + l0;
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + y_offset;
const uint8_t * ql = x[i].ql + ql_offset;
const uint8_t * qh = x[i].qh + qh_offset;
const int8_t * s = x[i].scales + s_offset;
const float d = x[i].d;
#if K_QUANTS_PER_ITERATION == 1
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
tmp += sum;
#else
float sum = 0;
for (int l = 0; l < 4; ++l) {
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
}
tmp += sum;
#endif
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (tid == 0) {
dst[row] = tmp;
}
}
static __device__ void convert_f16(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
const half * x = (const half *) vx;
// automatic half -> float type cast if dfloat == float
v.x = x[ib + iqs + 0];
v.y = x[ib + iqs + 1];
}
template <int qk, int qr, dequantize_kernel_t dequantize_kernel>
static __global__ __launch_bounds__(1024) void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
// qk = quantized weights per x block
// qr = number of quantized weights per data value in x block
const int64_t row = (int64_t)blockIdx.x*blockDim.y + threadIdx.y;
if (row >= nrows) {
return;
}
const int tid = threadIdx.x;
const int iter_stride = 2*GGML_CUDA_DMMV_X;
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
const int y_offset = qr == 1 ? 1 : qk/2;
// partial sum for each thread
#ifdef GGML_CUDA_F16
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
#else
float tmp = 0.0f;
#endif // GGML_CUDA_F16
for (int i = 0; i < ncols; i += iter_stride) {
const int col = i + vals_per_iter*tid;
const int64_t ib = ((int64_t)row*ncols + col)/qk; // x block index
const int iqs = (col%qk)/qr; // x quant index
const int iybs = col - col%qk; // y block start index
// processing >2 values per i iter is faster for fast GPUs
#pragma unroll
for (int j = 0; j < vals_per_iter; j += 2) {
// process 2 vals per j iter
// dequantize
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
dfloat2 v;
dequantize_kernel(vx, ib, iqs + j/qr, v);
// matrix multiplication
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
#ifdef GGML_CUDA_F16
tmp += __hmul2(v, {
y[iybs + iqs + j/qr + 0],
y[iybs + iqs + j/qr + y_offset]
});
#else
tmp += v.x * y[iybs + iqs + j/qr + 0];
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
#endif // GGML_CUDA_F16
}
}
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
if (tid == 0) {
#ifdef GGML_CUDA_F16
dst[row] = tmp.x + tmp.y;
#else
dst[row] = tmp;
#endif // GGML_CUDA_F16
}
}
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK4_0, QR4_0, dequantize_q4_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK4_1, QR4_1, dequantize_q4_1>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK5_0, QR5_0, dequantize_q5_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK5_1, QR5_1, dequantize_q5_1>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<QK8_0, QR8_0, dequantize_q8_0>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const dim3 block_dims(32, 1, 1);
dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
}
static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % QK_K == 0);
const int ny = 2 / K_QUANTS_PER_ITERATION;
const int block_num_y = (nrows + ny - 1) / ny;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(32, ny, 1);
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
GGML_ASSERT(ncols % GGML_CUDA_DMMV_X == 0);
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
dequantize_mul_mat_vec<1, 1, convert_f16>
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
}
void ggml_cuda_op_dequantize_mul_mat_vec(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream) {
GGML_UNUSED(ctx);
const int64_t ne00 = src0->ne[0];
const int64_t row_diff = row_high - row_low;
GGML_ASSERT(src1->type == GGML_TYPE_F32);
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
#ifdef GGML_CUDA_F16
ggml_cuda_pool_alloc<half> src1_dfloat_a(ctx.pool());
half * src1_dfloat = nullptr; // dfloat == half
bool src1_convert_f16 =
src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
if (src1_convert_f16) {
src1_dfloat = src1_dfloat_a.alloc(ne00);
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
GGML_ASSERT(to_fp16_cuda != nullptr);
to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
}
#else
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
#endif // GGML_CUDA_F16
switch (src0->type) {
case GGML_TYPE_Q4_0:
dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q4_1:
dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_0:
dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_1:
dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q8_0:
dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q2_K:
dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q3_K:
dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q4_K:
dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q5_K:
dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_Q6_K:
dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
break;
case GGML_TYPE_F16:
convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
break;
default:
GGML_ASSERT(false);
break;
}
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddq_i);
GGML_UNUSED(src1_ncols);
GGML_UNUSED(src1_padded_row_size);
}
#include "common.cuh"
// dmmv = dequantize_mul_mat_vec
// TODO: remove this?
#ifndef GGML_CUDA_DMMV_X
#define GGML_CUDA_DMMV_X 32
#endif
#ifndef GGML_CUDA_MMV_Y
#define GGML_CUDA_MMV_Y 1
#endif
void ggml_cuda_op_dequantize_mul_mat_vec(
ggml_backend_cuda_context & ctx,
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
const int64_t src1_padded_row_size, cudaStream_t stream);
#include "common.cuh"
#include <cstdint>
#define FATTN_KQ_STRIDE 256
#define HALF_MAX_HALF __float2half(65504.0f/2) // Use neg. of this instead of -INFINITY to initialize KQ max vals to avoid NaN upon subtraction.
#define SOFTMAX_FTZ_THRESHOLD -20.0f // Softmax exp. of values smaller than this are flushed to zero to avoid NaNs.
typedef void (* fattn_kernel_t)(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const int ne00,
const int ne01,
const int ne02,
const int ne03,
const int ne10,
const int ne11,
const int ne12,
const int ne13,
const int ne31,
const int nb31,
const int nb01,
const int nb02,
const int nb03,
const int nb11,
const int nb12,
const int nb13,
const int ne0,
const int ne1,
const int ne2,
const int ne3);
template<int D, int parallel_blocks> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static __global__ __launch_bounds__(1024) void flash_attn_combine_results(
const float * __restrict__ VKQ_parts,
const float2 * __restrict__ VKQ_meta,
float * __restrict__ dst) {
VKQ_parts += parallel_blocks*D * gridDim.y*blockIdx.x;
VKQ_meta += parallel_blocks * gridDim.y*blockIdx.x;
dst += D * gridDim.y*blockIdx.x;
const int tid = threadIdx.x;
__builtin_assume(tid < D);
__shared__ float2 meta[parallel_blocks];
if (tid < 2*parallel_blocks) {
((float *) meta)[threadIdx.x] = ((const float *)VKQ_meta) [blockIdx.y*(2*parallel_blocks) + tid];
}
__syncthreads();
float kqmax = meta[0].x;
#pragma unroll
for (int l = 1; l < parallel_blocks; ++l) {
kqmax = max(kqmax, meta[l].x);
}
float VKQ_numerator = 0.0f;
float VKQ_denominator = 0.0f;
#pragma unroll
for (int l = 0; l < parallel_blocks; ++l) {
const float diff = meta[l].x - kqmax;
const float KQ_max_scale = expf(diff);
const uint32_t ftz_mask = 0xFFFFFFFF * (diff > SOFTMAX_FTZ_THRESHOLD);
*((uint32_t *) &KQ_max_scale) &= ftz_mask;
VKQ_numerator += KQ_max_scale * VKQ_parts[l*gridDim.y*D + blockIdx.y*D + tid];
VKQ_denominator += KQ_max_scale * meta[l].y;
}
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
}
template <int D, int parallel_blocks>
void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) {
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * K = dst->src[1];
const ggml_tensor * V = dst->src[2];
const ggml_tensor * mask = dst->src[3];
ggml_tensor * KQV = dst;
GGML_ASSERT(Q->type == GGML_TYPE_F32);
GGML_ASSERT(K->type == GGML_TYPE_F16);
GGML_ASSERT(V->type == GGML_TYPE_F16);
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
GGML_ASSERT(!mask || mask->ne[1] >= GGML_PAD(Q->ne[1], 16) &&
"the Flash-Attention CUDA kernel requires the mask to be padded to 16 and at least n_queries big");
GGML_ASSERT(K->ne[1] % FATTN_KQ_STRIDE == 0 && "Incorrect KV cache padding.");
ggml_cuda_pool & pool = ctx.pool();
cudaStream_t main_stream = ctx.stream();
ggml_cuda_pool_alloc<float> dst_tmp(pool);
ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool);
if (parallel_blocks > 1) {
dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV));
dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV));
}
const dim3 block_dim(WARP_SIZE, nwarps, 1);
const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]);
const int shmem = 0;
float scale = 1.0f;
float max_bias = 0.0f;
memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float));
memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float));
const uint32_t n_head = Q->ne[2];
const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
fattn_kernel<<<blocks_num, block_dim, shmem, main_stream>>>(
(const char *) Q->data,
(const char *) K->data,
(const char *) V->data,
mask ? ((const char *) mask->data) : nullptr,
(parallel_blocks) == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr,
scale, max_bias, m0, m1, n_head_log2,
Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3],
K->ne[0], K->ne[1], K->ne[2], K->ne[3],
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
Q->nb[1], Q->nb[2], Q->nb[3],
K->nb[1], K->nb[2], K->nb[3],
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
);
CUDA_CHECK(cudaGetLastError());
if ((parallel_blocks) == 1) {
return;
}
const dim3 block_dim_combine(D, 1, 1);
const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z);
const int shmem_combine = 0;
flash_attn_combine_results<D, parallel_blocks>
<<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>>
(dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data);
CUDA_CHECK(cudaGetLastError());
}
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile-f16.cuh"
#define FATTN_KQ_STRIDE_TILE_F16 64
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static __global__ __launch_bounds__(1024) void flash_attn_tile_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const int ne00,
const int ne01,
const int ne02,
const int ne03,
const int ne10,
const int ne11,
const int ne12,
const int ne13,
const int ne31,
const int nb31,
const int nb01,
const int nb02,
const int nb03,
const int nb11,
const int nb12,
const int nb13,
const int ne0,
const int ne1,
const int ne2,
const int ne3) {
#if FP16_AVAILABLE
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) mask + ne11*ic0;
const int stride_KV2 = nb11 / sizeof(half2);
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
__shared__ half KQ[ncols*FATTN_KQ_STRIDE_TILE_F16];
half2 * KQ2 = (half2 *) KQ;
__shared__ half2 KV_tmp[FATTN_KQ_STRIDE_TILE_F16][D/2 + 1]; // Pad D to avoid memory bank conflicts.
half kqmax[ncols/nwarps];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
kqmax[j0/nwarps] = -HALF_MAX_HALF;
}
half2 kqsum[ncols/nwarps] = {{0.0f, 0.0f}};
half2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
// Convert Q to half2 and store in registers:
__shared__ half2 Q_h2[ncols][D/2];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
}
}
__syncthreads();
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F16;
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F16) {
// Calculate KQ tile and keep track of new maximum KQ values:
half kqmax_new[ncols/nwarps];
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
kqmax_new[j] = kqmax[j];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
KV_tmp[i_KQ][k_KQ] = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
}
}
__syncthreads();
half2 sum2[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE][ncols/nwarps] = {{{0.0f, 0.0f}}};
#pragma unroll
for (int k_KQ = 0; k_KQ < D/2; ++k_KQ) {
half2 K_k[FATTN_KQ_STRIDE_TILE_F16/WARP_SIZE];
half2 Q_k[ncols/nwarps];
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
}
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
Q_k[j_KQ_0/nwarps] = Q_h2[j_KQ][k_KQ];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE]*Q_k[j_KQ_0/nwarps];
}
}
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F16; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
half sum = __low2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]) + __high2half(sum2[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
sum += mask ? slopeh*maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
kqmax_new[j_KQ_0/nwarps] = ggml_cuda_hmax(kqmax_new[j_KQ_0/nwarps], sum);
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F16 + i_KQ] = sum;
}
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
const half2 KQ_max_scale = __half2half2(hexp(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]));
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
#pragma unroll
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F16/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const half2 diff = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] - __half2half2(kqmax[j0/nwarps]);
const half2 val = h2exp(diff);
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + val;
KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + i] = val;
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
VKQ[j0/nwarps][i0/WARP_SIZE] *= KQ_max_scale;
}
}
__syncthreads();
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += nwarps) {
const int k = k0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
KV_tmp[k][i] = V_h2[(k_VKQ_0 + k)*stride_KV2 + i];
}
}
__syncthreads();
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F16; k0 += 2) {
half2 V_k[(D/2)/WARP_SIZE][2];
half2 KQ_k[ncols/nwarps];
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
V_k[i0/WARP_SIZE][0] = KV_tmp[k0 + 0][i];
V_k[i0/WARP_SIZE][1] = KV_tmp[k0 + 1][i];
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
KQ_k[j0/nwarps] = KQ2[j*(FATTN_KQ_STRIDE_TILE_F16/2) + k0/2];
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][0]* __low2half2(KQ_k[j0/nwarps]);
VKQ[j0/nwarps][i0/WARP_SIZE] += V_k[i0/WARP_SIZE][1]*__high2half2(KQ_k[j0/nwarps]);
}
}
}
__syncthreads();
}
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
kqsum_j = warp_reduce_sum(kqsum_j);
#pragma unroll
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
const int i0 = i00 + 2*threadIdx.x;
half2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
if (parallel_blocks == 1) {
dst_val /= __half2half2(kqsum_j);
}
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = __low2float(dst_val);
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = __high2float(dst_val);
}
if (parallel_blocks != 1 && threadIdx.x == 0) {
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
#else
NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
}
template <int cols_per_block, int parallel_blocks>
void launch_fattn_tile_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f16<D, cols_per_block, nwarps, parallel_blocks>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
} break;
default: {
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break;
}
}
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 1;
launch_fattn_tile_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
}
#include "common.cuh"
void ggml_cuda_flash_attn_ext_tile_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile-f32.cuh"
#define FATTN_KQ_STRIDE_TILE_F32 32
template<int D, int ncols, int nwarps, int parallel_blocks> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static __global__ __launch_bounds__(1024) void flash_attn_tile_ext_f32(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const int ne00,
const int ne01,
const int ne02,
const int ne03,
const int ne10,
const int ne11,
const int ne12,
const int ne13,
const int ne31,
const int nb31,
const int nb01,
const int nb02,
const int nb03,
const int nb11,
const int nb12,
const int nb13,
const int ne0,
const int ne1,
const int ne2,
const int ne3) {
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
const half2 * V_h2 = (const half2 *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) mask + ne11*ic0;
const int stride_KV2 = nb11 / sizeof(half2);
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
__shared__ float KQ[ncols*FATTN_KQ_STRIDE_TILE_F32];
__shared__ float KV_tmp[FATTN_KQ_STRIDE_TILE_F32][D + 1]; // Pad D to avoid memory bank conflicts.
float2 * KV_tmp2 = (float2 *) KV_tmp;
float kqmax[ncols/nwarps];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
kqmax[j0/nwarps] = -FLT_MAX/2.0f;
}
float kqsum[ncols/nwarps] = {0.0f};
float2 VKQ[ncols/nwarps][(D/2)/WARP_SIZE] = {{{0.0f, 0.0f}}};
// Convert Q to half2 and store in registers:
__shared__ float Q_f[ncols][D];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
}
}
__syncthreads();
const int k_start = parallel_blocks == 1 ? 0 : ip*FATTN_KQ_STRIDE_TILE_F32;
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE_TILE_F32) {
// Calculate KQ tile and keep track of new maximum KQ values:
float kqmax_new[ncols/nwarps];
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
kqmax_new[j] = kqmax[j];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 2*WARP_SIZE) {
const half2 tmp = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ_0/2 + threadIdx.x];
KV_tmp[i_KQ][k_KQ_0 + 0*WARP_SIZE + threadIdx.x] = __low2float(tmp);
KV_tmp[i_KQ][k_KQ_0 + 1*WARP_SIZE + threadIdx.x] = __high2float(tmp);
}
}
__syncthreads();
float sum[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE][ncols/nwarps] = {{0.0f}};
#pragma unroll
for (int k_KQ = 0; k_KQ < D; ++k_KQ) {
float K_k[FATTN_KQ_STRIDE_TILE_F32/WARP_SIZE];
float Q_k[ncols/nwarps];
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
K_k[i_KQ_0/WARP_SIZE] = KV_tmp[i_KQ][k_KQ];
}
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
Q_k[j_KQ_0/nwarps] = Q_f[j_KQ][k_KQ];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += K_k[i_KQ_0/WARP_SIZE] * Q_k[j_KQ_0/nwarps];
}
}
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE_TILE_F32; i_KQ_0 += WARP_SIZE) {
const int i_KQ = i_KQ_0 + threadIdx.x;
#pragma unroll
for (int j_KQ_0 = 0; j_KQ_0 < ncols; j_KQ_0 += nwarps) {
const int j_KQ = j_KQ_0 + threadIdx.y;
sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps] += mask ? slope*__half2float(maskh[j_KQ*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new[j_KQ_0/nwarps] = fmaxf(kqmax_new[j_KQ_0/nwarps], sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps]);
KQ[j_KQ*FATTN_KQ_STRIDE_TILE_F32 + i_KQ] = sum[i_KQ_0/WARP_SIZE][j_KQ_0/nwarps];
}
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
kqmax_new[j0/nwarps] = warp_reduce_max(kqmax_new[j0/nwarps]);
const float KQ_max_scale = expf(kqmax[j0/nwarps] - kqmax_new[j0/nwarps]);
kqmax[j0/nwarps] = kqmax_new[j0/nwarps];
float kqsum_add = 0.0f;
#pragma unroll
for (int i0 = 0; i0 < FATTN_KQ_STRIDE_TILE_F32; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float diff = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] - kqmax[j0/nwarps];
const float val = expf(diff);
kqsum_add += val;
KQ[j*FATTN_KQ_STRIDE_TILE_F32 + i] = val;
}
kqsum[j0/nwarps] = kqsum[j0/nwarps]*KQ_max_scale + kqsum_add;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
VKQ[j0/nwarps][i0/WARP_SIZE].x *= KQ_max_scale;
VKQ[j0/nwarps][i0/WARP_SIZE].y *= KQ_max_scale;
}
}
__syncthreads();
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE_TILE_F32; k0 += nwarps) {
const int k = k0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
KV_tmp2[k*(D/2) + i].x = __low2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
KV_tmp2[k*(D/2) + i].y = __high2float(V_h2[(k_VKQ_0 + k)*stride_KV2 + i]);
}
}
__syncthreads();
#pragma unroll
for (int k = 0; k < FATTN_KQ_STRIDE_TILE_F32; ++k) {
float2 V_k[(D/2)/WARP_SIZE];
float KQ_k[ncols/nwarps];
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
V_k[i0/WARP_SIZE] = KV_tmp2[k*(D/2) + i];
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
KQ_k[j0/nwarps] = KQ[j*FATTN_KQ_STRIDE_TILE_F32 + k];
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
VKQ[j0/nwarps][i0/WARP_SIZE].x += V_k[i0/WARP_SIZE].x*KQ_k[j0/nwarps];
VKQ[j0/nwarps][i0/WARP_SIZE].y += V_k[i0/WARP_SIZE].y*KQ_k[j0/nwarps];
}
}
}
__syncthreads();
}
#pragma unroll
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
float kqsum_j = kqsum[j_VKQ_0/nwarps];
kqsum_j = warp_reduce_sum(kqsum_j);
#pragma unroll
for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) {
const int i0 = i00 + 2*threadIdx.x;
float2 dst_val = VKQ[j_VKQ_0/nwarps][i0/(2*WARP_SIZE)];
if (parallel_blocks == 1) {
dst_val.x /= kqsum_j;
dst_val.y /= kqsum_j;
}
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 0] = dst_val.x;
dst[j_dst*D*gridDim.y + D*blockIdx.y + i0 + 1] = dst_val.y;
}
if (parallel_blocks != 1 && threadIdx.x == 0) {
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j_VKQ_0/nwarps], kqsum_j);
}
}
}
template <int cols_per_block, int parallel_blocks>
void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = 8;
fattn_kernel_t fattn_kernel = flash_attn_tile_ext_f32<D, cols_per_block, nwarps, parallel_blocks>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
} break;
default: {
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break;
}
}
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 4;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
constexpr int cols_per_block = 32;
constexpr int parallel_blocks = 1;
launch_fattn_tile_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
}
#include "common.cuh"
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-vec-f16.cuh"
template<int D, int ncols, int parallel_blocks> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static __global__ __launch_bounds__(1024) void flash_attn_vec_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const int ne00,
const int ne01,
const int ne02,
const int ne03,
const int ne10,
const int ne11,
const int ne12,
const int ne13,
const int ne31,
const int nb31,
const int nb01,
const int nb02,
const int nb03,
const int nb11,
const int nb12,
const int nb13,
const int ne0,
const int ne1,
const int ne2,
const int ne3) {
#if FP16_AVAILABLE
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) mask + ne11*ic0;
const int stride_KV = nb11 / sizeof(half);
const int stride_KV2 = nb11 / sizeof(half2);
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
constexpr int nwarps = D / WARP_SIZE;
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
__builtin_assume(tid < D);
__shared__ half KQ[ncols*D];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
KQ[j*D + tid] = -HALF_MAX_HALF;
}
half2 * KQ2 = (half2 *) KQ;
half kqmax[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax[j] = -HALF_MAX_HALF;
}
half kqsum[ncols] = {0.0f};
__shared__ half kqmax_shared[ncols][WARP_SIZE];
__shared__ half kqsum_shared[ncols][WARP_SIZE];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.y == 0) {
kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
kqsum_shared[j][threadIdx.x] = 0.0f;
}
}
__syncthreads();
// Convert Q to half2 and store in registers:
half2 Q_h2[ncols][D/(2*WARP_SIZE)];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
}
}
half2 VKQ[ncols] = {{0.0f, 0.0f}};
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
// Calculate KQ tile and keep track of new maximum KQ values:
// For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
// see https://github.com/ggerganov/llama.cpp/pull/7061 .
// Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
half kqmax_new = kqmax[0];
half kqmax_new_arr[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax_new_arr[j] = kqmax[j];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
break;
}
half2 sum2[ncols] = {{0.0f, 0.0f}};
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
sum2[j] += K_ik * Q_h2[j][k_KQ_0/WARP_SIZE];
}
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
sum2[j] = warp_reduce_sum(sum2[j]);
half sum = __low2half(sum2[j]) + __high2half(sum2[j]);
sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
if (ncols == 1) {
kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
} else {
kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
}
if (threadIdx.x == 0) {
KQ[j*D + i_KQ] = sum;
}
}
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
if (threadIdx.x == 0) {
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
half kqmax_new_j = kqmax_shared[j][threadIdx.x];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
kqmax[j] = kqmax_new_j;
const half val = hexp(KQ[j*D + tid] - kqmax[j]);
kqsum[j] = kqsum[j]*KQ_max_scale + val;
KQ[j*D + tid] = val;
VKQ[j] *= __half2half2(KQ_max_scale);
}
__syncthreads();
#pragma unroll
for (int k0 = 0; k0 < D; k0 += 2) {
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
break;
}
half2 V_k;
reinterpret_cast<half&>(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
reinterpret_cast<half&>(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
}
}
__syncthreads();
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqsum[j] = warp_reduce_sum(kqsum[j]);
if (threadIdx.x == 0) {
kqsum_shared[j][threadIdx.y] = kqsum[j];
}
}
__syncthreads();
#pragma unroll
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
break;
}
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
if (parallel_blocks == 1) {
dst_val /= kqsum[j_VKQ];
}
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
}
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
}
#else
NO_DEVICE_CODE;
#endif // FP16_AVAILABLE
}
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
ggml_tensor * KQV = dst;
ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
constexpr int cols_per_block = 1;
constexpr int parallel_blocks = 4;
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
} break;
case 256: {
constexpr int D = 256;
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
} break;
default:
GGML_ASSERT(false);
break;
}
}
template <int cols_per_block, int parallel_blocks>
void launch_fattn_vec_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16<D, cols_per_block, parallel_blocks>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
} break;
default: {
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break;
}
}
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const int32_t precision = KQV->op_params[2];
GGML_ASSERT(precision == GGML_PREC_DEFAULT);
if (Q->ne[1] == 1) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
return;
}
if (Q->ne[1] == 2) {
constexpr int cols_per_block = 2;
constexpr int parallel_blocks = 4;
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 4) {
constexpr int cols_per_block = 4;
constexpr int parallel_blocks = 4;
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 8) {
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 4;
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 1;
launch_fattn_vec_f16_64_128<cols_per_block, parallel_blocks>(ctx, dst);
}
#include "common.cuh"
void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-vec-f32.cuh"
template<int D, int ncols, int parallel_blocks> // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static __global__ __launch_bounds__(1024) void flash_attn_vec_ext_f32(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const int ne00,
const int ne01,
const int ne02,
const int ne03,
const int ne10,
const int ne11,
const int ne12,
const int ne13,
const int ne31,
const int nb31,
const int nb01,
const int nb02,
const int nb03,
const int nb11,
const int nb12,
const int nb13,
const int ne0,
const int ne1,
const int ne2,
const int ne3) {
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) mask + ne11*ic0;
const int stride_KV = nb11 / sizeof(half);
const int stride_KV2 = nb11 / sizeof(half2);
const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
constexpr int nwarps = D / WARP_SIZE;
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
__builtin_assume(tid < D);
__shared__ float KQ[ncols*D];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
KQ[j*D + tid] = -FLT_MAX/2.0f;
}
float kqmax[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax[j] = -FLT_MAX/2.0f;
}
float kqsum[ncols] = {0.0f};
__shared__ float kqmax_shared[ncols][WARP_SIZE];
__shared__ float kqsum_shared[ncols][WARP_SIZE];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
if (threadIdx.y == 0) {
kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
kqsum_shared[j][threadIdx.x] = 0.0f;
}
}
__syncthreads();
// Convert Q to half2 and store in registers:
float2 Q_h2[ncols][D/(2*WARP_SIZE)];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
Q_h2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
Q_h2[j][i0/WARP_SIZE].x *= scale;
Q_h2[j][i0/WARP_SIZE].y *= scale;
}
}
float VKQ[ncols] = {0.0f};
const int k_start = parallel_blocks == 1 ? 0 : ip*D;
for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
// Calculate KQ tile and keep track of new maximum KQ values:
float kqmax_new_arr[ncols];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqmax_new_arr[j] = kqmax[j];
}
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
const int i_KQ = i_KQ_0 + threadIdx.y;
if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
break;
}
float sum[ncols] = {0.0f};
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
const int k_KQ = k_KQ_0 + threadIdx.x;
const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
#pragma unroll
for (int j = 0; j < ncols; ++j) {
sum[j] += __low2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].x;
sum[j] += __high2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].y;
}
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
sum[j] = warp_reduce_sum(sum[j]);
sum[j] += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum[j]);
if (threadIdx.x == 0) {
KQ[j*D + i_KQ] = sum[j];
}
}
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
float kqmax_new_j = kqmax_new_arr[j];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
if (threadIdx.x == 0) {
kqmax_shared[j][threadIdx.y] = kqmax_new_j;
}
}
__syncthreads();
#pragma unroll
for (int j = 0; j < ncols; ++j) {
float kqmax_new_j = kqmax_shared[j][threadIdx.x];
kqmax_new_j = warp_reduce_max(kqmax_new_j);
const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
kqmax[j] = kqmax_new_j;
const float val = expf(KQ[j*D + tid] - kqmax[j]);
kqsum[j] = kqsum[j]*KQ_max_scale + val;
KQ[j*D + tid] = val;
VKQ[j] *= KQ_max_scale;
}
__syncthreads();
#pragma unroll
for (int k = 0; k < D; ++k) {
if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
break;
}
const float V_ki = __half2float(V_h[(k_VKQ_0 + k)*stride_KV + tid]);
#pragma unroll
for (int j = 0; j < ncols; ++j) {
VKQ[j] += V_ki*KQ[j*D + k];
}
}
__syncthreads();
}
#pragma unroll
for (int j = 0; j < ncols; ++j) {
kqsum[j] = warp_reduce_sum(kqsum[j]);
if (threadIdx.x == 0) {
kqsum_shared[j][threadIdx.y] = kqsum[j];
}
}
__syncthreads();
#pragma unroll
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
break;
}
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
float dst_val = VKQ[j_VKQ];
if (parallel_blocks == 1) {
dst_val /= kqsum[j_VKQ];
}
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
}
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
}
}
template <int cols_per_block, int parallel_blocks>
void launch_fattn_vec_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
switch (Q->ne[0]) {
case 64: {
constexpr int D = 64;
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
} break;
case 128: {
constexpr int D = 128;
constexpr int nwarps = D/WARP_SIZE;
fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
} break;
default: {
GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
} break;
}
}
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
if (Q->ne[1] == 1) {
constexpr int cols_per_block = 1;
constexpr int parallel_blocks = 4;
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] == 2) {
constexpr int cols_per_block = 2;
constexpr int parallel_blocks = 4;
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 4) {
constexpr int cols_per_block = 4;
constexpr int parallel_blocks = 4;
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
if (Q->ne[1] <= 8) {
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 4;
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
return;
}
constexpr int cols_per_block = 8;
constexpr int parallel_blocks = 1;
launch_fattn_vec_f32_64_128<cols_per_block, parallel_blocks>(ctx, dst);
}
#include "common.cuh"
void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "common.cuh"
#include "fattn-common.cuh"
#include "fattn-tile-f16.cuh"
#include "fattn-tile-f32.cuh"
#include "fattn-vec-f16.cuh"
#include "fattn-vec-f32.cuh"
#include "fattn.cuh"
#include <cstdint>
#if FP16_MMA_AVAILABLE
#include <mma.h>
#endif
// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
template<int D, int ncols, int nwarps, int VKQ_stride, int parallel_blocks, typename KQ_acc_t>
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static __global__ __launch_bounds__(1024) void flash_attn_ext_f16(
const char * __restrict__ Q,
const char * __restrict__ K,
const char * __restrict__ V,
const char * __restrict__ mask,
float * __restrict__ dst,
float2 * __restrict__ dst_meta,
const float scale,
const float max_bias,
const float m0,
const float m1,
const uint32_t n_head_log2,
const int ne00,
const int ne01,
const int ne02,
const int ne03,
const int ne10,
const int ne11,
const int ne12,
const int ne13,
const int ne31,
const int nb31,
const int nb01,
const int nb02,
const int nb03,
const int nb11,
const int nb12,
const int nb13,
const int ne0,
const int ne1,
const int ne2,
const int ne3) {
#if FP16_MMA_AVAILABLE
//In this kernel Q, K, V are matrices while i, j, k are matrix indices.
const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
constexpr int frag_m = ncols == 8 ? 32 : 16;
constexpr int frag_n = ncols == 8 ? 8 : 16;
static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::row_major> frag_a_K;
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_a, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_a_V;
typedef nvcuda::wmma::fragment<nvcuda::wmma::matrix_b, frag_m, frag_n, 16, half, nvcuda::wmma::col_major> frag_b;
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, KQ_acc_t> frag_c_KQ;
typedef nvcuda::wmma::fragment<nvcuda::wmma::accumulator, frag_m, frag_n, 16, half> frag_c_VKQ;
constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
// Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
constexpr int D_padded = D + 8;
constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
const int stride_Q = nb01 / sizeof(float);
const int stride_KV = nb11 / sizeof(half);
const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
const half slopeh = __float2half(slopef);
const half2 slope2 = make_half2(slopef, slopef);
frag_b Q_b[D/16][ncols/frag_n];
// A single buffer for temporarily holding tiles of KQ and VKQ parts:
constexpr int mem_KQ = ncols*kqs_padded*kqar;
constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
__shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
float * KQ_f = (float *) KQ;
half2 * KQ2 = (half2 *) KQ;
float KQ_rowsum_f[ncols/nwarps] = {0.0f};
float KQ_max_f[ncols/nwarps];
float KQ_max_scale_f[ncols/nwarps] = {0.0f};
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
KQ_max_f[j] = -FLT_MAX/2.0f;
}
half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
half2 KQ_max_h2[ncols/nwarps];
half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
#pragma unroll
for (int j = 0; j < ncols/nwarps; ++j) {
KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
}
__shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
half2 * VKQ2 = (half2 *) VKQ;
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
break;
}
VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
}
}
// Convert Q to half and apply scale, temporarily store in KQ:
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
#pragma unroll
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D && i >= D) {
break;
}
KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
}
}
__syncthreads();
// Load Q into tensor core fragments/registers since it will be used frequently:
#pragma unroll
for (int i0 = 0; i0 < D; i0 += 16) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
}
}
__syncthreads();
// Iterate over ne11 == previous tokens:
for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
// Calculate tile of KQ:
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
frag_c_KQ KQ_c[ncols/frag_n];
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
}
#pragma unroll
for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
frag_a_K K_a;
nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
}
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
}
}
__syncthreads();
// Calculate softmax for each KQ column using the current max. value.
// The divisor is stored in KQ_rowsum and will be applied at the end.
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
if (std::is_same<KQ_acc_t, float>::value) {
float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
}
float KQ_max_new = KQ_max_f[j0/nwarps];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
}
KQ_max_new = warp_reduce_max(KQ_max_new);
const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
KQ_max_scale_f[j0/nwarps] = expf(diff);
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
KQ_max_scale_f[j0/nwarps] = 0.0f;
}
KQ_max_f[j0/nwarps] = KQ_max_new;
float KQ_rowsum_add = 0.0f;
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
if (diff <= SOFTMAX_FTZ_THRESHOLD) {
KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
}
KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
}
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
} else {
half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
}
half2 KQ_max_new = KQ_max_h2[j0/nwarps];
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
}
KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
*((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
KQ_max_h2[j0/nwarps] = KQ_max_new;
half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
const int k = k0 + threadIdx.x;
const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
*((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
}
KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
// Scale previous KQ_rowsum to account for a potential increase in KQ_max:
KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
}
}
__syncthreads();
frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
nvcuda::wmma::load_matrix_sync(
KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
KQ + j0*(kqar*kqs_padded) + k,
kqar*kqs_padded);
}
}
frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
#pragma unroll
for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
}
#pragma unroll
for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
frag_a_V v_a;
nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
#pragma unroll
for (int j = 0; j < ncols/frag_n; ++j) {
nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
}
}
}
__syncthreads();
const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
#pragma unroll
for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += frag_n) {
nvcuda::wmma::store_matrix_sync(
KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
D_padded, nvcuda::wmma::mem_col_major);
}
}
__syncthreads();
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j = j0 + threadIdx.y;
half2 VKQ_scale;
if (std::is_same<KQ_acc_t, float>::value) {
VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
} else {
VKQ_scale = KQ_max_scale_h2[j0/nwarps];
}
#pragma unroll
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D/2 && i >= D/2) {
break;
}
half2 VKQ_add = make_half2(0.0f, 0.0f);
#pragma unroll
for (int l = 0; l < VKQ_ratio; ++l) {
VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
}
VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
}
}
__syncthreads();
}
#pragma unroll
for (int j0 = 0; j0 < ncols; j0 += nwarps) {
const int j_VKQ = j0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
float KQ_rowsum_j;
if (std::is_same<KQ_acc_t, float>::value) {
KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
} else {
KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
}
#pragma unroll
for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
if (i0 + WARP_SIZE > D && i >= D) {
break;
}
float dst_val = VKQ[j_VKQ*D_padded + i];
if (parallel_blocks == 1) {
dst_val /= KQ_rowsum_j;
}
dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
}
if (parallel_blocks == 1 || threadIdx.x != 0) {
continue;
}
float2 dst_meta_val;
if (std::is_same<KQ_acc_t, float>::value) {
dst_meta_val.x = KQ_max_f[j0/nwarps];
} else {
dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
}
dst_meta_val.y = KQ_rowsum_j;
dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
}
#else
NO_DEVICE_CODE;
#endif // FP16_MMA_AVAILABLE
}
constexpr int get_max_power_of_2(int x) {
return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
}
static_assert(get_max_power_of_2(1) == 1, "Test failed.");
static_assert(get_max_power_of_2(2) == 2, "Test failed.");
static_assert(get_max_power_of_2(4) == 4, "Test failed.");
static_assert(get_max_power_of_2(6) == 2, "Test failed.");
// Number of VKQ rows calculated in parallel:
constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
}
static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
template <int D, int cols_per_block, int nwarps, typename KQ_acc_t>
void launch_fattn_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * Q = dst->src[0];
constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
if (4*blocks_num_pb1 < 2*nsm) {
constexpr int parallel_blocks = 4;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
return;
}
if (2*blocks_num_pb1 < 2*nsm) {
constexpr int parallel_blocks = 2;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
return;
}
constexpr int parallel_blocks = 1;
fattn_kernel_t fattn_kernel = flash_attn_ext_f16<D, cols_per_block, nwarps, get_VKQ_stride(D, nwarps, frag_m), parallel_blocks, KQ_acc_t>;
launch_fattn<D, parallel_blocks>(ctx, dst, fattn_kernel, nwarps, cols_per_block);
}
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
ggml_cuda_set_device(ctx.device);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int32_t precision = KQV->op_params[2];
// On AMD the tile kernels perform poorly, use the vec kernel instead:
if (cc >= CC_OFFSET_AMD) {
if (precision == GGML_PREC_DEFAULT) {
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
} else {
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
}
return;
}
if (!fast_fp16_available(cc)) {
if (Q->ne[1] <= 8) {
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
} else {
ggml_cuda_flash_attn_ext_tile_f32(ctx, dst);
}
return;
}
if (!fp16_mma_available(cc)) {
if (Q->ne[1] <= 8) {
ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
} else {
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
}
return;
}
if (precision != GGML_PREC_DEFAULT) {
if (Q->ne[1] == 1 && (Q->ne[0] == 64 || Q->ne[0] == 128)) {
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
return;
}
if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
constexpr int cols_per_block = 16;
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
break;
case 80:
launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
break;
case 96:
launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
break;
case 112:
launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
break;
case 128:
launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
break;
case 256:
launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
break;
default:
GGML_ASSERT(false);
break;
}
} else {
constexpr int cols_per_block = 32;
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
break;
case 80:
launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
break;
case 96:
launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
break;
case 112:
launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
break;
case 128:
launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
break;
// case 256:
// launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
// break;
default:
GGML_ASSERT(false);
break;
}
}
return;
}
if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
return;
}
if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
constexpr int cols_per_block = 8;
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
break;
case 96:
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
break;
case 128:
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
break;
case 256:
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
break;
}
return;
}
if (Q->ne[1] <= 32) {
constexpr int cols_per_block = 16;
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
break;
case 80:
launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
break;
case 96:
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
break;
case 112:
launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
break;
case 128:
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
break;
case 256:
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
break;
}
return;
}
constexpr int cols_per_block = 32;
constexpr int nwarps = 4;
switch (Q->ne[0]) {
case 64:
launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
break;
case 80:
launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
break;
case 96:
launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
break;
case 112:
launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
break;
case 128:
launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
break;
case 256:
launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
break;
default:
GGML_ASSERT(false);
break;
}
return;
}
#include "common.cuh"
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
#include "getrows.cuh"
#include "dequantize.cuh"
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __global__ __launch_bounds__(1024) void k_get_rows(
const void * src0, const int32_t * src1, dst_t * dst,
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
if (i00 >= ne00) {
return;
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
const int ib = i00/qk; // block index
const int iqs = (i00%qk)/qr; // quant index
const int iybs = i00 - i00%qk; // dst block start index
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
dfloat2 v;
dequantize_kernel(src0_row, ib, iqs, v);
dst_row[iybs + iqs + 0] = v.x;
dst_row[iybs + iqs + y_offset] = v.y;
}
template<typename src0_t, typename dst_t>
static __global__ __launch_bounds__(1024) void k_get_rows_float(
const src0_t * src0, const int32_t * src1, dst_t * dst,
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
const int i00 = blockIdx.x*blockDim.x + threadIdx.x;
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
if (i00 >= ne00) {
return;
}
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const src0_t * src0_row = (const src0_t *)((const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03);
dst_row[i00] = src0_row[i00];
}
template<int qk, int qr, dequantize_kernel_t dq>
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
GGML_TENSOR_BINARY_OP_LOCALS
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
// strides in elements
//const size_t s0 = nb0 / ggml_element_size(dst);
const size_t s1 = nb1 / ggml_element_size(dst);
const size_t s2 = nb2 / ggml_element_size(dst);
const size_t s3 = nb3 / ggml_element_size(dst);
const size_t s10 = nb10 / ggml_element_size(src1);
const size_t s11 = nb11 / ggml_element_size(src1);
const size_t s12 = nb12 / ggml_element_size(src1);
//const size_t s13 = nb13 / ggml_element_size(src1);
GGML_ASSERT(ne00 % 2 == 0);
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
src0_dd, src1_dd, dst_dd,
ne00, /*ne01, ne02, ne03,*/
/*ne10, ne11,*/ ne12, /*ne13,*/
/* s0,*/ s1, s2, s3,
/* nb00,*/ nb01, nb02, nb03,
s10, s11, s12/*, s13*/);
GGML_UNUSED(dst);
}
template<typename src0_t>
static void get_rows_cuda_float(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
GGML_TENSOR_BINARY_OP_LOCALS
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
// strides in elements
//const size_t s0 = nb0 / ggml_element_size(dst);
const size_t s1 = nb1 / ggml_element_size(dst);
const size_t s2 = nb2 / ggml_element_size(dst);
const size_t s3 = nb3 / ggml_element_size(dst);
const size_t s10 = nb10 / ggml_element_size(src1);
const size_t s11 = nb11 / ggml_element_size(src1);
const size_t s12 = nb12 / ggml_element_size(src1);
//const size_t s13 = nb13 / ggml_element_size(src1);
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
src0_dd, src1_dd, dst_dd,
ne00, /*ne01, ne02, ne03,*/
/*ne10, ne11,*/ ne12, /*ne13,*/
/* s0,*/ s1, s2, s3,
/* nb00,*/ nb01, nb02, nb03,
s10, s11, s12/*, s13*/);
GGML_UNUSED(dst);
}
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * src0 = dst->src[0];
const ggml_tensor * src1 = dst->src[1];
const float * src0_d = (const float *)src0->data;
const float * src1_d = (const float *)src1->data;
float * dst_d = (float *)dst->data;
cudaStream_t stream = ctx.stream();
GGML_ASSERT(src1->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
const int32_t * src1_i32 = (const int32_t *) src1_d;
switch (src0->type) {
case GGML_TYPE_F16:
get_rows_cuda_float(src0, src1, dst, (const half *)src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_F32:
get_rows_cuda_float(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_Q4_0:
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_Q4_1:
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_Q5_0:
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_Q5_1:
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_Q8_0:
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
default:
// TODO: k-quants
fprintf(stderr, "%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
GGML_ASSERT(false);
break;
}
}
#include "common.cuh"
#define CUDA_GET_ROWS_BLOCK_SIZE 256
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment