Unverified Commit 62620914 authored by Michael Yang's avatar Michael Yang Committed by GitHub
Browse files

Merge pull request #65 from jmorganca/bindings

call llama.cpp directly from go
parents abaf7d3b 442dec1c
/**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
// Defines fileno on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#include <cstddef>
#include <cstdint>
#include <cstdio>
#endif
#include "llama-util.h"
#include "llama.h"
#include "ggml.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#elif defined(GGML_USE_CLBLAST)
#include "ggml-opencl.h"
#endif
#ifdef GGML_USE_METAL
#include "ggml-metal.h"
#endif
#ifdef GGML_USE_MPI
#include "ggml-mpi.h"
#endif
#ifdef GGML_USE_K_QUANTS
#ifndef QK_K
#ifdef GGML_QKK_64
#define QK_K 64
#else
#define QK_K 256
#endif
#endif
#endif
#include <array>
#include <ctime>
#include <cinttypes>
#include <fstream>
#include <random>
#include <map>
#include <unordered_map>
#include <queue>
#include <cassert>
#include <cstring>
#include <climits>
#include <memory>
#include <algorithm>
#include <initializer_list>
#include <thread>
#include <atomic>
#include <mutex>
#include <sstream>
#include <numeric>
#if defined(_MSC_VER)
#pragma warning(disable: 4244 4267) // possible loss of data
#endif
#define LLAMA_USE_SCRATCH
#define LLAMA_MAX_SCRATCH_BUFFERS 16
// available llama models
enum e_model {
MODEL_UNKNOWN,
MODEL_3B,
MODEL_7B,
MODEL_13B,
MODEL_30B,
MODEL_65B,
};
static const size_t kB = 1024;
static const size_t MB = 1024*1024;
// computed for n_ctx == 2048
// TODO: dynamically determine these sizes
// needs modifications in ggml
typedef void (*offload_func_t)(struct ggml_tensor * tensor);
void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
(void) tensor;
}
//
// ggml helpers
//
static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
if (plan.work_size > 0) {
buf.resize(plan.work_size);
plan.work_data = buf.data();
}
ggml_graph_compute(graph, &plan);
}
//
// memory sizes
//
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
{
static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 256ull * MB },
{ MODEL_7B, 512ull * MB },
{ MODEL_13B, 512ull * MB },
{ MODEL_30B, 512ull * MB },
{ MODEL_65B, 1024ull * MB },
};
return k_sizes;
}
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
{
static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 256ull * MB },
{ MODEL_7B, 512ull * MB },
{ MODEL_13B, 512ull * MB },
{ MODEL_30B, 512ull * MB },
{ MODEL_65B, 1024ull * MB },
};
return k_sizes;
}
// 2*n_embd*n_ctx*n_layer*sizeof(float16)
static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
{
static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 682ull * MB },
{ MODEL_7B, 1026ull * MB },
{ MODEL_13B, 1608ull * MB },
{ MODEL_30B, 3124ull * MB },
{ MODEL_65B, 5120ull * MB },
};
return k_sizes;
}
// this is mostly needed for temporary mul_mat buffers to dequantize the data
// not actually needed if BLAS is disabled
static const std::map<e_model, size_t> & MEM_REQ_EVAL()
{
static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 512ull * MB },
{ MODEL_7B, 768ull * MB },
{ MODEL_13B, 1024ull * MB },
{ MODEL_30B, 1280ull * MB },
{ MODEL_65B, 1536ull * MB },
};
return k_sizes;
}
// amount of VRAM needed per batch size to hold temporary results
// the values for 3b and 65b are not derived from testing but instead chosen conservatively
static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
{
static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 512ull * kB },
{ MODEL_7B, 512ull * kB },
{ MODEL_13B, 640ull * kB },
{ MODEL_30B, 768ull * kB },
{ MODEL_65B, 1536ull * kB },
};
return k_sizes;
}
// amount of VRAM needed per batch size and context to hold temporary results
// the values for 3b and 65b are not derived from testing but instead chosen conservatively
static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
{
static std::map<e_model, size_t> k_sizes = {
{ MODEL_3B, 128ull },
{ MODEL_7B, 128ull },
{ MODEL_13B, 160ull },
{ MODEL_30B, 208ull },
{ MODEL_65B, 416ull },
};
return k_sizes;
}
// default hparams (LLaMA 7B)
struct llama_hparams {
uint32_t n_vocab = 32000;
uint32_t n_ctx = 512; // this is provided as user input?
uint32_t n_embd = 4096;
uint32_t n_mult = 256;
uint32_t n_head = 32;
uint32_t n_layer = 32;
uint32_t n_rot = 64;
enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
bool operator!=(const llama_hparams & other) const {
return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
}
};
struct llama_layer {
// normalization
struct ggml_tensor * attention_norm;
// attention
struct ggml_tensor * wq;
struct ggml_tensor * wk;
struct ggml_tensor * wv;
struct ggml_tensor * wo;
// normalization
struct ggml_tensor * ffn_norm;
// ff
struct ggml_tensor * w1;
struct ggml_tensor * w2;
struct ggml_tensor * w3;
};
struct llama_kv_cache {
struct ggml_tensor * k = NULL;
struct ggml_tensor * v = NULL;
struct ggml_context * ctx = NULL;
llama_ctx_buffer buf;
int n; // number of tokens currently in the cache
~llama_kv_cache() {
if (ctx) {
ggml_free(ctx);
}
#ifdef GGML_USE_CUBLAS
ggml_cuda_free_data(k);
ggml_cuda_free_data(v);
#endif // GGML_USE_CUBLAS
}
};
struct llama_vocab {
using id = int32_t;
using token = std::string;
struct token_score {
token tok;
float score;
};
std::unordered_map<token, id> token_to_id;
std::vector<token_score> id_to_token;
};
struct llama_model {
e_model type = MODEL_UNKNOWN;
llama_hparams hparams;
struct ggml_tensor * tok_embeddings;
struct ggml_tensor * norm;
struct ggml_tensor * output;
std::vector<llama_layer> layers;
int n_gpu_layers;
// context
struct ggml_context * ctx = NULL;
// the model memory buffer
llama_ctx_buffer buf;
// model memory mapped file
std::unique_ptr<llama_mmap> mapping;
// objects representing data potentially being locked in memory
llama_mlock mlock_buf;
llama_mlock mlock_mmap;
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
llama_vocab vocab;
~llama_model() {
if (ctx) {
ggml_free(ctx);
}
#ifdef GGML_USE_CUBLAS
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cuda_free_data(tensors_by_name[i].second);
}
ggml_cuda_free_scratch();
#elif defined(GGML_USE_CLBLAST)
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cl_free_data(tensors_by_name[i].second);
}
#endif
}
};
struct llama_context {
llama_context(const llama_model & model, const llama_vocab & vocab) : model(model), vocab(vocab), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
#ifdef GGML_USE_METAL
~llama_context() {
if (ctx_metal) {
ggml_metal_free(ctx_metal);
}
}
#endif
std::mt19937 rng;
bool has_evaluated_once = false;
int64_t t_sample_us = 0;
int64_t t_eval_us = 0;
int64_t t_p_eval_us = 0;
int32_t n_sample = 0; // number of tokens sampled
int32_t n_eval = 0; // number of eval calls
int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
const llama_model & model;
const llama_vocab & vocab;
bool model_owner = false;
int64_t t_load_us;
int64_t t_start_us;
// key + value cache for the self attention
struct llama_kv_cache kv_self;
size_t mem_per_token = 0;
// decode output (2-dimensional array: [n_tokens][n_vocab])
std::vector<float> logits;
bool logits_all = false;
// input embedding (1-dimensional array: [n_embd])
std::vector<float> embedding;
// reusable buffer for `struct ggml_graph_plan.work_data`
std::vector<uint8_t> work_buffer;
// memory buffers used to evaluate the model
// TODO: move in llama_state
llama_ctx_buffer buf_compute;
llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
#ifdef GGML_USE_METAL
ggml_metal_context * ctx_metal = NULL;
#endif
#ifdef GGML_USE_MPI
ggml_mpi_context * ctx_mpi = NULL;
#endif
int buf_last = 0;
size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
void use_buf(struct ggml_context * ctx, int i) {
#if defined(LLAMA_USE_SCRATCH)
size_t last_size = 0;
if (i == -1) {
last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
} else {
auto & buf = buf_scratch[i];
last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
}
if (buf_last >= 0) {
buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
}
buf_last = i;
#else
(void) i;
(void) ctx;
#endif
}
size_t get_buf_max_mem(int i) const {
#if defined(LLAMA_USE_SCRATCH)
return buf_max_size[i];
#else
(void) i;
return 0;
#endif
}
};
template <typename T>
static T checked_mul(T a, T b) {
T ret = a * b;
if (a != 0 && ret / a != b) {
throw std::runtime_error(format("overflow multiplying %llu * %llu",
(unsigned long long) a, (unsigned long long) b));
}
return ret;
}
static size_t checked_div(size_t a, size_t b) {
if (b == 0 || a % b != 0) {
throw std::runtime_error(format("error dividing %zu / %zu", a, b));
}
return a / b;
}
static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
char buf[256];
snprintf(buf, sizeof(buf), "%5u", ne.at(0));
for (size_t i = 1; i < ne.size(); i++) {
snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
}
return buf;
}
static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
size_t size = ggml_type_size(type);
for (uint32_t dim : ne) {
size = checked_mul<size_t>(size, dim);
}
return size / ggml_blck_size(type);
}
struct llama_load_tensor {
std::string name;
enum ggml_type type = GGML_TYPE_F32;
std::vector<uint32_t> ne;
size_t file_off;
size_t size;
struct ggml_tensor * ggml_tensor = NULL;
uint8_t * data;
};
struct llama_load_tensors_map {
// tensors is kept in a separate vector to preserve file order
std::vector<llama_load_tensor> tensors;
std::unordered_map<std::string, size_t> name_to_idx;
};
enum llama_file_version {
LLAMA_FILE_VERSION_GGML,
LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
LLAMA_FILE_VERSION_GGJT_V1, // added padding
LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
};
struct llama_file_loader {
llama_file file;
llama_file_version file_version;
llama_hparams hparams;
llama_vocab vocab;
llama_file_loader(const char * fname, llama_load_tensors_map & tensors_map)
: file(fname, "rb") {
fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
read_magic();
read_hparams();
read_vocab();
read_tensor_metadata(tensors_map);
}
void read_magic() {
uint32_t magic = file.read_u32();
if (magic == LLAMA_FILE_MAGIC_GGML) {
file_version = LLAMA_FILE_VERSION_GGML;
return;
}
uint32_t version = file.read_u32();
switch (magic) {
case LLAMA_FILE_MAGIC_GGMF:
switch (version) {
case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
}
break;
case LLAMA_FILE_MAGIC_GGJT:
switch (version) {
case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
}
}
throw std::runtime_error(format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
magic, version));
}
void read_hparams() {
hparams.n_vocab = file.read_u32();
hparams.n_embd = file.read_u32();
hparams.n_mult = file.read_u32();
hparams.n_head = file.read_u32();
hparams.n_layer = file.read_u32();
hparams.n_rot = file.read_u32();
hparams.ftype = (enum llama_ftype) file.read_u32();
}
void read_vocab() {
vocab.id_to_token.resize(hparams.n_vocab);
for (uint32_t i = 0; i < hparams.n_vocab; i++) {
uint32_t len = file.read_u32();
std::string word = file.read_string(len);
float score = 0.0f;
file.read_raw(&score, sizeof(score));
vocab.token_to_id[word] = i;
auto & tok_score = vocab.id_to_token[i];
tok_score.tok = std::move(word);
tok_score.score = score;
}
}
void read_tensor_metadata(llama_load_tensors_map & tensors_map) {
while (file.tell() < file.size) {
llama_load_tensor tensor;
uint32_t n_dims = file.read_u32();
uint32_t name_len = file.read_u32();
tensor.type = (enum ggml_type) file.read_u32();
tensor.ne.resize(n_dims);
file.read_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * n_dims);
std::string name = file.read_string(name_len);
if (n_dims < 1 || n_dims > 2) {
throw std::runtime_error(format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims));
}
switch (tensor.type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
break;
default: {
throw std::runtime_error(format("unrecognized tensor type %u\n", tensor.type));
}
}
// skip to the next multiple of 32 bytes
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
tensor.file_off = file.tell();
tensor.name = name;
tensor.size = llama_calc_tensor_size(tensor.ne, tensor.type);
file.seek(tensor.size, SEEK_CUR);
tensors_map.tensors.push_back(tensor);
tensors_map.name_to_idx[name] = tensors_map.tensors.size() - 1;
}
}
};
struct llama_file_saver {
llama_file file;
llama_file_loader * any_file_loader;
llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
: file(fname, "wb"), any_file_loader(any_file_loader) {
fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
write_magic();
write_hparams(new_ftype);
write_vocab();
}
void write_magic() {
file.write_u32(LLAMA_FILE_MAGIC); // magic
file.write_u32(LLAMA_FILE_VERSION); // version
}
void write_hparams(enum llama_ftype new_ftype) {
const llama_hparams & hparams = any_file_loader->hparams;
file.write_u32(hparams.n_vocab);
file.write_u32(hparams.n_embd);
file.write_u32(hparams.n_mult);
file.write_u32(hparams.n_head);
file.write_u32(hparams.n_layer);
file.write_u32(hparams.n_rot);
file.write_u32(new_ftype);
}
void write_vocab() {
if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
}
uint32_t n_vocab = any_file_loader->hparams.n_vocab;
for (uint32_t i = 0; i < n_vocab; i++) {
const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
file.write_u32((uint32_t) token_score.tok.size());
file.write_raw(token_score.tok.data(), token_score.tok.size());
file.write_raw(&token_score.score, sizeof(token_score.score));
}
}
void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
switch (new_type) {
case GGML_TYPE_F32:
case GGML_TYPE_F16:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
case GGML_TYPE_Q2_K:
case GGML_TYPE_Q3_K:
case GGML_TYPE_Q4_K:
case GGML_TYPE_Q5_K:
case GGML_TYPE_Q6_K:
break;
default: LLAMA_ASSERT(false);
}
file.write_u32((uint32_t) tensor.ne.size());
file.write_u32((uint32_t) tensor.name.size());
file.write_u32(new_type);
file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
file.write_raw(tensor.name.data(), tensor.name.size());
file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
file.write_raw(new_data, new_size);
}
};
struct llama_model_loader {
std::unique_ptr<llama_file_loader> file_loader;
llama_load_tensors_map tensors_map;
bool use_mmap;
size_t num_ggml_tensors_created = 0;
struct ggml_context * ggml_ctx = NULL;
std::unique_ptr<llama_mmap> mapping;
llama_model_loader(const std::string & fname_base, bool use_mmap) {
file_loader = std::unique_ptr<llama_file_loader>(new llama_file_loader(fname_base.c_str(), tensors_map));
if (!llama_mmap::SUPPORTED) {
use_mmap = false;
}
this->use_mmap = use_mmap;
}
void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
*ctx_size_p = *mmapped_size_p = 0;
for (const llama_load_tensor & lt : tensors_map.tensors) {
*ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
*(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
}
}
struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
auto it = tensors_map.name_to_idx.find(name);
if (it == tensors_map.name_to_idx.end()) {
throw std::runtime_error(std::runtime_error(format("llama.cpp: tensor '%s' is missing from model", name.c_str())));
}
llama_load_tensor & lt = tensors_map.tensors.at(it->second);
if (lt.ne != ne) {
throw std::runtime_error(format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()));
}
return get_tensor_for(lt, backend);
}
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
struct ggml_tensor * tensor;
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ggml_ctx, true);
}
if (lt.ne.size() == 2) {
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
} else {
LLAMA_ASSERT(lt.ne.size() == 1);
tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
}
ggml_set_name(tensor, lt.name.c_str());
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
if (backend != GGML_BACKEND_CPU) {
ggml_set_no_alloc(ggml_ctx, use_mmap);
}
tensor->backend = backend;
lt.ggml_tensor = tensor;
num_ggml_tensors_created++;
return tensor;
}
void done_getting_tensors() const {
if (num_ggml_tensors_created != tensors_map.tensors.size()) {
throw std::runtime_error(std::string("llama.cpp: file contained more tensors than expected"));
}
}
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
size_t data_size = 0;
size_t prefetch_size = 0;
size_t lock_size = 0;
for (const llama_load_tensor & lt : tensors_map.tensors) {
data_size += lt.size;
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
prefetch_size += lt.size;
}
}
if (use_mmap) {
mapping.reset(new llama_mmap(&file_loader->file, prefetch_size, ggml_is_numa()));
if (lmlock) {
lmlock->init(mapping->addr);
}
}
size_t done_size = 0;
for (llama_load_tensor & lt : tensors_map.tensors) {
if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data);
}
LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
lt.data = (uint8_t *) lt.ggml_tensor->data;
// allocate temp buffer if not using mmap
if (!use_mmap && lt.data == NULL) {
GGML_ASSERT(lt.ggml_tensor->backend != GGML_BACKEND_CPU);
lt.data = (uint8_t*)malloc(ggml_nbytes(lt.ggml_tensor));
}
load_data_for(lt);
switch(lt.ggml_tensor->backend) {
case GGML_BACKEND_CPU:
lt.ggml_tensor->data = lt.data;
if (use_mmap && lmlock) {
lock_size += lt.size;
lmlock->grow_to(lock_size);
}
break;
#if defined(GGML_USE_CUBLAS)
case GGML_BACKEND_GPU:
case GGML_BACKEND_GPU_SPLIT:
ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
if (!use_mmap) {
free(lt.data);
}
break;
#elif defined(GGML_USE_CLBLAST)
case GGML_BACKEND_GPU:
ggml_cl_transform_tensor(lt.data, lt.ggml_tensor);
if (!use_mmap) {
free(lt.data);
}
break;
#endif
default:
continue;
}
done_size += lt.size;
}
}
void load_data_for(llama_load_tensor & lt) {
if (use_mmap) {
lt.data = (uint8_t *) mapping->addr + lt.file_off;
} else {
llama_file & file = file_loader->file;
file.seek(lt.file_off, SEEK_SET);
file.read_raw(lt.data, lt.size);
}
if (0) {
print_checksum(lt);
}
}
static void print_checksum(llama_load_tensor & lt) {
uint32_t sum = 0;
for (size_t i = 0; i < lt.size; i++) {
uint8_t byte = lt.data[i];
sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
}
fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
llama_format_tensor_shape(lt.ne).c_str(), lt.size);
}
};
//
// kv cache
//
static bool kv_cache_init(
const struct llama_hparams & hparams,
struct llama_kv_cache & cache,
ggml_type wtype,
int n_ctx,
int n_gpu_layers) {
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int64_t n_mem = n_layer*n_ctx;
const int64_t n_elements = n_embd*n_mem;
cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
cache.n = 0;
struct ggml_init_params params;
params.mem_size = cache.buf.size;
params.mem_buffer = cache.buf.addr;
params.no_alloc = false;
cache.ctx = ggml_init(params);
if (!cache.ctx) {
fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
return false;
}
cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
ggml_set_name(cache.k, "cache_k");
ggml_set_name(cache.v, "cache_v");
(void) n_gpu_layers;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer + 1) {
ggml_cuda_assign_buffers_no_scratch(cache.v);
}
if (n_gpu_layers > n_layer + 2) {
ggml_cuda_assign_buffers_no_scratch(cache.k);
}
#endif // GGML_USE_CUBLAS
return true;
}
struct llama_context_params llama_context_default_params() {
struct llama_context_params result = {
/*.seed =*/ LLAMA_DEFAULT_SEED,
/*.n_ctx =*/ 512,
/*.n_batch =*/ 512,
/*.gpu_layers =*/ 0,
/*.main_gpu =*/ 0,
/*.tensor_split =*/ {0},
/*.progress_callback =*/ nullptr,
/*.progress_callback_user_data =*/ nullptr,
/*.low_vram =*/ false,
/*.f16_kv =*/ true,
/*.logits_all =*/ false,
/*.vocab_only =*/ false,
/*.use_mmap =*/ true,
/*.use_mlock =*/ false,
/*.embedding =*/ false,
};
return result;
}
struct llama_model_quantize_params llama_model_quantize_default_params() {
struct llama_model_quantize_params result = {
/*.nthread =*/ 0,
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
/*.allow_requantize =*/ false,
/*.quantize_output_tensor =*/ true,
};
return result;
}
bool llama_mmap_supported() {
return llama_mmap::SUPPORTED;
}
bool llama_mlock_supported() {
return llama_mlock::SUPPORTED;
}
void llama_backend_init(bool numa) {
ggml_time_init();
// needed to initialize f16 tables
{
struct ggml_init_params params = { 0, NULL, false };
struct ggml_context * ctx = ggml_init(params);
ggml_free(ctx);
}
if (numa) {
ggml_numa_init();
}
#ifdef GGML_USE_MPI
ggml_mpi_backend_init();
#endif
}
void llama_backend_free() {
#ifdef GGML_USE_MPI
ggml_mpi_backend_free();
#endif
}
int64_t llama_time_us() {
return ggml_time_us();
}
//
// model loading
//
static const char *llama_file_version_name(llama_file_version version) {
switch (version) {
case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
}
return "unknown";
}
static const char *llama_ftype_name(enum llama_ftype ftype) {
switch (ftype) {
case LLAMA_FTYPE_ALL_F32: return "all F32";
case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
return "mostly Q4_1, some F16";
case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
default: return "unknown, may not work";
}
}
static const char *llama_model_type_name(e_model type) {
switch (type) {
case MODEL_3B: return "3B";
case MODEL_7B: return "7B";
case MODEL_13B: return "13B";
case MODEL_30B: return "30B";
case MODEL_65B: return "65B";
default: LLAMA_ASSERT(false);
}
}
static void llama_model_load_internal(
const std::string & fname,
llama_model & model,
llama_vocab & vocab,
int n_ctx,
int n_batch,
int n_gpu_layers,
int main_gpu,
const float * tensor_split,
bool low_vram,
ggml_type memory_type,
bool use_mmap,
bool use_mlock,
bool vocab_only,
llama_progress_callback progress_callback,
void * progress_callback_user_data) {
model.t_start_us = ggml_time_us();
std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
vocab = std::move(ml->file_loader->vocab);
model.hparams = ml->file_loader->hparams;
model.n_gpu_layers = n_gpu_layers;
llama_file_version file_version = ml->file_loader->file_version;
auto & hparams = model.hparams;
{
switch (hparams.n_layer) {
case 26: model.type = e_model::MODEL_3B; break;
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
case 60: model.type = e_model::MODEL_30B; break;
case 80: model.type = e_model::MODEL_65B; break;
default:
{
if (hparams.n_layer < 32) {
model.type = e_model::MODEL_7B;
}
} break;
}
hparams.n_ctx = n_ctx;
}
const uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
{
fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
}
if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)"));
}
}
if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
throw std::runtime_error(format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)"));
}
}
if (vocab_only) {
return;
}
auto & ctx = model.ctx;
size_t ctx_size;
size_t mmapped_size;
ml->calc_sizes(&ctx_size, &mmapped_size);
fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
// create the ggml context
{
model.buf.resize(ctx_size);
if (use_mlock) {
model.mlock_buf.init(model.buf.addr);
model.mlock_buf.grow_to(model.buf.size);
}
struct ggml_init_params params = {
/*.mem_size =*/ model.buf.size,
/*.mem_buffer =*/ model.buf.addr,
/*.no_alloc =*/ ml->use_mmap,
};
model.ctx = ggml_init(params);
if (!model.ctx) {
throw std::runtime_error(format("ggml_init() failed"));
}
}
(void) main_gpu;
#if defined(GGML_USE_CUBLAS)
fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
ggml_cuda_set_main_device(main_gpu);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
#elif defined(GGML_USE_CLBLAST)
fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
#else
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
#endif
// prepare memory for the weights
size_t vram_weights = 0;
size_t vram_scratch = 0;
{
const uint32_t n_embd = hparams.n_embd;
const uint32_t n_layer = hparams.n_layer;
const uint32_t n_vocab = hparams.n_vocab;
ml->ggml_ctx = ctx;
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
// "output" tensor
{
ggml_backend backend_norm;
ggml_backend backend_output;
if (n_gpu_layers > int(n_layer)) { // NOLINT
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#else
backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#endif // _WIN32
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
}
model.norm = ml->get_tensor("norm.weight", {n_embd}, backend_norm);
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
if (backend_norm == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(model.norm);
}
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
vram_weights += ggml_nbytes(model.output);
}
}
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
auto & layer = model.layers[i];
std::string layers_i = "layers." + std::to_string(i);
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend_split);
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend_split);
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend_split);
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend_split);
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend_split);
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend_split);
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend_split);
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
}
}
}
ml->done_getting_tensors();
// print memory requirements
{
const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
// this is the total memory required to run the inference
const size_t mem_required =
ctx_size +
mmapped_size - vram_weights + // weights in VRAM not in memory
MEM_REQ_SCRATCH0().at(model.type) +
MEM_REQ_SCRATCH1().at(model.type) +
MEM_REQ_EVAL().at (model.type);
// this is the memory required by one llama_state
const size_t mem_required_state =
scale*MEM_REQ_KV_SELF().at(model.type);
fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
(void) vram_scratch;
(void) n_batch;
#ifdef GGML_USE_CUBLAS
if (low_vram) {
fprintf(stderr, "%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
ggml_cuda_set_scratch_size(0); // disable scratch
} else {
const size_t vram_scratch_base = VRAM_REQ_SCRATCH_BASE().at(model.type);
const size_t vram_scratch_per_context = VRAM_REQ_SCRATCH_PER_CONTEXT().at(model.type);
vram_scratch = n_batch * (vram_scratch_base + n_ctx * vram_scratch_per_context);
ggml_cuda_set_scratch_size(vram_scratch);
if (n_gpu_layers > 0) {
fprintf(stderr, "%s: allocating batch_size x (%zd kB + n_ctx x %zd B) = %zd MB VRAM for the scratch buffer\n",
__func__, vram_scratch_base / kB, vram_scratch_per_context,
(vram_scratch + MB - 1) / MB); // round up
}
}
#endif // GGML_USE_CUBLAS
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
fprintf(stderr, "%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
if (n_gpu_layers > (int) hparams.n_layer) {
fprintf(stderr, "%s: offloading non-repeating layers to GPU\n", __func__);
}
size_t vram_kv_cache = 0;
#ifdef GGML_USE_CUBLAS
const int max_backend_supported_layers = hparams.n_layer + 3;
const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
if (n_gpu_layers > (int) hparams.n_layer + 1) {
if (low_vram) {
fprintf(stderr, "%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
} else {
fprintf(stderr, "%s: offloading v cache to GPU\n", __func__);
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
}
}
if (n_gpu_layers > (int) hparams.n_layer + 2) {
if (low_vram) {
fprintf(stderr, "%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
} else {
fprintf(stderr, "%s: offloading k cache to GPU\n", __func__);
vram_kv_cache += MEM_REQ_KV_SELF().at(model.type) / 2;
}
}
#elif defined(GGML_USE_CLBLAST)
const int max_backend_supported_layers = hparams.n_layer + 1;
const int max_offloadable_layers = hparams.n_layer + 1;
#endif // GGML_USE_CUBLAS
fprintf(stderr, "%s: offloaded %d/%d layers to GPU\n",
__func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
fprintf(stderr, "%s: total VRAM used: %zu MB\n",
__func__, (vram_weights + vram_scratch + vram_kv_cache + MB - 1) / MB); // round up
#else
(void) n_gpu_layers;
#endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
}
// populate `tensors_by_name`
for (llama_load_tensor & lt : ml->tensors_map.tensors) {
model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
}
(void) tensor_split;
#if defined(GGML_USE_CUBLAS)
{
ggml_cuda_set_tensor_split(tensor_split);
}
#endif
ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
if (progress_callback) {
progress_callback(1.0f, progress_callback_user_data);
}
model.mapping = std::move(ml->mapping);
// loading time will be recalculate after the first eval, so
// we take page faults deferred by mmap() into consideration
model.t_load_us = ggml_time_us() - model.t_start_us;
}
static bool llama_model_load(
const std::string & fname,
llama_model & model,
llama_vocab & vocab,
int n_ctx,
int n_batch,
int n_gpu_layers,
int main_gpu,
float * tensor_split,
bool low_vram,
ggml_type memory_type,
bool use_mmap,
bool use_mlock,
bool vocab_only,
llama_progress_callback progress_callback,
void *progress_callback_user_data) {
try {
llama_model_load_internal(fname, model, vocab, n_ctx, n_batch, n_gpu_layers, main_gpu, tensor_split, low_vram, memory_type,
use_mmap, use_mlock, vocab_only, progress_callback, progress_callback_user_data);
return true;
} catch (const std::exception & err) {
fprintf(stderr, "error loading model: %s\n", err.what());
return false;
}
}
// evaluate the transformer
//
// - lctx: llama context
// - tokens: new batch of tokens to process
// - embd embeddings input
// - n_tokens number of tokens
// - n_past: the context size so far
// - n_threads: number of threads to use
//
static bool llama_eval_internal(
llama_context & lctx,
const llama_token * tokens,
const float * embd,
int n_tokens,
int n_past,
int n_threads,
const char * cgraph_fname) {
LLAMA_ASSERT((!tokens && embd) || (tokens && !embd));
#ifdef GGML_USE_MPI
ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
#endif
const int64_t t_start_us = ggml_time_us();
const int N = n_tokens;
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & kv_self = lctx.kv_self;
LLAMA_ASSERT(!!kv_self.ctx);
const int n_embd = hparams.n_embd;
const int n_layer = hparams.n_layer;
const int n_ctx = hparams.n_ctx;
const int n_head = hparams.n_head;
const int n_vocab = hparams.n_vocab;
const int n_rot = hparams.n_embd/hparams.n_head;
const int n_gpu_layers = model.n_gpu_layers;
auto & mem_per_token = lctx.mem_per_token;
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.addr,
/*.no_alloc =*/ false,
};
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph gf = {};
// for big prompts, if BLAS is enabled, it is better to use only one thread
// otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
if (tokens) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
ggml_set_name(inp_tokens, "inp_tokens");
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
} else {
#ifdef GGML_USE_MPI
GGML_ASSERT(false && "not implemented");
#endif
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
}
const int i_gpu_start = n_layer - n_gpu_layers;
(void) i_gpu_start;
// offload functions set the tensor output backend to GPU
// tensors are GPU-accelerated if any input or the output has been offloaded
//
// with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
// in that case ggml_cuda_assign_buffers has no effect
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
offload_func_t offload_func_kq = llama_nop;
offload_func_t offload_func_v = llama_nop;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer) {
offload_func_nr = ggml_cuda_assign_buffers;
}
if (n_gpu_layers > n_layer + 1) {
offload_func_v = ggml_cuda_assign_buffers;
}
if (n_gpu_layers > n_layer + 2) {
offload_func_kq = ggml_cuda_assign_buffers;
}
#endif // GGML_USE_CUBLAS
for (int il = 0; il < n_layer; ++il) {
ggml_format_name(inpL, "layer_inp_%d", il);
offload_func_t offload_func = llama_nop;
#ifdef GGML_USE_CUBLAS
if (il >= i_gpu_start) {
offload_func = ggml_cuda_assign_buffers;
}
#endif // GGML_USE_CUBLAS
struct ggml_tensor * inpSA = inpL;
lctx.use_buf(ctx0, 0);
// norm
{
cur = ggml_rms_norm(ctx0, inpL);
offload_func(cur);
ggml_set_name(cur, "rms_norm_0");
// cur = cur*attention_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
offload_func(cur);
ggml_set_name(cur, "attention_norm_0");
}
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
offload_func_kq(tmpk);
ggml_set_name(tmpk, "tmpk");
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
offload_func_kq(tmpq);
ggml_set_name(tmpq, "tmpq");
struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
offload_func_kq(Kcur);
ggml_set_name(Kcur, "Kcur");
struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N), n_past, n_rot, 0, 0);
offload_func_kq(Qcur);
ggml_set_name(Qcur, "Qcur");
// store key and value to memory
{
// compute the transposed [N, n_embd] V matrix
struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
offload_func_v(tmpv);
ggml_set_name(tmpv, "tmpv");
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd, N));
offload_func_v(Vcur);
ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
offload_func_kq(k);
ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
offload_func_v(v);
ggml_set_name(v, "v");
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * Q =
ggml_permute(ctx0,
Qcur,
0, 2, 1, 3);
offload_func_kq(Q);
ggml_set_name(Q, "Q");
struct ggml_tensor * K =
ggml_permute(ctx0,
ggml_reshape_3d(ctx0,
ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
n_embd/n_head, n_head, n_past + N),
0, 2, 1, 3);
offload_func_kq(K);
ggml_set_name(K, "K");
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
offload_func_kq(KQ);
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd/n_head)
struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
offload_func_kq(KQ_scaled);
ggml_set_name(KQ_scaled, "KQ_scaled");
// KQ_masked = mask_past(KQ_scaled)
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
offload_func_kq(KQ_masked);
ggml_set_name(KQ_masked, "KQ_masked");
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
offload_func_v(KQ_soft_max);
ggml_set_name(KQ_soft_max, "KQ_soft_max");
// split cached V into n_head heads
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_past + N, n_embd/n_head, n_head,
n_ctx*ggml_element_size(kv_self.v),
n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
offload_func_v(V);
ggml_set_name(V, "V");
#if 1
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
offload_func_v(KQV);
ggml_set_name(KQV, "KQV");
#else
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
// is there a better way?
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
#endif
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
offload_func_v(KQV_merged);
ggml_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
offload_func_v(cur);
ggml_set_name(cur, "KQV_merged_contiguous");
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].wo,
cur);
offload_func(cur);
ggml_set_name(cur, "result_wo");
}
lctx.use_buf(ctx0, 1);
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
offload_func(inpFF);
ggml_set_name(inpFF, "inpFF");
// feed-forward network
{
// norm
{
cur = ggml_rms_norm(ctx0, inpFF);
offload_func(cur);
ggml_set_name(cur, "rms_norm_1");
// cur = cur*ffn_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
offload_func(cur);
ggml_set_name(cur, "ffn_norm");
}
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model.layers[il].w3,
cur);
offload_func(tmp);
ggml_set_name(tmp, "result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w1,
cur);
offload_func(cur);
ggml_set_name(cur, "result_w1");
// SILU activation
cur = ggml_silu(ctx0, cur);
offload_func(cur);
ggml_set_name(cur, "silu");
cur = ggml_mul(ctx0, cur, tmp);
offload_func(cur);
ggml_set_name(cur, "silu_x_result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w2,
cur);
offload_func(cur);
ggml_set_name(cur, "result_w2");
}
cur = ggml_add(ctx0, cur, inpFF);
offload_func(cur);
ggml_set_name(cur, "inpFF_+_result_w2");
// input for next layer
inpL = cur;
}
lctx.use_buf(ctx0, 0);
// used at the end to optionally extract the embeddings
struct ggml_tensor * embeddings = NULL;
// norm
{
cur = ggml_rms_norm(ctx0, inpL);
offload_func_nr(cur);
ggml_set_name(cur, "rms_norm_2");
// cur = cur*norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.norm);
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
ggml_set_name(cur, "result_norm");
embeddings = cur;
}
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
ggml_set_name(cur, "result_output");
lctx.use_buf(ctx0, -1);
// logits -> probs
//cur = ggml_soft_max_inplace(ctx0, cur);
// run the computation
ggml_build_forward_expand(&gf, cur);
#if GGML_USE_MPI
ggml_mpi_graph_compute_pre(lctx.ctx_mpi, &gf, n_layer);
#endif
#ifdef GGML_USE_METAL
if (lctx.ctx_metal && N == 1) {
ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
ggml_metal_graph_compute(lctx.ctx_metal, &gf);
ggml_metal_get_tensor (lctx.ctx_metal, cur);
} else {
// IMPORTANT:
// Since we don't have efficient Matrix x Matrix Metal multiplication yet, we fallback to vanilla
// ggml_graph_compute(). It uses Apple's Accelerate CBLAS API which takes advantage of the ANE or the AMX
// coprocessor.
//
// When we implement Matrix x Matrix Metal multiplication, we can avoid this branch.
// But for now, we have focused only on Matrix x Vector Metal multiplication.
//
// TODO: avoid these syncs via shared memory (ref #1696)
//
if (lctx.ctx_metal) {
// We need to sync the GPU KV cache with the CPU KV cache
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.k);
ggml_metal_get_tensor(lctx.ctx_metal, kv_self.v);
}
ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
}
#else
ggml_graph_compute_helper(lctx.work_buffer, &gf, n_threads);
#endif
#if GGML_USE_MPI
ggml_mpi_graph_compute_post(lctx.ctx_mpi, &gf, n_layer);
#endif
// update kv token count
lctx.kv_self.n = n_past + N;
struct ggml_tensor * res = gf.nodes[gf.n_nodes - 1];
if (cgraph_fname) {
ggml_graph_export(&gf, cgraph_fname);
}
#ifdef GGML_PERF
// print timing information per ggml operation (for debugging purposes)
// requires GGML_PERF to be defined
ggml_graph_print(&gf);
#endif
// plot the computation graph in dot format (for debugging purposes)
//if (n_past%100 == 0) {
// ggml_graph_dump_dot(&gf, NULL, "llama.dot");
//}
// extract logits
{
auto & logits_out = lctx.logits;
if (lctx.logits_all) {
logits_out.resize(n_vocab * N);
memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*N);
} else {
// return result for just the last token
logits_out.resize(n_vocab);
memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
}
}
// extract embeddings
if (!lctx.embedding.empty()) {
auto & embedding_out = lctx.embedding;
embedding_out.resize(n_embd);
memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
}
if (mem_per_token == 0) {
mem_per_token = ggml_used_mem(ctx0)/N;
}
#if 0
printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
ggml_used_mem(ctx0)/1024.0/1024.0,
lctx.get_buf_max_mem(0)/1024.0/1024.0,
lctx.get_buf_max_mem(1)/1024.0/1024.0);
#endif
ggml_free(ctx0);
// measure the performance only for the single-token evals
if (N == 1) {
lctx.t_eval_us += ggml_time_us() - t_start_us;
lctx.n_eval++;
}
else if (N > 1) {
lctx.t_p_eval_us += ggml_time_us() - t_start_us;
lctx.n_p_eval += N;
}
return true;
}
//
// tokenizer
//
static size_t utf8_len(char src) {
const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
uint8_t highbits = static_cast<uint8_t>(src) >> 4;
return lookup[highbits];
}
struct llama_sp_symbol {
using index = int;
index prev;
index next;
const char * text;
size_t n;
};
static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable");
struct llama_sp_bigram {
struct comparator {
bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
return (l.score < r.score) || (l.score == r.score && l.left > r.left);
}
};
using queue_storage = std::vector<llama_sp_bigram>;
using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
llama_sp_symbol::index left;
llama_sp_symbol::index right;
float score;
size_t size;
};
// original implementation:
// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
struct llama_tokenizer {
llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
// split string into utf8 chars
int index = 0;
size_t offs = 0;
while (offs < text.size()) {
llama_sp_symbol sym;
size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
sym.text = text.c_str() + offs;
sym.n = char_len;
offs += char_len;
sym.prev = index - 1;
sym.next = offs == text.size() ? -1 : index + 1;
index++;
symbols_.emplace_back(sym);
}
// seed the work queue with all possible 2-character tokens.
for (size_t i = 1; i < symbols_.size(); ++i) {
try_add_bigram(i - 1, i);
}
// keep substituting the highest frequency pairs for as long as we can.
while (!work_queue_.empty()) {
auto bigram = work_queue_.top();
work_queue_.pop();
auto & left_sym = symbols_[bigram.left];
auto & right_sym = symbols_[bigram.right];
// if one of the symbols already got merged, skip it.
if (left_sym.n == 0 || right_sym.n == 0 ||
left_sym.n + right_sym.n != bigram.size) {
continue;
}
// merge the right sym into the left one
left_sym.n += right_sym.n;
right_sym.n = 0;
//printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
// remove the right sym from the chain
left_sym.next = right_sym.next;
if (right_sym.next >= 0) {
symbols_[right_sym.next].prev = bigram.left;
}
// find more substitutions
try_add_bigram(left_sym.prev, bigram.left);
try_add_bigram(bigram.left, left_sym.next);
}
for (int i = 0; i != -1; i = symbols_[i].next) {
auto & symbol = symbols_[i];
auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
if (token == vocab_.token_to_id.end()) {
// output any symbols that did not form tokens as bytes.
for (int j = 0; j < (int) symbol.n; ++j) {
llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
output.push_back(token_id);
}
} else {
output.push_back((*token).second);
}
}
}
private:
void try_add_bigram(int left, int right) {
if (left == -1 || right == -1) {
return;
}
const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
auto token = vocab_.token_to_id.find(text);
if (token == vocab_.token_to_id.end()) {
return;
}
if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
return;
}
const auto &tok_score = vocab_.id_to_token[(*token).second];
llama_sp_bigram bigram;
bigram.left = left;
bigram.right = right;
bigram.score = tok_score.score;
bigram.size = text.size();
work_queue_.push(bigram);
}
const llama_vocab & vocab_;
std::vector<llama_sp_symbol> symbols_;
llama_sp_bigram::queue work_queue_;
};
static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
llama_tokenizer tokenizer(vocab);
std::vector<llama_vocab::id> output;
if (text.empty()) {
return output;
}
if (bos) {
output.push_back(llama_token_bos());
}
tokenizer.tokenize(text, output);
return output;
}
//
// sampling
//
void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
assert(candidates->size > 0);
const int64_t t_start_sample_us = ggml_time_us();
// Sort the logits in descending order
if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
candidates->sorted = true;
}
float max_l = candidates->data[0].logit;
float cum_sum = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
float p = expf(candidates->data[i].logit - max_l);
candidates->data[i].p = p;
cum_sum += p;
}
for (size_t i = 0; i < candidates->size; ++i) {
candidates->data[i].p /= cum_sum;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
const int64_t t_start_sample_us = ggml_time_us();
k = std::max(k, (int) min_keep);
k = std::min(k, (int) candidates->size);
// Sort scores in descending order
if (!candidates->sorted) {
auto comp = [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
};
if (k == (int) candidates->size) {
std::sort(candidates->data, candidates->data + candidates->size, comp);
} else {
std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
}
candidates->sorted = true;
}
candidates->size = k;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
if (p >= 1.0f) {
return;
}
llama_sample_softmax(ctx, candidates);
const int64_t t_start_sample_us = ggml_time_us();
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = candidates->size;
for (size_t i = 0; i < candidates->size; ++i) {
cum_sum += candidates->data[i].p;
// Check if the running sum is at least p or if we have kept at least min_keep tokens
// we set the last index to i+1 to indicate that the current iterate should be included in the set
if (cum_sum >= p && i + 1 >= min_keep) {
last_idx = i + 1;
break;
}
}
// Resize the output vector to keep only the top-p tokens
candidates->size = last_idx;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
if (z >= 1.0f || candidates->size <= 2) {
return;
}
llama_sample_softmax(nullptr, candidates);
const int64_t t_start_sample_us = ggml_time_us();
// Compute the first and second derivatives
std::vector<float> first_derivatives(candidates->size - 1);
std::vector<float> second_derivatives(candidates->size - 2);
for (size_t i = 0; i < first_derivatives.size(); ++i) {
first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
}
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
}
// Calculate absolute value of second derivatives
for (size_t i = 0; i < second_derivatives.size(); ++i) {
second_derivatives[i] = abs(second_derivatives[i]);
}
// Normalize the second derivatives
float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
for (float & value : second_derivatives) {
value /= second_derivatives_sum;
}
float cum_sum = 0.0f;
size_t last_idx = candidates->size;
for (size_t i = 0; i < second_derivatives.size(); ++i) {
cum_sum += second_derivatives[i];
// Check if the running sum is greater than z or if we have kept at least min_keep tokens
if (cum_sum > z && i >= min_keep) {
last_idx = i;
break;
}
}
// Resize the output vector to keep only the tokens above the tail location
candidates->size = last_idx;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
// Reference implementation:
// https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
if (p >= 1.0f) {
return;
}
// Compute the softmax of logits and calculate entropy
llama_sample_softmax(nullptr, candidates);
const int64_t t_start_sample_us = ggml_time_us();
float entropy = 0.0f;
for (size_t i = 0; i < candidates->size; ++i) {
entropy += -candidates->data[i].p * logf(candidates->data[i].p);
}
// Compute the absolute difference between negative log probability and entropy for each candidate
std::vector<float> shifted_scores;
for (size_t i = 0; i < candidates->size; ++i) {
float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
shifted_scores.push_back(shifted_score);
}
// Sort tokens based on the shifted_scores and their corresponding indices
std::vector<size_t> indices(candidates->size);
std::iota(indices.begin(), indices.end(), 0);
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
return shifted_scores[a] < shifted_scores[b];
});
// Compute the cumulative probabilities
float cum_sum = 0.0f;
size_t last_idx = indices.size();
for (size_t i = 0; i < indices.size(); ++i) {
size_t idx = indices[i];
cum_sum += candidates->data[idx].p;
// Check if the running sum is greater than typical or if we have kept at least min_keep tokens
if (cum_sum > p && i >= min_keep - 1) {
last_idx = i + 1;
break;
}
}
// Resize the output vector to keep only the locally typical tokens
std::vector<llama_token_data> new_candidates;
for (size_t i = 0; i < last_idx; ++i) {
size_t idx = indices[i];
new_candidates.push_back(candidates->data[idx]);
}
// Replace the data in candidates with the new_candidates data
std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
candidates->size = new_candidates.size();
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
const int64_t t_start_sample_us = ggml_time_us();
for (size_t i = 0; i < candidates_p->size; ++i) {
candidates_p->data[i].logit /= temp;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
if (last_tokens_size == 0 || penalty == 1.0f) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
for (size_t i = 0; i < candidates->size; ++i) {
const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
if (token_iter == last_tokens + last_tokens_size) {
continue;
}
// The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
// This is common fix for this problem, which is to multiply by the penalty instead of dividing.
if (candidates->data[i].logit <= 0) {
candidates->data[i].logit *= penalty;
} else {
candidates->data[i].logit /= penalty;
}
}
candidates->sorted = false;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
return;
}
const int64_t t_start_sample_us = ggml_time_us();
// Create a frequency map to count occurrences of each token in last_tokens
std::unordered_map<llama_token, int> token_count;
for (size_t i = 0; i < last_tokens_size; ++i) {
token_count[last_tokens_p[i]]++;
}
// Apply frequency and presence penalties to the candidates
for (size_t i = 0; i < candidates->size; ++i) {
auto token_iter = token_count.find(candidates->data[i].id);
if (token_iter == token_count.end()) {
continue;
}
int count = token_iter->second;
candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
}
candidates->sorted = false;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
static void llama_log_softmax(float * array, size_t size) {
float max_l = *std::max_element(array, array + size);
float sum = 0.f;
for (size_t i = 0; i < size; ++i) {
float p = expf(array[i] - max_l);
sum += p;
array[i] = p;
}
for (size_t i = 0; i < size; ++i) {
array[i] = logf(array[i] / sum);
}
}
void llama_sample_classifier_free_guidance(
struct llama_context * ctx,
llama_token_data_array * candidates,
struct llama_context * guidance_ctx,
float scale,
float smooth_factor) {
int64_t t_start_sample_us = t_start_sample_us = ggml_time_us();
assert(ctx);
auto n_vocab = llama_n_vocab(ctx);
assert(n_vocab == (int)candidates->size);
assert(!candidates->sorted);
std::vector<float> logits_base;
logits_base.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
logits_base.push_back(candidates->data[i].logit);
}
llama_log_softmax(logits_base.data(), candidates->size);
float* logits_guidance = llama_get_logits(guidance_ctx);
llama_log_softmax(logits_guidance, n_vocab);
for (int i = 0; i < n_vocab; ++i) {
float logit_guidance = logits_guidance[i];
float logit_base = logits_base[i];
logits_guidance[i] = scale * (logit_base - logit_guidance) + logit_guidance;
}
llama_log_softmax(logits_guidance, n_vocab);
for (int i = 0; i < n_vocab; ++i) {
float logit_base = logits_base[i];
float logit_guidance = logits_guidance[i];
candidates->data[i].logit = smooth_factor * logit_guidance + (1.f - smooth_factor) * logit_base;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
assert(ctx);
auto N = float(llama_n_vocab(ctx));
int64_t t_start_sample_us;
t_start_sample_us = ggml_time_us();
llama_sample_softmax(nullptr, candidates);
// Estimate s_hat using the most probable m tokens
float s_hat = 0.0;
float sum_ti_bi = 0.0;
float sum_ti_sq = 0.0;
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
float t_i = logf(float(i + 2) / float(i + 1));
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
sum_ti_bi += t_i * b_i;
sum_ti_sq += t_i * t_i;
}
s_hat = sum_ti_bi / sum_ti_sq;
// Compute k from the estimated s_hat and target surprise value
float epsilon_hat = s_hat - 1;
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
// Sample the next word X using top-k sampling
llama_sample_top_k(nullptr, candidates, int(k), 1);
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
llama_token X = llama_sample_token(ctx, candidates);
t_start_sample_us = ggml_time_us();
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
return X;
}
llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
int64_t t_start_sample_us;
t_start_sample_us = ggml_time_us();
llama_sample_softmax(ctx, candidates);
// Truncate the words with surprise values greater than mu
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return -log2f(candidate.p) > *mu;
}));
if (candidates->size == 0) {
candidates->size = 1;
}
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
// Normalize the probabilities of the remaining words
llama_sample_softmax(ctx, candidates);
// Sample the next word X from the remaining words
llama_token X = llama_sample_token(ctx, candidates);
t_start_sample_us = ggml_time_us();
// Compute error as the difference between observed surprise and target surprise value
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
return candidate.id == X;
}));
float observed_surprise = -log2f(candidates->data[X_idx].p);
float e = observed_surprise - tau;
// Update mu using the learning rate and error
*mu = *mu - eta * e;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
return X;
}
llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
const int64_t t_start_sample_us = ggml_time_us();
// Find max element
auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit < b.logit;
});
llama_token result = max_iter->id;
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
ctx->n_sample++;
}
return result;
}
llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
assert(ctx);
const int64_t t_start_sample_us = ggml_time_us();
llama_sample_softmax(nullptr, candidates);
std::vector<float> probs;
probs.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
probs.push_back(candidates->data[i].p);
}
std::discrete_distribution<> dist(probs.begin(), probs.end());
auto & rng = ctx->rng;
int idx = dist(rng);
llama_token result = candidates->data[idx].id;
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
ctx->n_sample++;
return result;
}
//
// quantization
//
static void llama_convert_tensor_internal(const llama_load_tensor & tensor, llama_buffer & output, const int nelements, const int nthread) {
if (output.size < nelements * sizeof(float)) {
output.resize(nelements * sizeof(float));
}
float * f32_output = (float *) output.addr;
ggml_type_traits_t qtype;
if (ggml_is_quantized(tensor.type)) {
qtype = ggml_internal_get_type_traits(tensor.type);
if (qtype.to_float == NULL) {
throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor.type)));
}
} else if (tensor.type != GGML_TYPE_F16) {
throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor.type)));
}
if (nthread < 2) {
if (tensor.type == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor.data, f32_output, nelements);
} else if (ggml_is_quantized(tensor.type)) {
qtype.to_float(tensor.data, f32_output, nelements);
} else {
LLAMA_ASSERT(false); // unreachable
}
return;
}
auto block_size = tensor.type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor.type);
auto block_size_bytes = ggml_type_size(tensor.type);
LLAMA_ASSERT(nelements % block_size == 0);
auto nblocks = nelements / block_size;
auto blocks_per_thread = nblocks / nthread;
auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
std::vector<std::thread> workers;
for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
auto thr_elems = thr_blocks * block_size; // number of elements for this thread
auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
if (typ == GGML_TYPE_F16) {
ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
} else {
qtype.to_float(inbuf, outbuf, nels);
}
};
workers.push_back(std::thread(compute, tensor.type, tensor.data + in_buff_offs, f32_output + out_buff_offs, thr_elems));
in_buff_offs += thr_block_bytes;
out_buff_offs += thr_elems;
}
for (auto & worker : workers) {
worker.join();
}
}
static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
ggml_type quantized_type;
llama_ftype ftype = params->ftype;
int nthread = params->nthread;
switch (params->ftype) {
case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
#ifdef GGML_USE_K_QUANTS
// K-quants
case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
case LLAMA_FTYPE_MOSTLY_Q3_K_S:
case LLAMA_FTYPE_MOSTLY_Q3_K_M:
case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
case LLAMA_FTYPE_MOSTLY_Q4_K_S:
case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
case LLAMA_FTYPE_MOSTLY_Q5_K_S:
case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
#endif
default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
}
if (nthread <= 0) {
nthread = std::thread::hardware_concurrency();
}
std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false));
llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loader.get(), params->ftype);
#ifdef GGML_USE_K_QUANTS
int n_attention_wv = 0;
int n_feed_forward_w2 = 0;
for (auto& tensor : model_loader->tensors_map.tensors) {
if (tensor.name.find("attention.wv.weight") != std::string::npos) {
++n_attention_wv;
}
else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
++n_feed_forward_w2;
}
}
int i_attention_wv = 0;
int i_feed_forward_w2 = 0;
#endif
size_t total_size_org = 0;
size_t total_size_new = 0;
std::vector<int64_t> hist_all(1 << 4, 0);
std::vector<std::thread> workers;
std::mutex mutex;
auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
};
size_t idx = 0;
for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
llama_buffer read_data;
read_data.resize(tensor.size);
tensor.data = read_data.addr;
model_loader->load_data_for(tensor);
printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
++idx, model_loader->tensors_map.tensors.size(),
tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
ggml_type_name(tensor.type));
// This used to be a regex, but <regex> has an extreme cost to compile times.
bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
// quantize only 2D tensors
quantize &= (tensor.ne.size() == 2);
quantize &= params->quantize_output_tensor || tensor.name != "output.weight";
quantize &= quantized_type != tensor.type;
enum ggml_type new_type;
void * new_data;
size_t new_size;
llama_buffer work;
if (!quantize) {
new_type = tensor.type;
new_data = tensor.data;
new_size = tensor.size;
printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
} else {
new_type = quantized_type;
#ifdef GGML_USE_K_QUANTS
bool convert_incompatible_tensor = false;
if (quantized_type == GGML_TYPE_Q2_K || quantized_type == GGML_TYPE_Q3_K || quantized_type == GGML_TYPE_Q4_K ||
quantized_type == GGML_TYPE_Q5_K || quantized_type == GGML_TYPE_Q6_K) {
int nx = tensor.ne.at(0);
int ny = tensor.ne.at(1);
if (nx % QK_K != 0 || ny % QK_K != 0) {
fprintf(stderr, "\n\nTensor sizes %d x %d are not divisible by %d, required for k-quants.\n",nx,ny,QK_K);
convert_incompatible_tensor = true;
}
}
if (tensor.name == "output.weight") {
int nx = tensor.ne.at(0);
int ny = tensor.ne.at(1);
if (nx % QK_K == 0 && ny % QK_K == 0) {
new_type = GGML_TYPE_Q6_K;
}
} else if (tensor.name.find("attention.wv.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
use_more_bits(i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
(i_attention_wv < n_attention_wv/8 || i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
++i_attention_wv;
} else if (tensor.name.find("feed_forward.w2.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
use_more_bits(i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
//else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && i_feed_forward_w2 < n_feed_forward_w2/8) new_type = GGML_TYPE_Q6_K;
++i_feed_forward_w2;
} else if (tensor.name.find("attention.wo.weight") != std::string::npos) {
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q4_K;
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
}
if (convert_incompatible_tensor) {
if (tensor.name == "output.weight") {
new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
fprintf(stderr, "F16 will be used for this tensor instead.\n");
} else if (tensor.name == "tok_embeddings.weight") {
new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
fprintf(stderr, "Q4_0 will be used for this tensor instead.\n");
} else {
throw std::runtime_error("Unsupported tensor size encountered\n");
}
}
#endif
float * f32_data;
size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
llama_buffer f32_conv_buf;
if (tensor.type == GGML_TYPE_F32) {
f32_data = (float *) tensor.data;
} else if (ggml_is_quantized(tensor.type) && !params->allow_requantize) {
throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor.type)));
} else {
llama_convert_tensor_internal(tensor, f32_conv_buf, nelements, nthread);
f32_data = (float *) f32_conv_buf.addr;
}
printf("quantizing .. ");
fflush(stdout);
work.resize(nelements * 4); // upper bound on size
new_data = work.addr;
std::vector<int64_t> hist_cur(1 << 4, 0);
int chunk_size = 32 * 512;
const int nchunk = (nelements + chunk_size - 1)/chunk_size;
const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
if (nthread_use < 2) {
new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
} else {
size_t counter = 0;
new_size = 0;
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
std::vector<int64_t> local_hist;
size_t local_size = 0;
while (true) {
std::unique_lock<std::mutex> lock(mutex);
size_t first = counter; counter += chunk_size;
if (first >= nelements) {
if (!local_hist.empty()) {
for (int j=0; j<int(local_hist.size()); ++j) {
hist_cur[j] += local_hist[j];
}
new_size += local_size;
}
break;
}
lock.unlock();
size_t last = std::min(nelements, first + chunk_size);
if (local_hist.empty()) {
local_hist.resize(hist_cur.size(), 0);
}
local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
}
};
if ((int) workers.size() < nthread_use - 1) {
workers.resize(nthread_use - 1);
}
for (int it = 0; it < nthread_use - 1; ++it) {
workers[it] = std::thread(compute);
}
compute();
for (int it = 0; it < nthread_use - 1; ++it) {
workers[it].join();
}
}
printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
int64_t tot_count = 0;
for (size_t i = 0; i < hist_cur.size(); i++) {
hist_all[i] += hist_cur[i];
tot_count += hist_cur[i];
}
if (tot_count > 0) {
for (size_t i = 0; i < hist_cur.size(); i++) {
printf("%5.3f ", hist_cur[i] / float(nelements));
}
}
printf("\n");
}
total_size_org += tensor.size;
total_size_new += new_size;
file_saver.write_tensor(tensor, new_type, new_data, new_size);
}
printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
{
int64_t sum_all = 0;
for (size_t i = 0; i < hist_all.size(); i++) {
sum_all += hist_all[i];
}
if (sum_all > 0) {
printf("%s: hist: ", __func__);
for (size_t i = 0; i < hist_all.size(); i++) {
printf("%5.3f ", hist_all[i] / float(sum_all));
}
printf("\n");
}
}
}
//
// interface implementation
//
struct llama_model * llama_load_model_from_file(
const char * path_model,
struct llama_context_params params) {
ggml_time_init();
llama_model * model = new llama_model;
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *model, model->vocab, params.n_ctx, params.n_batch, params.n_gpu_layers,
params.main_gpu, params.tensor_split, params.low_vram, memory_type, params.use_mmap, params.use_mlock,
params.vocab_only, params.progress_callback, params.progress_callback_user_data)) {
delete model;
fprintf(stderr, "%s: failed to load model\n", __func__);
return nullptr;
}
return model;
}
void llama_free_model(struct llama_model * model) {
delete model;
}
struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params) {
if (!model) {
return nullptr;
}
llama_context * ctx = new llama_context(*model, model->vocab);
if (params.seed == LLAMA_DEFAULT_SEED) {
params.seed = time(NULL);
}
unsigned cur_percentage = 0;
if (params.progress_callback == NULL) {
params.progress_callback_user_data = &cur_percentage;
params.progress_callback = [](float progress, void * ctx) {
unsigned * cur_percentage_p = (unsigned *) ctx;
unsigned percentage = (unsigned) (100 * progress);
while (percentage > *cur_percentage_p) {
*cur_percentage_p = percentage;
fprintf(stderr, ".");
fflush(stderr);
if (percentage >= 100) {
fprintf(stderr, "\n");
}
}
};
}
ctx->rng = std::mt19937(params.seed);
ctx->logits_all = params.logits_all;
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
// reserve memory for context buffers
if (!params.vocab_only) {
if (!kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
llama_free(ctx);
return nullptr;
}
{
const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
}
const auto & hparams = ctx->model.hparams;
// resized during inference
if (params.logits_all) {
ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
} else {
ctx->logits.reserve(hparams.n_vocab);
}
if (params.embedding){
ctx->embedding.resize(hparams.n_embd);
}
ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
}
#ifdef GGML_USE_METAL
if (params.n_gpu_layers > 0) {
// this allocates all Metal resources and memory buffers
ctx->ctx_metal = ggml_metal_init(1);
void * data_ptr = NULL;
size_t data_size = 0;
if (params.use_mmap) {
data_ptr = ctx->model.mapping->addr;
data_size = ctx->model.mapping->size;
} else {
data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
data_size = ggml_get_mem_size (ctx->model.ctx);
}
const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
printf("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
#define LLAMA_METAL_CHECK_BUF(result) \
if (!(result)) { \
fprintf(stderr, "%s: failed to add buffer\n", __func__); \
llama_free(ctx); \
return NULL; \
}
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.addr, ctx->buf_compute.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.addr, ctx->kv_self.buf.size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr0", ctx->buf_scratch[0].addr, ctx->buf_scratch[0].size, 0));
LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "scr1", ctx->buf_scratch[1].addr, ctx->buf_scratch[1].size, 0));
#undef LLAMA_METAL_CHECK_BUF
}
#endif
#ifdef GGML_USE_MPI
ctx->ctx_mpi = ggml_mpi_init();
if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
// Enter a blocking eval loop with dummy input, letting rank=0 drive the process
const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos());
while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
llama_backend_free();
exit(1);
}
#endif
return ctx;
}
struct llama_context * llama_init_from_file(
const char * path_model,
struct llama_context_params params) {
struct llama_model * model = llama_load_model_from_file(path_model, params);
if (!model) {
return nullptr;
}
struct llama_context * ctx = llama_new_context_with_model(model, params);
ctx->model_owner = true;
return ctx;
}
void llama_free(struct llama_context * ctx) {
if (ctx->model_owner) {
delete &ctx->model;
}
delete ctx;
}
int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params *params) {
try {
llama_model_quantize_internal(fname_inp, fname_out, params);
return 0;
} catch (const std::exception & err) {
fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.what());
return 1;
}
}
int llama_apply_lora_from_file_internal(const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads) {
fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
const int64_t t_start_lora_us = ggml_time_us();
auto fin = std::ifstream(path_lora, std::ios::binary);
if (!fin) {
fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
return 1;
}
// verify magic and version
{
uint32_t magic;
fin.read((char *) &magic, sizeof(magic));
if (magic != LLAMA_FILE_MAGIC_GGLA) {
fprintf(stderr, "%s: bad file magic\n", __func__);
return 1;
}
uint32_t format_version;
fin.read((char *) &format_version, sizeof(format_version));
if (format_version != 1) {
fprintf(stderr, "%s: unsupported file version\n", __func__ );
return 1;
}
}
int32_t lora_r;
int32_t lora_alpha;
fin.read((char *) &lora_r, sizeof(lora_r));
fin.read((char *) &lora_alpha, sizeof(lora_alpha));
float scaling = (float)lora_alpha / (float)lora_r;
fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
// create a temporary ggml context to store the lora tensors
// todo: calculate size from biggest possible tensor
std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
struct ggml_init_params params;
params.mem_size = lora_buf.size();
params.mem_buffer = lora_buf.data();
params.no_alloc = false;
ggml_context * lora_ctx = ggml_init(params);
std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
// create a name -> tensor map of the model to accelerate lookups
std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
for (const auto & kv: model.tensors_by_name) {
model_tensors.insert(kv);
}
// load base model
std::unique_ptr<llama_model_loader> model_loader;
ggml_context * base_ctx = NULL;
llama_buffer base_buf;
if (path_base_model) {
fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
size_t ctx_size;
size_t mmapped_size;
model_loader->calc_sizes(&ctx_size, &mmapped_size);
base_buf.resize(ctx_size);
ggml_init_params base_params;
base_params.mem_size = base_buf.size;
base_params.mem_buffer = base_buf.addr;
base_params.no_alloc = model_loader->use_mmap;
base_ctx = ggml_init(base_params);
model_loader->ggml_ctx = base_ctx;
// maybe this should in llama_model_loader
if (model_loader->use_mmap) {
model_loader->mapping.reset(new llama_mmap(&model_loader->file_loader->file, /* prefetch */ 0, ggml_is_numa()));
}
}
// read tensors and apply
bool warned = false;
int n_tensors = 0;
std::vector<uint8_t> work_buffer;
while (true) {
int32_t n_dims;
int32_t length;
int32_t ftype;
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
if (fin.eof()) {
break;
}
int32_t ne[2] = { 1, 1 };
for (int i = 0; i < n_dims; ++i) {
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
}
std::string name;
{
char buf[1024];
fin.read(buf, length);
name = std::string(buf, length);
}
// check for lora suffix and get the type of tensor
const std::string lora_suffix = ".lora";
size_t pos = name.rfind(lora_suffix);
if (pos == std::string::npos) {
fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
return 1;
}
std::string lora_type = name.substr(pos + lora_suffix.length());
std::string base_name = name;
base_name.erase(pos);
// fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
if (model_tensors.find(base_name) == model_tensors.end()) {
fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
return 1;
}
// create ggml tensor
ggml_type wtype;
switch (ftype) {
case 0: wtype = GGML_TYPE_F32; break;
case 1: wtype = GGML_TYPE_F16; break;
default:
{
fprintf(stderr, "%s: invalid tensor data type '%d'\n",
__func__, ftype);
return false;
}
}
ggml_tensor * lora_tensor;
if (n_dims == 2) {
lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
}
else {
fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
return 1;
}
ggml_set_name(lora_tensor, "lora_tensor");
// load tensor data
size_t offset = fin.tellg();
size_t tensor_data_size = ggml_nbytes(lora_tensor);
offset = (offset + 31) & -32;
fin.seekg(offset);
fin.read((char*)lora_tensor->data, tensor_data_size);
lora_tensors[name] = lora_tensor;
// check if we have both A and B tensors and apply
if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
ggml_tensor * dest_t = model_tensors[base_name];
offload_func_t offload_func = llama_nop;
offload_func_t offload_func_force_inplace = llama_nop;
#ifdef GGML_USE_CUBLAS
if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
if (dest_t->type != GGML_TYPE_F16) {
throw std::runtime_error(format(
"%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
}
offload_func = ggml_cuda_assign_buffers;
offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
}
#endif // GGML_USE_CUBLAS
ggml_tensor * base_t;
if (model_loader) {
// load from base model
if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
return 1;
}
size_t idx = model_loader->tensors_map.name_to_idx[base_name];
llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
lt.data = (uint8_t *) lt.ggml_tensor->data;
model_loader->load_data_for(lt);
lt.ggml_tensor->data = lt.data;
}
else {
base_t = dest_t;
}
if (ggml_is_quantized(base_t->type)) {
if (!warned) {
fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
"use a f16 or f32 base model with --lora-base\n", __func__);
warned = true;
}
}
ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
GGML_ASSERT(loraA->type == GGML_TYPE_F32);
ggml_set_name(loraA, "loraA");
ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
GGML_ASSERT(loraB->type == GGML_TYPE_F32);
ggml_set_name(loraB, "loraB");
if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
" are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
return 1;
}
// w = w + BA*s
ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
offload_func(BA);
ggml_set_name(BA, "BA");
if (scaling != 1.0f) {
ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
ggml_set_name(scale_tensor, "scale_tensor");
BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
offload_func(BA);
ggml_set_name(BA, "BA_scaled");
}
ggml_tensor * r;
if (base_t == dest_t) {
r = ggml_add_inplace(lora_ctx, dest_t, BA);
offload_func_force_inplace(r);
ggml_set_name(r, "r_add_inplace");
}
else {
r = ggml_add(lora_ctx, base_t, BA);
offload_func(r);
ggml_set_name(r, "r_add");
r = ggml_cpy(lora_ctx, r, dest_t);
offload_func(r);
ggml_set_name(r, "r_cpy");
}
struct ggml_cgraph gf = ggml_build_forward(r);
ggml_graph_compute_helper(work_buffer, &gf, n_threads);
// we won't need these tensors again, reset the context to save memory
ggml_free(lora_ctx);
lora_ctx = ggml_init(params);
lora_tensors.clear();
n_tensors++;
if (n_tensors % 4 == 0) {
fprintf(stderr, ".");
}
}
}
// TODO: this should be in a destructor, it will leak on failure
ggml_free(lora_ctx);
if (base_ctx) {
ggml_free(base_ctx);
}
const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
return 0;
}
int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
try {
return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
} catch (const std::exception & err) {
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
return 1;
}
}
int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
try {
return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
} catch (const std::exception & err) {
fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.what());
return 1;
}
}
int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
return ctx->kv_self.n;
}
#define LLAMA_MAX_RNG_STATE (64*1024)
void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
if (seed == LLAMA_DEFAULT_SEED) {
seed = time(NULL);
}
ctx->rng.seed(seed);
}
// Returns the *maximum* size of the state
size_t llama_get_state_size(const struct llama_context * ctx) {
// we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
// for reference, std::mt19937(1337) serializes to 6701 bytes.
const size_t s_rng_size = sizeof(size_t);
const size_t s_rng = LLAMA_MAX_RNG_STATE;
const size_t s_logits_capacity = sizeof(size_t);
const size_t s_logits_size = sizeof(size_t);
const size_t s_logits = ctx->logits.capacity() * sizeof(float);
const size_t s_embedding_size = sizeof(size_t);
const size_t s_embedding = ctx->embedding.size() * sizeof(float);
const size_t s_kv_size = sizeof(size_t);
const size_t s_kv_ntok = sizeof(int);
const size_t s_kv = ctx->kv_self.buf.size;
const size_t s_total = (
+ s_rng_size
+ s_rng
+ s_logits_capacity
+ s_logits_size
+ s_logits
+ s_embedding_size
+ s_embedding
+ s_kv_size
+ s_kv_ntok
+ s_kv
);
return s_total;
}
// Copies the state to the specified destination address
size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
uint8_t * out = dst;
// copy rng
{
std::stringstream rng_ss;
rng_ss << ctx->rng;
const size_t rng_size = rng_ss.str().size();
char rng_buf[LLAMA_MAX_RNG_STATE];
memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
}
// copy logits
{
const size_t logits_cap = ctx->logits.capacity();
const size_t logits_size = ctx->logits.size();
memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
if (logits_size) {
memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
}
out += logits_cap * sizeof(float);
}
// copy embeddings
{
const size_t embedding_size = ctx->embedding.size();
memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
if (embedding_size) {
memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
out += embedding_size * sizeof(float);
}
}
// copy kv cache
{
const auto & kv_self = ctx->kv_self;
const auto & hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd;
const int n_ctx = hparams.n_ctx;
const size_t kv_size = kv_self.buf.size;
const int kv_ntok = llama_get_kv_cache_token_count(ctx);
memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
if (kv_size) {
const size_t elt_size = ggml_element_size(kv_self.k);
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};
ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
kout3d->data = out;
out += ggml_nbytes(kout3d);
ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
vout3d->data = out;
out += ggml_nbytes(vout3d);
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
n_embd, kv_ntok, n_layer,
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
kv_ntok, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
ggml_free(cpy_ctx);
}
}
const size_t written = out - dst;
const size_t max_size = llama_get_state_size(ctx);
LLAMA_ASSERT(written <= max_size);
return written;
}
// Sets the state reading from the specified source address
size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
uint8_t * inp = src;
// set rng
{
size_t rng_size;
char rng_buf[LLAMA_MAX_RNG_STATE];
memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
std::stringstream rng_ss;
rng_ss.str(std::string(&rng_buf[0], rng_size));
rng_ss >> ctx->rng;
LLAMA_ASSERT(rng_ss.fail() == false);
}
// set logits
{
size_t logits_cap;
size_t logits_size;
memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
if (logits_size) {
ctx->logits.resize(logits_size);
memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
}
inp += logits_cap * sizeof(float);
}
// set embeddings
{
size_t embedding_size;
memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
if (embedding_size) {
memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
inp += embedding_size * sizeof(float);
}
}
// set kv cache
{
const auto & kv_self = ctx->kv_self;
const auto & hparams = ctx->model.hparams;
const int n_layer = hparams.n_layer;
const int n_embd = hparams.n_embd;
const int n_ctx = hparams.n_ctx;
size_t kv_size;
int kv_ntok;
memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
if (kv_size) {
LLAMA_ASSERT(kv_self.buf.size == kv_size);
const size_t elt_size = ggml_element_size(kv_self.k);
ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
ggml_cgraph gf{};
ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
kin3d->data = (void *) inp;
inp += ggml_nbytes(kin3d);
ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
vin3d->data = (void *) inp;
inp += ggml_nbytes(vin3d);
ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
n_embd, kv_ntok, n_layer,
elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
kv_ntok, n_embd, n_layer,
elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
ggml_free(cpy_ctx);
}
ctx->kv_self.n = kv_ntok;
}
const size_t nread = inp - src;
const size_t max_size = llama_get_state_size(ctx);
LLAMA_ASSERT(nread <= max_size);
return nread;
}
static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
llama_file file(path_session, "rb");
// sanity checks
{
const uint32_t magic = file.read_u32();
const uint32_t version = file.read_u32();
if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
return false;
}
llama_hparams session_hparams;
file.read_raw(&session_hparams, sizeof(llama_hparams));
if (session_hparams != ctx->model.hparams) {
fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
return false;
}
}
// load the prompt
{
const uint32_t n_token_count = file.read_u32();
if (n_token_count > n_token_capacity) {
fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
return false;
}
file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
*n_token_count_out = n_token_count;
}
// restore the context state
{
const size_t n_state_size_cur = file.size - file.tell();
const size_t n_state_size_max = llama_get_state_size(ctx);
if (n_state_size_cur > n_state_size_max) {
fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
return false;
}
std::vector<uint8_t> state_data(n_state_size_max);
file.read_raw(state_data.data(), n_state_size_cur);
llama_set_state_data(ctx, state_data.data());
}
return true;
}
bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
try {
return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
} catch (const std::exception & err) {
fprintf(stderr, "error loading session file: %s\n", err.what());
return false;
}
}
bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
llama_file file(path_session, "wb");
file.write_u32(LLAMA_SESSION_MAGIC);
file.write_u32(LLAMA_SESSION_VERSION);
file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
// save the prompt
file.write_u32((uint32_t) n_token_count);
file.write_raw(tokens, sizeof(llama_token) * n_token_count);
// save the context state
{
const size_t n_state_size_max = llama_get_state_size(ctx);
std::vector<uint8_t> state_data(n_state_size_max);
const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
file.write_raw(state_data.data(), n_state_size_cur);
}
return true;
}
int llama_eval(
struct llama_context * ctx,
const llama_token * tokens,
int n_tokens,
int n_past,
int n_threads) {
if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
return 1;
}
// get a more accurate load time, upon first eval
// TODO: fix this
if (!ctx->has_evaluated_once) {
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
ctx->has_evaluated_once = true;
}
return 0;
}
int llama_eval_embd(
struct llama_context * ctx,
const float * embd,
int n_tokens,
int n_past,
int n_threads) {
if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
return 1;
}
// get a more accurate load time, upon first eval
// TODO: fix this
if (!ctx->has_evaluated_once) {
ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
ctx->has_evaluated_once = true;
}
return 0;
}
int llama_eval_export(struct llama_context * ctx, const char * fname) {
const int n_batch = 1;
const int n_ctx = 512 - n_batch;
const std::vector<llama_token> tmp(n_batch, llama_token_bos());
if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
fprintf(stderr, "%s: failed to eval\n", __func__);
return 1;
}
return 0;
}
int llama_tokenize(
struct llama_context * ctx,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos) {
auto res = llama_tokenize(ctx->vocab, text, add_bos);
if (n_max_tokens < (int) res.size()) {
fprintf(stderr, "%s: too many tokens\n", __func__);
return -((int) res.size());
}
for (size_t i = 0; i < res.size(); i++) {
tokens[i] = res[i];
}
return res.size();
}
int llama_n_vocab(const struct llama_context * ctx) {
return ctx->vocab.id_to_token.size();
}
int llama_n_ctx(const struct llama_context * ctx) {
return ctx->model.hparams.n_ctx;
}
int llama_n_embd(const struct llama_context * ctx) {
return ctx->model.hparams.n_embd;
}
int llama_get_vocab(
const struct llama_context * ctx,
const char * * strings,
float * scores,
int capacity) {
int n = std::min(capacity, (int) ctx->vocab.id_to_token.size());
for (int i = 0; i<n; ++i) {
strings[i] = ctx->vocab.id_to_token[i].tok.c_str();
scores[i] = ctx->vocab.id_to_token[i].score;
}
return n;
}
float * llama_get_logits(struct llama_context * ctx) {
return ctx->logits.data();
}
float * llama_get_embeddings(struct llama_context * ctx) {
return ctx->embedding.data();
}
const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
if (token >= llama_n_vocab(ctx)) {
return nullptr;
}
return ctx->vocab.id_to_token[token].tok.c_str();
}
llama_token llama_token_bos() {
return 1;
}
llama_token llama_token_eos() {
return 2;
}
llama_token llama_token_nl() {
return 13;
}
struct llama_timings llama_get_timings(struct llama_context * ctx) {
struct llama_timings result = {
/*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
/*.t_end_ms =*/ 1.00 * ggml_time_ms(),
/*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
/*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
/*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
/*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
/*.n_sample =*/ std::max(1, ctx->n_sample),
/*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
/*.n_eval =*/ std::max(1, ctx->n_eval),
};
return result;
}
void llama_print_timings(struct llama_context * ctx) {
const llama_timings timings = llama_get_timings(ctx);
fprintf(stderr, "\n");
fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
__func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
}
void llama_reset_timings(struct llama_context * ctx) {
ctx->t_start_us = ggml_time_us();
ctx->t_sample_us = ctx->n_sample = 0;
ctx->t_eval_us = ctx->n_eval = 0;
ctx->t_p_eval_us = ctx->n_p_eval = 0;
}
const char * llama_print_system_info(void) {
static std::string s;
s = "";
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
return s.c_str();
}
// For internal test use
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
return ctx->model.tensors_by_name;
}
// MIT License
// Copyright (c) 2023 go-skynet authors
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
package llama
// #cgo LDFLAGS: -Lbuild -lbinding -lllama -lm -lggml_static -lstdc++
// #cgo CXXFLAGS: -std=c++11
// #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
// #include "binding/binding.h"
// #include <stdlib.h>
import "C"
/*
#cgo CPPFLAGS: -O3 -DNDEBUG=1
#cgo CXXFLAGS: -std=c++11
#cgo darwin CPPFLAGS: -DGGML_USE_METAL=1 -DGGML_METAL_NDEBUG=1
#cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders
#include <stdlib.h>
#include "llama.h"
struct llama_sample_options
{
float repeat_penalty;
float frequency_penalty;
float presence_penalty;
float temperature;
int32_t top_k;
float top_p;
float tfs_z;
float typical_p;
int mirostat;
float mirostat_tau;
float mirostat_eta;
};
llama_token llama_sample(
struct llama_context *ctx,
struct llama_token_data *candidates,
size_t n_candidates,
const llama_token *last_tokens,
size_t n_last_tokens,
struct llama_sample_options *opts)
{
llama_token_data_array candidates_p = {
candidates,
n_candidates,
false,
};
llama_sample_repetition_penalty(
ctx, &candidates_p,
last_tokens, n_last_tokens,
opts->repeat_penalty);
llama_sample_frequency_and_presence_penalties(
ctx, &candidates_p,
last_tokens, n_last_tokens,
opts->frequency_penalty, opts->presence_penalty);
if (opts->temperature <= 0) {
return llama_sample_token_greedy(ctx, &candidates_p);
}
if (opts->mirostat == 1) {
int mirostat_m = 100;
float mirostat_mu = 2.0f * opts->mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
return llama_sample_token_mirostat(
ctx, &candidates_p,
opts->mirostat_tau, opts->mirostat_eta,
mirostat_m, &mirostat_mu);
} else if (opts->mirostat == 2) {
float mirostat_mu = 2.0f * opts->mirostat_tau;
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
return llama_sample_token_mirostat_v2(
ctx, &candidates_p,
opts->mirostat_tau, opts->mirostat_eta,
&mirostat_mu);
} else {
llama_sample_top_k(ctx, &candidates_p, opts->top_k, 1);
llama_sample_tail_free(ctx, &candidates_p, opts->tfs_z, 1);
llama_sample_typical(ctx, &candidates_p, opts->typical_p, 1);
llama_sample_top_p(ctx, &candidates_p, opts->top_p, 1);
llama_sample_temperature(ctx, &candidates_p, opts->temperature);
return llama_sample_token(ctx, &candidates_p);
}
}
*/
import "C"
import (
"fmt"
"errors"
"io"
"os"
"strings"
"sync"
"unsafe"
"github.com/jmorganca/ollama/api"
)
type LLama struct {
ctx unsafe.Pointer
embeddings bool
contextSize int
}
type llama struct {
params *C.struct_llama_context_params
model *C.struct_llama_model
ctx *C.struct_llama_context
func New(model string, mo ModelOptions) (*LLama, error) {
modelPath := C.CString(model)
defer C.free(unsafe.Pointer(modelPath))
api.Options
}
ctx := C.load_model(modelPath, C.int(mo.ContextSize), C.int(mo.Seed), C.bool(mo.F16Memory), C.bool(mo.MLock), C.bool(mo.Embeddings), C.bool(mo.MMap), C.bool(mo.LowVRAM), C.bool(mo.VocabOnly), C.int(mo.NGPULayers), C.int(mo.NBatch), C.CString(mo.MainGPU), C.CString(mo.TensorSplit), C.bool(mo.NUMA))
if ctx == nil {
return nil, fmt.Errorf("failed loading model")
func New(model string, opts api.Options) (*llama, error) {
if _, err := os.Stat(model); err != nil {
return nil, err
}
ll := &LLama{ctx: ctx, contextSize: mo.ContextSize, embeddings: mo.Embeddings}
return ll, nil
llm := llama{Options: opts}
C.llama_backend_init(C.bool(llm.UseNUMA))
params := C.llama_context_default_params()
params.seed = C.uint(llm.Seed)
params.n_ctx = C.int(llm.NumCtx)
params.n_batch = C.int(llm.NumBatch)
params.n_gpu_layers = C.int(llm.NumGPU)
params.main_gpu = C.int(llm.MainGPU)
params.low_vram = C.bool(llm.LowVRAM)
params.f16_kv = C.bool(llm.F16KV)
params.logits_all = C.bool(llm.LogitsAll)
params.vocab_only = C.bool(llm.VocabOnly)
params.use_mmap = C.bool(llm.UseMMap)
params.use_mlock = C.bool(llm.UseMLock)
params.embedding = C.bool(llm.EmbeddingOnly)
llm.params = &params
cModel := C.CString(model)
defer C.free(unsafe.Pointer(cModel))
llm.model = C.llama_load_model_from_file(cModel, params)
llm.ctx = C.llama_new_context_with_model(llm.model, params)
// warm up the model
bos := []C.llama_token{C.llama_token_bos()}
C.llama_eval(llm.ctx, unsafe.SliceData(bos), C.int(len(bos)), 0, C.int(opts.NumThread))
C.llama_reset_timings(llm.ctx)
return &llm, nil
}
func (l *LLama) Free() {
C.llama_binding_free_model(l.ctx)
func (llm *llama) Close() {
defer C.llama_free_model(llm.model)
defer C.llama_free(llm.ctx)
C.llama_print_timings(llm.ctx)
}
func (l *LLama) Eval(text string, po PredictOptions) error {
input := C.CString(text)
if po.Tokens == 0 {
po.Tokens = 99999999
}
defer C.free(unsafe.Pointer(input))
reverseCount := len(po.StopPrompts)
reversePrompt := make([]*C.char, reverseCount)
var pass **C.char
for i, s := range po.StopPrompts {
cs := C.CString(s)
reversePrompt[i] = cs
pass = &reversePrompt[0]
defer C.free(unsafe.Pointer(cs))
func (llm *llama) Predict(prompt string, fn func(string)) error {
if tokens := llm.tokenize(prompt); tokens != nil {
return llm.generate(tokens, fn)
}
cLogitBias := C.CString(po.LogitBias)
defer C.free(unsafe.Pointer(cLogitBias))
cMainGPU := C.CString(po.MainGPU)
defer C.free(unsafe.Pointer(cMainGPU))
cTensorSplit := C.CString(po.TensorSplit)
defer C.free(unsafe.Pointer(cTensorSplit))
return errors.New("llama: tokenize")
}
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), cLogitBias,
C.bool(po.MLock), C.bool(po.MMap), cMainGPU, cTensorSplit,
)
defer C.llama_free_params(params)
func (llm *llama) tokenize(prompt string) []C.llama_token {
cPrompt := C.CString(prompt)
defer C.free(unsafe.Pointer(cPrompt))
ret := C.eval(params, l.ctx, input)
if ret != 0 {
return fmt.Errorf("inference failed")
tokens := make([]C.llama_token, llm.NumCtx)
if n := C.llama_tokenize(llm.ctx, cPrompt, unsafe.SliceData(tokens), C.int(len(tokens)), true); n > 0 {
return tokens[:n]
}
return nil
}
func (l *LLama) Predict(text string, po PredictOptions) (string, error) {
if po.TokenCallback != nil {
setCallback(l.ctx, po.TokenCallback)
func (llm *llama) detokenize(tokens ...C.llama_token) string {
var sb strings.Builder
for _, token := range tokens {
sb.WriteString(C.GoString(C.llama_token_to_str(llm.ctx, token)))
}
input := C.CString(text)
if po.Tokens == 0 {
po.Tokens = 99999999
}
defer C.free(unsafe.Pointer(input))
out := make([]byte, po.Tokens)
reverseCount := len(po.StopPrompts)
reversePrompt := make([]*C.char, reverseCount)
var pass **C.char
for i, s := range po.StopPrompts {
cs := C.CString(s)
reversePrompt[i] = cs
pass = &reversePrompt[0]
defer C.free(unsafe.Pointer(cs))
}
cLogitBias := C.CString(po.LogitBias)
defer C.free(unsafe.Pointer(cLogitBias))
cMainGPU := C.CString(po.MainGPU)
defer C.free(unsafe.Pointer(cMainGPU))
cTensorSplit := C.CString(po.TensorSplit)
defer C.free(unsafe.Pointer(cTensorSplit))
params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK),
C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat),
C.bool(po.IgnoreEOS), C.bool(po.F16KV),
C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount),
C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty),
C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), cLogitBias,
C.bool(po.MLock), C.bool(po.MMap), cMainGPU, cTensorSplit,
)
defer C.llama_free_params(params)
ret := C.llama_predict(params, l.ctx, (*C.char)(unsafe.Pointer(&out[0])), C.bool(po.DebugMode))
if ret != 0 {
return "", fmt.Errorf("inference failed")
}
res := C.GoString((*C.char)(unsafe.Pointer(&out[0])))
res = strings.TrimPrefix(res, " ")
res = strings.TrimPrefix(res, text)
res = strings.TrimPrefix(res, "\n")
for _, s := range po.StopPrompts {
res = strings.TrimRight(res, s)
}
if po.TokenCallback != nil {
setCallback(l.ctx, nil)
}
return res, nil
}
// CGo only allows us to use static calls from C to Go, we can't just dynamically pass in func's.
// This is the next best thing, we register the callbacks in this map and call tokenCallback from
// the C code. We also attach a finalizer to LLama, so it will unregister the callback when the
// garbage collection frees it.
// SetTokenCallback registers a callback for the individual tokens created when running Predict. It
// will be called once for each token. The callback shall return true as long as the model should
// continue predicting the next token. When the callback returns false the predictor will return.
// The tokens are just converted into Go strings, they are not trimmed or otherwise changed. Also
// the tokens may not be valid UTF-8.
// Pass in nil to remove a callback.
//
// It is save to call this method while a prediction is running.
func (l *LLama) SetTokenCallback(callback func(token string) bool) {
setCallback(l.ctx, callback)
return sb.String()
}
var (
m sync.Mutex
callbacks = map[uintptr]func(string) bool{}
)
//export tokenCallback
func tokenCallback(statePtr unsafe.Pointer, token *C.char) bool {
m.Lock()
defer m.Unlock()
if callback, ok := callbacks[uintptr(statePtr)]; ok {
return callback(C.GoString(token))
func (llm *llama) generate(tokens []C.llama_token, fn func(string)) error {
var opts C.struct_llama_sample_options
opts.repeat_penalty = C.float(llm.RepeatPenalty)
opts.frequency_penalty = C.float(llm.FrequencyPenalty)
opts.presence_penalty = C.float(llm.PresencePenalty)
opts.temperature = C.float(llm.Temperature)
opts.top_k = C.int(llm.TopK)
opts.top_p = C.float(llm.TopP)
opts.tfs_z = C.float(llm.TFSZ)
opts.typical_p = C.float(llm.TypicalP)
opts.mirostat = C.int(llm.Mirostat)
opts.mirostat_tau = C.float(llm.MirostatTau)
opts.mirostat_eta = C.float(llm.MirostatEta)
pastTokens := deque[C.llama_token]{capacity: llm.RepeatLastN}
for C.llama_get_kv_cache_token_count(llm.ctx) < C.int(llm.NumCtx) {
if retval := C.llama_eval(llm.ctx, unsafe.SliceData(tokens), C.int(len(tokens)), C.llama_get_kv_cache_token_count(llm.ctx), C.int(llm.NumThread)); retval != 0 {
return errors.New("llama: eval")
}
token, err := llm.sample(pastTokens, &opts)
switch {
case err != nil:
return err
case errors.Is(err, io.EOF):
return nil
}
fn(llm.detokenize(token))
tokens = []C.llama_token{token}
pastTokens.PushLeft(token)
}
return true
return nil
}
// setCallback can be used to register a token callback for LLama. Pass in a nil callback to
// remove the callback.
func setCallback(statePtr unsafe.Pointer, callback func(string) bool) {
m.Lock()
defer m.Unlock()
func (llm *llama) sample(pastTokens deque[C.llama_token], opts *C.struct_llama_sample_options) (C.llama_token, error) {
numVocab := int(C.llama_n_vocab(llm.ctx))
logits := unsafe.Slice(C.llama_get_logits(llm.ctx), numVocab)
candidates := make([]C.struct_llama_token_data, 0, numVocab)
for i := 0; i < numVocab; i++ {
candidates = append(candidates, C.llama_token_data{
id: C.int(i),
logit: logits[i],
p: 0,
})
}
if callback == nil {
delete(callbacks, uintptr(statePtr))
} else {
callbacks[uintptr(statePtr)] = callback
token := C.llama_sample(
llm.ctx,
unsafe.SliceData(candidates), C.ulong(len(candidates)),
unsafe.SliceData(pastTokens.Data()), C.ulong(pastTokens.Len()),
opts)
if token != C.llama_token_eos() {
return token, nil
}
return 0, io.EOF
}
/**
* llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066
*
* MIT License
*
* Copyright (c) 2023 Georgi Gerganov
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef LLAMA_H
#define LLAMA_H
#include "ggml.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
#else
#define LLAMA_MAX_DEVICES 1
#endif // GGML_USE_CUBLAS
#include <stddef.h>
#include <stdint.h>
#include <stdbool.h>
#ifdef LLAMA_SHARED
# if defined(_WIN32) && !defined(__MINGW32__)
# ifdef LLAMA_BUILD
# define LLAMA_API __declspec(dllexport)
# else
# define LLAMA_API __declspec(dllimport)
# endif
# else
# define LLAMA_API __attribute__ ((visibility ("default")))
# endif
#else
# define LLAMA_API
#endif
#ifdef __GNUC__
# define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
#elif defined(_MSC_VER)
# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
#else
# define DEPRECATED(func, hint) func
#endif
#define LLAMA_FILE_MAGIC_GGJT 0x67676a74u // 'ggjt'
#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
#define LLAMA_FILE_MAGIC_GGMF 0x67676d66u // 'ggmf'
#define LLAMA_FILE_MAGIC_GGML 0x67676d6cu // 'ggml'
#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
#define LLAMA_FILE_VERSION 3
#define LLAMA_FILE_MAGIC LLAMA_FILE_MAGIC_GGJT
#define LLAMA_FILE_MAGIC_UNVERSIONED LLAMA_FILE_MAGIC_GGML
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
#define LLAMA_SESSION_VERSION 1
#define LLAMA_DEFAULT_SEED 0xFFFFFFFF
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL)
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
#define LLAMA_SUPPORTS_GPU_OFFLOAD
#endif
#ifdef __cplusplus
extern "C" {
#endif
//
// C interface
//
// TODO: show sample usage
//
struct llama_model;
struct llama_context;
typedef int llama_token;
typedef struct llama_token_data {
llama_token id; // token id
float logit; // log-odds of the token
float p; // probability of the token
} llama_token_data;
typedef struct llama_token_data_array {
llama_token_data * data;
size_t size;
bool sorted;
} llama_token_data_array;
typedef void (*llama_progress_callback)(float progress, void *ctx);
struct llama_context_params {
uint32_t seed; // RNG seed, -1 for random
int32_t n_ctx; // text context
int32_t n_batch; // prompt processing batch size
int32_t n_gpu_layers; // number of layers to store in VRAM
int32_t main_gpu; // the GPU that is used for scratch and small tensors
float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
// called with a progress value between 0 and 1, pass NULL to disable
llama_progress_callback progress_callback;
// context pointer passed to the progress callback
void * progress_callback_user_data;
// Keep the booleans together to avoid misalignment during copy-by-value.
bool low_vram; // if true, reduce VRAM usage at the cost of performance
bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one
bool vocab_only; // only load the vocabulary, no weights
bool use_mmap; // use mmap if possible
bool use_mlock; // force system to keep model in RAM
bool embedding; // embedding mode only
};
// model file types
enum llama_ftype {
LLAMA_FTYPE_ALL_F32 = 0,
LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
// LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
// LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
LLAMA_FTYPE_MOSTLY_Q2_K = 10,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_S = 11,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_M = 12,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q3_K_L = 13,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_S = 14,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q4_K_M = 15,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_S = 16,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q5_K_M = 17,// except 1d tensors
LLAMA_FTYPE_MOSTLY_Q6_K = 18,// except 1d tensors
};
// model quantization parameters
typedef struct llama_model_quantize_params {
int nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
enum llama_ftype ftype; // quantize to this llama_ftype
bool allow_requantize; // allow quantizing non-f32/f16 tensors
bool quantize_output_tensor; // quantize output.weight
} llama_model_quantize_params;
// performance timing information
struct llama_timings {
double t_start_ms;
double t_end_ms;
double t_load_ms;
double t_sample_ms;
double t_p_eval_ms;
double t_eval_ms;
int32_t n_sample;
int32_t n_p_eval;
int32_t n_eval;
};
LLAMA_API struct llama_context_params llama_context_default_params();
LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params();
LLAMA_API bool llama_mmap_supported();
LLAMA_API bool llama_mlock_supported();
// TODO: not great API - very likely to change
// Initialize the llama + ggml backend
// If numa is true, use NUMA optimizations
// Call once at the start of the program
LLAMA_API void llama_backend_init(bool numa);
// Call once at the end of the program - currently only used for MPI
LLAMA_API void llama_backend_free();
LLAMA_API int64_t llama_time_us();
LLAMA_API struct llama_model * llama_load_model_from_file(
const char * path_model,
struct llama_context_params params);
LLAMA_API void llama_free_model(struct llama_model * model);
LLAMA_API struct llama_context * llama_new_context_with_model(
struct llama_model * model,
struct llama_context_params params);
// Various functions for loading a ggml llama model.
// Allocate (almost) all memory needed for the model.
// Return NULL on failure
LLAMA_API DEPRECATED(struct llama_context * llama_init_from_file(
const char * path_model,
struct llama_context_params params),
"please use llama_load_model_from_file combined with llama_new_context_with_model instead");
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
// Returns 0 on success
LLAMA_API int llama_model_quantize(
const char * fname_inp,
const char * fname_out,
const llama_model_quantize_params * params);
// Apply a LoRA adapter to a loaded model
// path_base_model is the path to a higher quality model to use as a base for
// the layers modified by the adapter. Can be NULL to use the current loaded model.
// The model needs to be reloaded before applying a new adapter, otherwise the adapter
// will be applied on top of the previous one
// Returns 0 on success
LLAMA_API DEPRECATED(int llama_apply_lora_from_file(
struct llama_context * ctx,
const char * path_lora,
const char * path_base_model,
int n_threads),
"please use llama_model_apply_lora_from_file instead");
LLAMA_API int llama_model_apply_lora_from_file(
const struct llama_model * model,
const char * path_lora,
const char * path_base_model,
int n_threads);
// Returns the number of tokens in the KV cache
LLAMA_API int llama_get_kv_cache_token_count(const struct llama_context * ctx);
// Sets the current rng seed.
LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
// Returns the maximum size in bytes of the state (rng, logits, embedding
// and kv_cache) - will often be smaller after compacting tokens
LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
// Copies the state to the specified destination address.
// Destination needs to have allocated enough memory.
// Returns the number of bytes copied
LLAMA_API size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst);
// Set the state reading from the specified address
// Returns the number of bytes read
LLAMA_API size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src);
// Save/load session file
LLAMA_API bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out);
LLAMA_API bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count);
// Run the llama inference to obtain the logits and probabilities for the next token.
// tokens + n_tokens is the provided batch of new tokens to process
// n_past is the number of tokens to use from previous eval calls
// Returns 0 on success
LLAMA_API int llama_eval(
struct llama_context * ctx,
const llama_token * tokens,
int n_tokens,
int n_past,
int n_threads);
// Same as llama_eval, but use float matrix input directly.
LLAMA_API int llama_eval_embd(
struct llama_context * ctx,
const float * embd,
int n_tokens,
int n_past,
int n_threads);
// Export a static computation graph for context of 511 and batch size of 1
// NOTE: since this functionality is mostly for debugging and demonstration purposes, we hardcode these
// parameters here to keep things simple
// IMPORTANT: do not use for anything else other than debugging and testing!
LLAMA_API int llama_eval_export(struct llama_context * ctx, const char * fname);
// Convert the provided text into tokens.
// The tokens pointer must be large enough to hold the resulting tokens.
// Returns the number of tokens on success, no more than n_max_tokens
// Returns a negative number on failure - the number of tokens that would have been returned
// TODO: not sure if correct
LLAMA_API int llama_tokenize(
struct llama_context * ctx,
const char * text,
llama_token * tokens,
int n_max_tokens,
bool add_bos);
LLAMA_API int llama_n_vocab(const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
// Get the vocabulary as output parameters.
// Returns number of results.
LLAMA_API int llama_get_vocab(
const struct llama_context * ctx,
const char * * strings,
float * scores,
int capacity);
// Token logits obtained from the last call to llama_eval()
// The logits for the last token are stored in the last row
// Can be mutated in order to change the probabilities of the next token
// Rows: n_tokens
// Cols: n_vocab
LLAMA_API float * llama_get_logits(struct llama_context * ctx);
// Get the embeddings for the input
// shape: [n_embd] (1-dimensional)
LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
// Token Id -> String. Uses the vocabulary in the provided context
LLAMA_API const char * llama_token_to_str(const struct llama_context * ctx, llama_token token);
// Special tokens
LLAMA_API llama_token llama_token_bos(); // beginning-of-sentence
LLAMA_API llama_token llama_token_eos(); // end-of-sentence
LLAMA_API llama_token llama_token_nl(); // next-line
// Sampling functions
/// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
LLAMA_API void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty);
/// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
LLAMA_API void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float alpha_frequency, float alpha_presence);
/// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, the logits must be directly extracted from the original generation context without being sorted.
/// @params guidance_ctx A separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
/// @params scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
/// @params smooth_factor Smooth factor between guidance logits and original logits. 1.0f means only use guidance logits. 0.0f means only original logits.
LLAMA_API void llama_sample_classifier_free_guidance(
struct llama_context * ctx,
llama_token_data_array * candidates,
struct llama_context * guidance_ctx,
float scale,
float smooth_factor);
/// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
LLAMA_API void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep);
/// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
LLAMA_API void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
/// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
LLAMA_API void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep);
/// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
LLAMA_API void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep);
LLAMA_API void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates, float temp);
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu);
/// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
/// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
/// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
/// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
/// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
LLAMA_API llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu);
/// @details Selects the token with the highest probability.
LLAMA_API llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates);
/// @details Randomly selects a token from the candidates based on their probabilities.
LLAMA_API llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates);
// Performance information
LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
LLAMA_API void llama_print_timings(struct llama_context * ctx);
LLAMA_API void llama_reset_timings(struct llama_context * ctx);
// Print system information
LLAMA_API const char * llama_print_system_info(void);
#ifdef __cplusplus
}
#endif
// Internal API to be implemented by llama.cpp and used by tests/benchmarks only
#ifdef LLAMA_API_INTERNAL
#include <vector>
#include <string>
struct ggml_tensor;
const std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx);
#endif
#endif // LLAMA_H
//go:build cublas
// +build cublas
package llama
/*
#cgo LDFLAGS: -lcublas -lcudart -L/usr/local/cuda/lib64/
*/
import "C"
//go:build metal
package llama
//go:build openblas
// +build openblas
package llama
/*
#cgo LDFLAGS: -lopenblas
*/
import "C"
// MIT License
// Copyright (c) 2023 go-skynet authors
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
package llama
type ModelOptions struct {
ContextSize int
Seed int
NBatch int
F16Memory bool
MLock bool
MMap bool
VocabOnly bool
LowVRAM bool
Embeddings bool
NUMA bool
NGPULayers int
MainGPU string
TensorSplit string
}
type PredictOptions struct {
Seed, Threads, Tokens, TopK, Repeat, Batch, NKeep int
TopP, Temperature, Penalty float64
F16KV bool
DebugMode bool
StopPrompts []string
IgnoreEOS bool
TailFreeSamplingZ float64
TypicalP float64
FrequencyPenalty float64
PresencePenalty float64
Mirostat int
MirostatETA float64
MirostatTAU float64
PenalizeNL bool
LogitBias string
TokenCallback func(string) bool
MLock, MMap bool
MainGPU string
TensorSplit string
}
type PredictOption func(p *PredictOptions)
type ModelOption func(p *ModelOptions)
var DefaultModelOptions ModelOptions = ModelOptions{
ContextSize: 512,
Seed: 0,
F16Memory: false,
MLock: false,
Embeddings: false,
MMap: true,
LowVRAM: false,
}
var DefaultOptions PredictOptions = PredictOptions{
Seed: -1,
Threads: 4,
Tokens: 128,
Penalty: 1.1,
Repeat: 64,
Batch: 512,
NKeep: 64,
TopK: 40,
TopP: 0.95,
TailFreeSamplingZ: 1.0,
TypicalP: 1.0,
Temperature: 0.8,
FrequencyPenalty: 0.0,
PresencePenalty: 0.0,
Mirostat: 0,
MirostatTAU: 5.0,
MirostatETA: 0.1,
MMap: true,
}
package llama
type node[T any] struct {
t T
next *node[T]
prev *node[T]
}
type deque[T any] struct {
head *node[T]
tail *node[T]
size int
capacity int
}
func (d *deque[T]) Empty() bool {
return d.size == 0
}
func (d *deque[T]) Len() int {
return d.size
}
func (d *deque[T]) Cap() int {
return d.capacity
}
func (d *deque[T]) Push(t T) {
if d.capacity > 0 && d.size >= d.capacity {
d.PopLeft()
}
n := node[T]{t: t}
if d.head != nil {
n.next = d.head
d.head.prev = &n
d.head = &n
} else {
d.head = &n
d.tail = &n
}
d.size++
}
func (d *deque[T]) PushLeft(t T) {
if d.capacity > 0 && d.size >= d.capacity {
d.Pop()
}
n := node[T]{t: t}
if d.tail != nil {
n.prev = d.tail
d.tail.next = &n
d.tail = &n
} else {
d.head = &n
d.tail = &n
}
d.size++
}
func (d *deque[T]) Pop() *T {
if d.Empty() {
return nil
}
head := d.head
d.head = head.next
if d.head != nil {
d.head.prev = nil
} else {
d.tail = nil
}
d.size--
return &head.t
}
func (d *deque[T]) PopLeft() *T {
if d.Empty() {
return nil
}
tail := d.tail
d.tail = tail.prev
if d.tail != nil {
d.tail.next = nil
} else {
d.head = nil
}
d.size--
return &tail.t
}
func (d *deque[T]) Data() (data []T) {
for n := d.head; n != nil; n = n.next {
data = append(data, n.t)
}
return data
}
......@@ -11,12 +11,12 @@ import (
"net/http"
"os"
"path"
"runtime"
"strings"
"text/template"
"github.com/gin-gonic/gin"
"github.com/lithammer/fuzzysearch/fuzzy"
"golang.org/x/sync/errgroup"
"github.com/jmorganca/ollama/api"
"github.com/jmorganca/ollama/llama"
......@@ -36,14 +36,10 @@ func cacheDir() string {
}
func generate(c *gin.Context) {
var req api.GenerateRequest
if req.ModelOptions == nil {
req.ModelOptions = &api.DefaultModelOptions
req := api.GenerateRequest{
Options: api.DefaultOptions(),
}
if req.PredictOptions == nil {
req.PredictOptions = &api.DefaultPredictOptions
}
if err := c.ShouldBindJSON(&req); err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
return
......@@ -60,15 +56,12 @@ func generate(c *gin.Context) {
req.Model = path.Join(cacheDir(), "models", req.Model+".bin")
}
modelOpts := getModelOpts(req)
modelOpts.NGPULayers = 1 // hard-code this for now
model, err := llama.New(req.Model, modelOpts)
llm, err := llama.New(req.Model, req.Options)
if err != nil {
c.JSON(http.StatusBadRequest, gin.H{"error": err.Error()})
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
defer model.Free()
defer llm.Close()
templateNames := make([]string, 0, len(templates.Templates()))
for _, template := range templates.Templates() {
......@@ -87,43 +80,41 @@ func generate(c *gin.Context) {
}
ch := make(chan string)
model.SetTokenCallback(func(token string) bool {
ch <- token
return true
})
predictOpts := getPredictOpts(req)
go func() {
g, _ := errgroup.WithContext(c.Request.Context())
g.Go(func() error {
defer close(ch)
_, err := model.Predict(req.Prompt, predictOpts)
if err != nil {
panic(err)
}
}()
return llm.Predict(req.Prompt, func(s string) {
ch <- s
})
})
c.Stream(func(w io.Writer) bool {
token, ok := <-ch
if !ok {
return false
}
g.Go(func() error {
c.Stream(func(w io.Writer) bool {
s, ok := <-ch
if !ok {
return false
}
resp := api.GenerateResponse{
Response: token,
}
bts, err := json.Marshal(api.GenerateResponse{Response: s})
if err != nil {
return false
}
bts, err := json.Marshal(resp)
if err != nil {
return false
}
bts = append(bts, '\n')
if _, err := w.Write(bts); err != nil {
return false
}
bts = append(bts, '\n')
if _, err := w.Write(bts); err != nil {
return false
}
return true
})
return true
return nil
})
if err := g.Wait(); err != nil && !errors.Is(err, io.EOF) {
c.JSON(http.StatusInternalServerError, gin.H{"error": err.Error()})
return
}
}
func Serve(ln net.Listener) error {
......@@ -195,53 +186,3 @@ func matchRankOne(source string, targets []string) (bestMatch string, bestRank i
return
}
func getModelOpts(req api.GenerateRequest) llama.ModelOptions {
var opts llama.ModelOptions
opts.ContextSize = req.ModelOptions.ContextSize
opts.Seed = req.ModelOptions.Seed
opts.F16Memory = req.ModelOptions.F16Memory
opts.MLock = req.ModelOptions.MLock
opts.Embeddings = req.ModelOptions.Embeddings
opts.MMap = req.ModelOptions.MMap
opts.LowVRAM = req.ModelOptions.LowVRAM
opts.NBatch = req.ModelOptions.NBatch
opts.VocabOnly = req.ModelOptions.VocabOnly
opts.NUMA = req.ModelOptions.NUMA
opts.NGPULayers = req.ModelOptions.NGPULayers
opts.MainGPU = req.ModelOptions.MainGPU
opts.TensorSplit = req.ModelOptions.TensorSplit
return opts
}
func getPredictOpts(req api.GenerateRequest) llama.PredictOptions {
var opts llama.PredictOptions
if req.PredictOptions.Threads == -1 {
opts.Threads = runtime.NumCPU()
} else {
opts.Threads = req.PredictOptions.Threads
}
opts.Seed = req.PredictOptions.Seed
opts.Tokens = req.PredictOptions.Tokens
opts.Penalty = req.PredictOptions.Penalty
opts.Repeat = req.PredictOptions.Repeat
opts.Batch = req.PredictOptions.Batch
opts.NKeep = req.PredictOptions.NKeep
opts.TopK = req.PredictOptions.TopK
opts.TopP = req.PredictOptions.TopP
opts.TailFreeSamplingZ = req.PredictOptions.TailFreeSamplingZ
opts.TypicalP = req.PredictOptions.TypicalP
opts.Temperature = req.PredictOptions.Temperature
opts.FrequencyPenalty = req.PredictOptions.FrequencyPenalty
opts.PresencePenalty = req.PredictOptions.PresencePenalty
opts.Mirostat = req.PredictOptions.Mirostat
opts.MirostatTAU = req.PredictOptions.MirostatTAU
opts.MirostatETA = req.PredictOptions.MirostatETA
opts.MMap = req.PredictOptions.MMap
return opts
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment