Unverified Commit 58245413 authored by Michael Yang's avatar Michael Yang Committed by GitHub
Browse files

next ollama runner (#7913)



feat: add new Ollama engine using ggml through cgo

This change introduces a new way to run pretrained models. It introduces 3 high level interfaces and a bunch of smaller helper interfaces to facilitate this.

- `model.Model` defines the interface for a model architecture. Models such as `llama` and `mllama`, which are provided as examples, can implement the model's forward propagation in the `Forward` method. This method will be called to generate completions. This interface can be found in `model/model.go`
- `ml.Backend` defines the interface for a backend tensor library, in this case `ggml`. Among other things, a Backend is responsible for loading a pretrained model into hardware (GPU, CPU, etc) and providing an interface for Models to access loaded tensors. This interface can be found in `ml/backend.go`
- `ml.Tensor` defines the interface for a tensor and tensor operations

This is the first implementation of the new engine. Follow up PRs will implement more features:

- non-greedy sampling (#8410)
- integration with Ollama and KV caching (#8301)
- more model support (#9080) with more coming soon
Co-authored-by: default avatarBruce MacDonald <brucewmacdonald@gmail.com>
parent 8cf16063
...@@ -11,18 +11,19 @@ import ( ...@@ -11,18 +11,19 @@ import (
"github.com/ollama/ollama/discover" "github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format" "github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
) )
// This algorithm looks for a complete fit to determine if we need to unload other models // This algorithm looks for a complete fit to determine if we need to unload other models
func PredictServerFit(allGpus discover.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) { func PredictServerFit(allGpus discover.GpuInfoList, f *ggml.GGML, adapters, projectors []string, opts api.Options) (bool, uint64) {
// Split up the GPUs by type and try them // Split up the GPUs by type and try them
var estimatedVRAM uint64 var estimatedVRAM uint64
for _, gpus := range allGpus.ByLibrary() { for _, gpus := range allGpus.ByLibrary() {
var layerCount int var layerCount int
estimate := EstimateGPULayers(gpus, ggml, projectors, opts) estimate := EstimateGPULayers(gpus, f, projectors, opts)
layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize layerCount, estimatedVRAM = estimate.Layers, estimate.VRAMSize
if opts.NumGPU < 0 { if opts.NumGPU < 0 {
if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) { if layerCount > 0 && layerCount >= int(f.KV().BlockCount()+1) {
return true, estimatedVRAM return true, estimatedVRAM
} }
} else { } else {
...@@ -70,7 +71,7 @@ type MemoryEstimate struct { ...@@ -70,7 +71,7 @@ type MemoryEstimate struct {
// Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size // Given a model and one or more GPU targets, predict how many layers and bytes we can load, and the total size
// The GPUs provided must all be the same Library // The GPUs provided must all be the same Library
func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, opts api.Options) MemoryEstimate { func EstimateGPULayers(gpus []discover.GpuInfo, f *ggml.GGML, projectors []string, opts api.Options) MemoryEstimate {
// Graph size for a partial offload, applies to all GPUs // Graph size for a partial offload, applies to all GPUs
var graphPartialOffload uint64 var graphPartialOffload uint64
...@@ -115,33 +116,31 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, ...@@ -115,33 +116,31 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
opts.NumCtx = max(opts.NumCtx, 2048) opts.NumCtx = max(opts.NumCtx, 2048)
} }
layers := ggml.Tensors().Layers() layers := f.Tensors().GroupLayers()
// add one layer worth of memory as a buffer // add one layer worth of memory as a buffer
if blk0, ok := layers["blk.0"]; ok { if blk0, ok := layers["blk.0"]; ok {
layerSize = blk0.size() layerSize = blk0.Size()
} else { } else {
slog.Warn("model missing blk.0 layer size") slog.Warn("model missing blk.0 layer size")
} }
fa := envconfig.FlashAttention() &&
discover.GetGPUInfo().FlashAttentionSupported() &&
ggml.SupportsFlashAttention()
var kvct string var kvct string
if fa { if envconfig.FlashAttention() &&
discover.GetGPUInfo().FlashAttentionSupported() &&
f.SupportsFlashAttention() {
requested := strings.ToLower(envconfig.KvCacheType()) requested := strings.ToLower(envconfig.KvCacheType())
if requested != "" && ggml.SupportsKVCacheType(requested) { if requested != "" && f.SupportsKVCacheType(requested) {
kvct = requested kvct = requested
} }
} }
kv, graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct) kv, graphPartialOffload, graphFullOffload := f.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch)), kvct)
// KV is proportional to the number of layers // KV is proportional to the number of layers
layerSize += kv / ggml.KV().BlockCount() layerSize += kv / f.KV().BlockCount()
if graphPartialOffload == 0 { if graphPartialOffload == 0 {
graphPartialOffload = ggml.KV().GQA() * kv / 6 graphPartialOffload = f.KV().GQA() * kv / 6
} }
if graphFullOffload == 0 { if graphFullOffload == 0 {
graphFullOffload = graphPartialOffload graphFullOffload = graphPartialOffload
...@@ -156,12 +155,12 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, ...@@ -156,12 +155,12 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
} }
if layer, ok := layers["output_norm"]; ok { if layer, ok := layers["output_norm"]; ok {
memoryLayerOutput += layer.size() memoryLayerOutput += layer.Size()
} }
if layer, ok := layers["output"]; ok { if layer, ok := layers["output"]; ok {
memoryLayerOutput += layer.size() memoryLayerOutput += layer.Size()
} else if layer, ok := layers["token_embd"]; ok { } else if layer, ok := layers["token_embd"]; ok {
memoryLayerOutput += layer.size() memoryLayerOutput += layer.Size()
} }
// Output layer handled at the end if we have space // Output layer handled at the end if we have space
...@@ -211,11 +210,11 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, ...@@ -211,11 +210,11 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
} }
// For all the layers, find where they can fit on the GPU(s) // For all the layers, find where they can fit on the GPU(s)
for i := range int(ggml.KV().BlockCount()) { for i := range int(f.KV().BlockCount()) {
// Some models have inconsistent layer sizes // Some models have inconsistent layer sizes
if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok { if blk, ok := layers[fmt.Sprintf("blk.%d", i)]; ok {
layerSize = blk.size() layerSize = blk.Size()
layerSize += kv / ggml.KV().BlockCount() layerSize += kv / f.KV().BlockCount()
} }
memoryWeights += layerSize memoryWeights += layerSize
...@@ -238,10 +237,10 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, ...@@ -238,10 +237,10 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
} }
} }
} }
if layerCount >= int(ggml.KV().BlockCount()) { if layerCount >= int(f.KV().BlockCount()) {
fullyLoaded = true fullyLoaded = true
} else { } else {
for i := layerCount; i < int(ggml.KV().BlockCount()); i++ { for i := layerCount; i < int(f.KV().BlockCount()); i++ {
overflow += layerSize overflow += layerSize
} }
} }
...@@ -259,7 +258,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, ...@@ -259,7 +258,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
} }
} }
if layerCount < int(ggml.KV().BlockCount())+1 { if layerCount < int(f.KV().BlockCount())+1 {
fullyLoaded = false fullyLoaded = false
overflow += memoryLayerOutput overflow += memoryLayerOutput
} }
...@@ -311,7 +310,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, ...@@ -311,7 +310,7 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
inferenceLibrary: gpus[0].Library, inferenceLibrary: gpus[0].Library,
layersRequested: opts.NumGPU, layersRequested: opts.NumGPU,
layersModel: int(ggml.KV().BlockCount()) + 1, layersModel: int(f.KV().BlockCount()) + 1,
availableList: availableList, availableList: availableList,
kv: kv, kv: kv,
allocationsList: allocationsList, allocationsList: allocationsList,
...@@ -339,22 +338,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string, ...@@ -339,22 +338,9 @@ func EstimateGPULayers(gpus []discover.GpuInfo, ggml *GGML, projectors []string,
return estimate return estimate
} }
func (m MemoryEstimate) log() { func (m MemoryEstimate) LogValue() slog.Value {
overhead := envconfig.GpuOverhead() attrs := []slog.Attr{
slog.String("library", m.inferenceLibrary),
log := slog.With()
if m.projectorWeights > 0 {
log = log.With(
slog.Group(
"projector",
"weights", format.HumanBytes2(m.projectorWeights),
"graph", format.HumanBytes2(m.projectorGraph),
),
)
}
log.Info(
"offload to "+m.inferenceLibrary,
slog.Group( slog.Group(
"layers", "layers",
// requested number of layers to offload // requested number of layers to offload
...@@ -370,7 +356,7 @@ func (m MemoryEstimate) log() { ...@@ -370,7 +356,7 @@ func (m MemoryEstimate) log() {
"memory", "memory",
// memory available by GPU for offloading // memory available by GPU for offloading
"available", m.availableList, "available", m.availableList,
"gpu_overhead", format.HumanBytes2(overhead), "gpu_overhead", format.HumanBytes2(envconfig.GpuOverhead()),
slog.Group( slog.Group(
"required", "required",
// memory required for full offloading // memory required for full offloading
...@@ -399,7 +385,17 @@ func (m MemoryEstimate) log() { ...@@ -399,7 +385,17 @@ func (m MemoryEstimate) log() {
"partial", format.HumanBytes2(m.graphPartialOffload), "partial", format.HumanBytes2(m.graphPartialOffload),
), ),
), ),
) }
if m.projectorWeights > 0 {
attrs = append(attrs, slog.Group(
"projector",
"weights", format.HumanBytes2(m.projectorWeights),
"graph", format.HumanBytes2(m.projectorGraph),
))
}
return slog.GroupValue(attrs...)
} }
func projectorMemoryRequirements(filename string) (weights, graphSize uint64) { func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
...@@ -409,13 +405,13 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) { ...@@ -409,13 +405,13 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
} }
defer file.Close() defer file.Close()
ggml, _, err := DecodeGGML(file, 0) ggml, _, err := ggml.Decode(file, 0)
if err != nil { if err != nil {
return 0, 0 return 0, 0
} }
for _, layer := range ggml.Tensors().Layers() { for _, layer := range ggml.Tensors().GroupLayers() {
weights += layer.size() weights += layer.Size()
} }
switch arch := ggml.KV().Architecture(); arch { switch arch := ggml.KV().Architecture(); arch {
...@@ -435,7 +431,7 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) { ...@@ -435,7 +431,7 @@ func projectorMemoryRequirements(filename string) (weights, graphSize uint64) {
headCount := kv("attention.head_count") headCount := kv("attention.head_count")
numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size")) numPatches := (imageSize / kv("patch_size")) * (imageSize / kv("patch_size"))
if _, ok := ggml.Tensors().Layers()["v"]["class_embd"]; ok { if _, ok := ggml.Tensors().GroupLayers()["v"]["class_embd"]; ok {
numPatches++ numPatches++
} }
......
...@@ -11,6 +11,7 @@ import ( ...@@ -11,6 +11,7 @@ import (
"github.com/ollama/ollama/api" "github.com/ollama/ollama/api"
"github.com/ollama/ollama/discover" "github.com/ollama/ollama/discover"
"github.com/ollama/ollama/fs/ggml"
) )
func TestEstimateGPULayers(t *testing.T) { func TestEstimateGPULayers(t *testing.T) {
...@@ -23,7 +24,7 @@ func TestEstimateGPULayers(t *testing.T) { ...@@ -23,7 +24,7 @@ func TestEstimateGPULayers(t *testing.T) {
defer f.Close() defer f.Close()
inputLayerCount := 5 inputLayerCount := 5
tensors := []Tensor{ tensors := []ggml.Tensor{
{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))}, {Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))}, {Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))}, {Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
...@@ -32,7 +33,7 @@ func TestEstimateGPULayers(t *testing.T) { ...@@ -32,7 +33,7 @@ func TestEstimateGPULayers(t *testing.T) {
{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))}, {Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
} }
assert.Len(t, tensors, inputLayerCount+1) assert.Len(t, tensors, inputLayerCount+1)
err = WriteGGUF(f, KV{ err = ggml.WriteGGUF(f, ggml.KV{
"general.architecture": "llama", "general.architecture": "llama",
"llama.context_length": uint32(32), "llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096), "llama.embedding_length": uint32(4096),
......
...@@ -28,6 +28,7 @@ import ( ...@@ -28,6 +28,7 @@ import (
"github.com/ollama/ollama/discover" "github.com/ollama/ollama/discover"
"github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/envconfig"
"github.com/ollama/ollama/format" "github.com/ollama/ollama/format"
"github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/llama" "github.com/ollama/ollama/llama"
) )
...@@ -71,7 +72,7 @@ type llmServer struct { ...@@ -71,7 +72,7 @@ type llmServer struct {
// It collects array values for arrays with a size less than or equal to // It collects array values for arrays with a size less than or equal to
// maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If
// the maxArraySize is negative, all arrays are collected. // the maxArraySize is negative, all arrays are collected.
func LoadModel(model string, maxArraySize int) (*GGML, error) { func LoadModel(model string, maxArraySize int) (*ggml.GGML, error) {
if _, err := os.Stat(model); err != nil { if _, err := os.Stat(model); err != nil {
return nil, err return nil, err
} }
...@@ -82,21 +83,17 @@ func LoadModel(model string, maxArraySize int) (*GGML, error) { ...@@ -82,21 +83,17 @@ func LoadModel(model string, maxArraySize int) (*GGML, error) {
} }
defer f.Close() defer f.Close()
ggml, _, err := DecodeGGML(f, maxArraySize) ggml, _, err := ggml.Decode(f, maxArraySize)
return ggml, err return ggml, err
} }
// NewLlamaServer will run a server for the given GPUs // NewLlamaServer will run a server for the given GPUs
// The gpu list must be a single family. // The gpu list must be a single family.
func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) { func NewLlamaServer(gpus discover.GpuInfoList, model string, f *ggml.GGML, adapters, projectors []string, opts api.Options, numParallel int) (LlamaServer, error) {
var systemTotalMemory uint64
var systemFreeMemory uint64
var systemSwapFreeMemory uint64
systemInfo := discover.GetSystemInfo() systemInfo := discover.GetSystemInfo()
systemTotalMemory = systemInfo.System.TotalMemory systemTotalMemory := systemInfo.System.TotalMemory
systemFreeMemory = systemInfo.System.FreeMemory systemFreeMemory := systemInfo.System.FreeMemory
systemSwapFreeMemory = systemInfo.System.FreeSwap systemSwapFreeMemory := systemInfo.System.FreeSwap
slog.Info("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory)) slog.Info("system memory", "total", format.HumanBytes2(systemTotalMemory), "free", format.HumanBytes2(systemFreeMemory), "free_swap", format.HumanBytes2(systemSwapFreeMemory))
// If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info // If the user wants zero GPU layers, reset the gpu list to be CPU/system ram info
...@@ -104,7 +101,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter ...@@ -104,7 +101,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
gpus = discover.GetCPUInfo() gpus = discover.GetCPUInfo()
} }
estimate := EstimateGPULayers(gpus, ggml, projectors, opts) estimate := EstimateGPULayers(gpus, f, projectors, opts)
if len(gpus) > 1 || gpus[0].Library != "cpu" { if len(gpus) > 1 || gpus[0].Library != "cpu" {
switch { switch {
case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory: case gpus[0].Library == "metal" && estimate.VRAMSize > systemTotalMemory:
...@@ -130,7 +127,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter ...@@ -130,7 +127,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
} }
} }
estimate.log() slog.Info("offload", "", estimate)
params := []string{ params := []string{
"--model", model, "--model", model,
...@@ -174,7 +171,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter ...@@ -174,7 +171,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
fa = false fa = false
} }
if fa && !ggml.SupportsFlashAttention() { if fa && !f.SupportsFlashAttention() {
slog.Warn("flash attention enabled but not supported by model") slog.Warn("flash attention enabled but not supported by model")
fa = false fa = false
} }
...@@ -187,7 +184,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter ...@@ -187,7 +184,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
// Flash Attention also supports kv cache quantization // Flash Attention also supports kv cache quantization
// Enable if the requested and kv cache type is supported by the model // Enable if the requested and kv cache type is supported by the model
if kvct != "" && ggml.SupportsKVCacheType(kvct) { if kvct != "" && f.SupportsKVCacheType(kvct) {
params = append(params, "--kv-cache-type", kvct) params = append(params, "--kv-cache-type", kvct)
} else { } else {
slog.Warn("kv cache type not supported by model", "type", kvct) slog.Warn("kv cache type not supported by model", "type", kvct)
...@@ -200,7 +197,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter ...@@ -200,7 +197,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
for _, g := range gpus { for _, g := range gpus {
if g.Library == "metal" && if g.Library == "metal" &&
uint64(opts.NumGPU) > 0 && uint64(opts.NumGPU) > 0 &&
uint64(opts.NumGPU) < ggml.KV().BlockCount()+1 { uint64(opts.NumGPU) < f.KV().BlockCount()+1 {
opts.UseMMap = new(bool) opts.UseMMap = new(bool)
*opts.UseMMap = false *opts.UseMMap = false
} }
...@@ -335,7 +332,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter ...@@ -335,7 +332,7 @@ func NewLlamaServer(gpus discover.GpuInfoList, model string, ggml *GGML, adapter
estimate: estimate, estimate: estimate,
numParallel: numParallel, numParallel: numParallel,
sem: semaphore.NewWeighted(int64(numParallel)), sem: semaphore.NewWeighted(int64(numParallel)),
totalLayers: ggml.KV().BlockCount() + 1, totalLayers: f.KV().BlockCount() + 1,
gpus: gpus, gpus: gpus,
done: make(chan error, 1), done: make(chan error, 1),
} }
......
package ml
import (
"bytes"
"encoding/binary"
"fmt"
"os"
"strconv"
"strings"
)
type Config interface {
Architecture() string
String(string, ...string) string
Uint(string, ...uint32) uint32
Float(string, ...float32) float32
Strings(string, ...[]string) []string
Uints(string, ...[]uint32) []uint32
}
type Backend interface {
Config() Config
Get(name string) Tensor
NewContext() Context
}
var backends = make(map[string]func(*os.File) (Backend, error))
func RegisterBackend(name string, f func(*os.File) (Backend, error)) {
if _, ok := backends[name]; ok {
panic("backend: backend already registered")
}
backends[name] = f
}
func NewBackend(f *os.File) (Backend, error) {
if backend, ok := backends["ggml"]; ok {
return backend(f)
}
return nil, fmt.Errorf("unsupported backend")
}
type Context interface {
Zeros(dtype DType, shape ...int) Tensor
FromFloatSlice(s []float32, shape ...int) (Tensor, error)
FromIntSlice(s []int32, shape ...int) (Tensor, error)
Forward(Tensor)
Compute(Tensor) Tensor
Close() error
}
type Tensor interface {
Dim(n int) int64
Stride(n int) int64
Shape() []int64
DType() DType
Bytes() []byte
Floats() []float32
Add(ctx Context, t2 Tensor) Tensor
Mul(ctx Context, t2 Tensor) Tensor
Mulmat(ctx Context, t2 Tensor) Tensor
Softmax(ctx Context) Tensor
LayerNorm(ctx Context, weight, bias Tensor, eps float32) Tensor
RMSNorm(ctx Context, weight Tensor, eps float32) Tensor
Scale(ctx Context, s float64) Tensor
Conv2D(ctx Context, weight Tensor, s0, s1, p0, p1, d0, d1 int) Tensor
RoPE(ctx Context, positionIDs, ropeFactors Tensor, dim uint32, base, scale float32) Tensor
Tanh(ctx Context) Tensor
GELU(ctx Context) Tensor
SILU(ctx Context) Tensor
Reshape(ctx Context, shape ...int64) Tensor
View(ctx Context, offset int, shape ...int) Tensor
Permute(ctx Context, shape ...int) Tensor
Contiguous(ctx Context) Tensor
Pad(ctx Context, shape ...int64) Tensor
Unpad(ctx Context, shape ...int64) Tensor
Stack(ctx Context, dim int, s ...Tensor) Tensor
Concat(ctx Context, t2 Tensor, dim int) Tensor
Rows(ctx Context, t2 Tensor) Tensor
Copy(ctx Context, t2 Tensor) Tensor
}
type number interface {
~int | ~int8 | ~int16 | ~int32 | ~int64 |
~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 |
~float32 | ~float64 |
~complex64 | ~complex128
}
func mul[T number](s ...T) T {
p := T(1)
for _, v := range s {
p *= v
}
return p
}
type DumpOptions struct {
// Items is the number of elements to print at the beginning and end of each dimension.
Items int64
// Precision is the number of decimal places to print. Applies to float32 and float64.
Precision int
}
func Dump(t Tensor, opts ...DumpOptions) string {
if len(opts) < 1 {
opts = append(opts, DumpOptions{
Items: 3,
Precision: 4,
})
}
switch t.DType() {
case DTypeF32:
return dump[[]float32](t, opts[0].Items, func(f float32) string {
return strconv.FormatFloat(float64(f), 'f', opts[0].Precision, 32)
})
case DTypeI32:
return dump[[]int32](t, opts[0].Items, func(i int32) string {
return strconv.FormatInt(int64(i), 10)
})
default:
return "<unsupported>"
}
}
func dump[S ~[]E, E number](t Tensor, items int64, fn func(E) string) string {
bts := t.Bytes()
if bts == nil {
return "<nil>"
}
s := make(S, mul(t.Shape()...))
if err := binary.Read(bytes.NewBuffer(t.Bytes()), binary.LittleEndian, &s); err != nil {
panic(err)
}
shape := t.Shape()
var sb strings.Builder
var f func([]int64, int64)
f = func(dims []int64, stride int64) {
prefix := strings.Repeat(" ", len(shape)-len(dims)+1)
fmt.Fprint(&sb, "[")
defer func() { fmt.Fprint(&sb, "]") }()
for i := int64(0); i < dims[0]; i++ {
if i >= items && i < dims[0]-items {
fmt.Fprint(&sb, "..., ")
// skip to next printable element
skip := dims[0] - 2*items
if len(dims) > 1 {
stride += mul(append(dims[1:], skip)...)
fmt.Fprint(&sb, strings.Repeat("\n", len(dims)-1), prefix)
}
i += skip - 1
} else if len(dims) > 1 {
f(dims[1:], stride)
stride += mul(dims[1:]...)
if i < dims[0]-1 {
fmt.Fprint(&sb, ",", strings.Repeat("\n", len(dims)-1), prefix)
}
} else {
fmt.Fprint(&sb, fn(s[stride+i]))
if i < dims[0]-1 {
fmt.Fprint(&sb, ", ")
}
}
}
}
f(shape, 0)
return sb.String()
}
type DType int
const (
DTypeF32 DType = iota
DTypeI32
DTypeOther
)
package backend
import (
_ "github.com/ollama/ollama/ml/backend/ggml"
)
package ggml
// #cgo CPPFLAGS: -I${SRCDIR}/ggml/include
// #include <stdlib.h>
// #include <stdint.h>
// #include "ggml.h"
// #include "ggml-cpu.h"
// #include "ggml-backend.h"
import "C"
import (
"bytes"
"encoding/binary"
"fmt"
"io"
"log/slog"
"os"
"sync"
"unsafe"
"github.com/ollama/ollama/format"
fs "github.com/ollama/ollama/fs/ggml"
"github.com/ollama/ollama/ml"
"golang.org/x/sync/errgroup"
"github.com/ollama/ollama/ml/backend/ggml/ggml/src"
)
type device struct {
d *C.struct_ggml_backend_device
}
func (d device) LogValue() slog.Value {
var free, total uint64
C.ggml_backend_dev_memory(d.d, (*C.size_t)(&free), (*C.size_t)(&total))
kind := "unknown"
switch C.ggml_backend_dev_type(d.d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU:
kind = "cpu"
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
kind = "gpu"
case C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
kind = "accel"
}
return slog.GroupValue(
slog.String("name", C.GoString(C.ggml_backend_dev_name(d.d))),
slog.String("description", C.GoString(C.ggml_backend_dev_description(d.d))),
slog.String("kind", kind),
slog.String("free", format.HumanBytes2(free)),
slog.String("total", format.HumanBytes2(total)),
)
}
var devices = sync.OnceValue(func() []device {
ggml.OnceLoad()
s := make([]device, C.ggml_backend_dev_count())
for i := range s {
s[i] = device{C.ggml_backend_dev_get(C.size_t(i))}
}
return s
})
type Backend struct {
meta *fs.GGML
cpus, gpus []Context
tensors map[string]*Context
}
func New(r *os.File) (ml.Backend, error) {
meta, n, err := fs.Decode(r, -1)
if err != nil {
return nil, err
}
slog.Info(
"",
"architecture", meta.KV().Architecture(),
"file_type", meta.KV().FileType(),
"name", meta.KV().String("general.name"),
"description", meta.KV().String("general.description"),
"num_tensors", len(meta.Tensors().Items()),
"num_key_values", len(meta.KV()),
)
var cpus, gpus []Context
for _, d := range devices() {
switch C.ggml_backend_dev_type(d.d) {
case C.GGML_BACKEND_DEVICE_TYPE_CPU,
C.GGML_BACKEND_DEVICE_TYPE_ACCEL:
slog.Info("cpu", "device", d)
cpus = append(cpus, Context{
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
no_alloc: true,
}),
backend: C.ggml_backend_dev_init(d.d, nil),
})
case C.GGML_BACKEND_DEVICE_TYPE_GPU:
slog.Info("gpu", "device", d)
gpus = append(gpus, Context{
ctx: C.ggml_init(C.struct_ggml_init_params{
mem_size: C.size_t(int(C.ggml_tensor_overhead()) * (len(meta.Tensors().Items()) + 1 + int(meta.KV().BlockCount())*2)),
no_alloc: true,
}),
backend: C.ggml_backend_dev_init(d.d, nil),
})
}
}
ctxFunc := func(s []Context) (*Context, error) {
for _, e := range s {
return &e, nil
}
return nil, fmt.Errorf("no devices available")
}
tensors := make(map[*fs.Tensor]*Context, len(meta.Tensors().Items()))
for _, t := range meta.Tensors().Items() {
c, err := ctxFunc(append(gpus, cpus...))
if err != nil {
return nil, err
}
func() {
tt := C.ggml_new_tensor(c.ctx, t.Kind, C.int(len(t.Shape)), (*C.int64_t)(unsafe.Pointer(&t.Shape[0])))
cname := C.CString(t.Name)
defer C.free(unsafe.Pointer(cname))
C.ggml_set_name(tt, cname)
tensors[t] = c
}()
}
for _, b := range append(gpus, cpus...) {
C.ggml_backend_alloc_ctx_tensors(b.ctx, b.backend)
}
sr := io.NewSectionReader(r, int64(meta.Tensors().Offset), n-int64(meta.Tensors().Offset))
var g errgroup.Group
for t, c := range tensors {
g.Go(func() error {
bts := make([]byte, t.Size())
n, err := io.ReadFull(io.NewSectionReader(sr, int64(t.Offset), int64(t.Size())), bts)
if err != nil {
return err
}
if n != int(t.Size()) {
return fmt.Errorf("expected %d bytes, got %d", t.Size(), n)
}
cname := C.CString(t.Name)
defer C.free(unsafe.Pointer(cname))
C.ggml_backend_tensor_set(C.ggml_get_tensor(c.ctx, cname), unsafe.Pointer(&bts[0]), 0, C.size_t(n))
return nil
})
}
if err := g.Wait(); err != nil {
return nil, err
}
return &Backend{
meta: meta,
cpus: cpus,
gpus: gpus,
}, nil
}
func init() {
ml.RegisterBackend("ggml", New)
}
func (b *Backend) Config() ml.Config {
return b.meta.KV()
}
func (b *Backend) Get(name string) ml.Tensor {
cname := C.CString(name)
defer C.free(unsafe.Pointer(cname))
for _, c := range append(b.gpus, b.cpus...) {
if t := C.ggml_get_tensor(c.ctx, cname); t != nil {
return &Tensor{t: t}
}
}
return nil
}
func (b *Backend) NewContext() ml.Context {
nodes := max(8192, len(b.meta.Tensors().Items())*5)
bts := make([]byte, C.size_t(nodes)*C.ggml_tensor_overhead()+C.ggml_graph_overhead_custom(C.size_t(nodes), false))
c := C.ggml_init(C.struct_ggml_init_params{
mem_buffer: unsafe.Pointer(&bts[0]),
mem_size: C.size_t(len(bts)),
no_alloc: true,
})
backends := make([]*C.struct_ggml_backend, len(b.gpus)+len(b.cpus))
bufts := make([]*C.struct_ggml_backend_buffer_type, len(b.gpus)+len(b.cpus))
for i, c := range append(b.gpus, b.cpus...) {
backends[i] = c.backend
bufts[i] = C.ggml_backend_get_default_buffer_type(c.backend)
}
return &Context{
ctx: c,
backend: backends[0],
nodes: nodes,
sched: C.ggml_backend_sched_new(
(*C.ggml_backend_t)(unsafe.Pointer(&backends[0])),
(*C.ggml_backend_buffer_type_t)(unsafe.Pointer(&bufts[0])),
C.int(len(backends)),
C.size_t(nodes),
true,
),
}
}
type Context struct {
ctx *C.struct_ggml_context
backend *C.struct_ggml_backend
sched *C.struct_ggml_backend_sched
graph *C.struct_ggml_cgraph
nodes int
}
func (c *Context) Forward(t ml.Tensor) {
if c.graph == nil {
c.graph = C.ggml_new_graph_custom(c.ctx, C.size_t(c.nodes), false)
}
C.ggml_build_forward_expand(c.graph, t.(*Tensor).t)
}
func (c *Context) Compute(t ml.Tensor) ml.Tensor {
c.Forward(t)
C.ggml_backend_sched_graph_compute_async(c.sched, c.graph)
backend := C.ggml_backend_sched_get_tensor_backend(c.sched, t.(*Tensor).t)
t.(*Tensor).data = make([]byte, C.ggml_nbytes(t.(*Tensor).t))
C.ggml_backend_tensor_get_async(backend, t.(*Tensor).t, unsafe.Pointer(&t.(*Tensor).data[0]), 0, C.ggml_nbytes(t.(*Tensor).t))
return t
}
func (c Context) Zeros(dtype ml.DType, shape ...int) ml.Tensor {
if len(shape) < 1 || len(shape) > 4 {
panic("unsupported number of dimensions")
}
for _, dim := range shape {
if dim < 1 {
panic("invalid shape")
}
}
var t *C.struct_ggml_tensor
switch dtype {
case ml.DTypeF32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_F32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
case ml.DTypeI32:
t = C.ggml_new_tensor(c.ctx, C.GGML_TYPE_I32, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
default:
panic("unsupported dtype")
}
b := C.ggml_backend_alloc_buffer(c.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
C.ggml_set_zero(t)
return &Tensor{t: t}
}
func fromSlice[S ~[]E, E float32 | int32](ctx Context, s S, shape []int, dtype uint32) (ml.Tensor, error) {
n := len(s)
for _, v := range shape {
n /= v
}
if n != 1 {
return nil, fmt.Errorf("invalid shape %v for %d elements", shape, len(s))
}
t := C.ggml_new_tensor(ctx.ctx, dtype, C.int(len(shape)), (*C.int64_t)(unsafe.Pointer(&shape[0])))
b := C.ggml_backend_alloc_buffer(ctx.backend, C.ggml_nbytes(t))
C.ggml_backend_tensor_alloc(b, t, C.ggml_backend_buffer_get_base(b))
C.ggml_backend_tensor_set(t, unsafe.Pointer(&s[0]), 0, C.ggml_nbytes(t))
return &Tensor{t: t}, nil
}
func (c Context) FromFloatSlice(s []float32, shape ...int) (ml.Tensor, error) {
return fromSlice(c, s, shape, C.GGML_TYPE_F32)
}
func (c Context) FromIntSlice(s []int32, shape ...int) (ml.Tensor, error) {
return fromSlice(c, s, shape, C.GGML_TYPE_I32)
}
func (c *Context) Close() error {
C.ggml_backend_sched_free(c.sched)
C.ggml_free(c.ctx)
return nil
}
type Tensor struct {
t *C.struct_ggml_tensor
data []byte
}
func (t *Tensor) LogValue() slog.Value {
return slog.GroupValue(
slog.String("name", C.GoString(C.ggml_get_name(t.t))),
slog.String("type", C.GoString(C.ggml_type_name(t.t._type))),
slog.Any("shape", t.Shape()),
)
}
func (t *Tensor) Dim(n int) int64 {
return int64(t.t.ne[n])
}
func (t *Tensor) Stride(n int) int64 {
return int64(t.t.nb[n])
}
func (t *Tensor) Shape() []int64 {
shape := make([]int64, C.ggml_n_dims(t.t))
for i := range shape {
shape[i] = t.Dim(i)
}
return shape
}
func (t *Tensor) Bytes() []byte {
if bts := C.ggml_get_data(t.t); bts != nil {
return C.GoBytes(bts, C.int(C.ggml_nbytes(t.t)))
}
return nil
}
func (t *Tensor) Floats() (f32s []float32) {
if t.data != nil {
f32s = make([]float32, C.ggml_nelements(t.t))
_ = binary.Read(bytes.NewReader(t.data), binary.LittleEndian, f32s)
}
return
}
func (t *Tensor) DType() ml.DType {
switch t.t._type {
case C.GGML_TYPE_F32:
return ml.DTypeF32
case C.GGML_TYPE_I32:
return ml.DTypeI32
default:
return ml.DTypeOther
}
}
func (t *Tensor) Add(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
t: C.ggml_add(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Stack(ctx ml.Context, dim int, s ...ml.Tensor) ml.Tensor {
if len(s) > 0 {
return t.Concat(ctx, s[0].Stack(ctx, dim, s[1:]...), dim)
}
return t
}
func (t *Tensor) Concat(ctx ml.Context, t2 ml.Tensor, dim int) ml.Tensor {
return &Tensor{
t: C.ggml_concat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(dim)),
}
}
func (t *Tensor) Contiguous(ctx ml.Context) ml.Tensor {
return &Tensor{
t: C.ggml_cont(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Mul(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
t: C.ggml_mul(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Mulmat(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
t: C.ggml_mul_mat(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) LayerNorm(ctx ml.Context, w, b ml.Tensor, eps float32) ml.Tensor {
tt := (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
if b != nil {
tt = tt.Add(ctx, b)
}
return tt
}
func (t *Tensor) RMSNorm(ctx ml.Context, w ml.Tensor, eps float32) ml.Tensor {
return (&Tensor{t: C.ggml_norm(ctx.(*Context).ctx, t.t, C.float(eps))}).Mul(ctx, w)
}
func (t *Tensor) Pad(ctx ml.Context, shape ...int64) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
t: C.ggml_pad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Permute(ctx ml.Context, shape ...int) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
t: C.ggml_permute(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) Rows(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
t: C.ggml_get_rows(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Copy(ctx ml.Context, t2 ml.Tensor) ml.Tensor {
return &Tensor{
t: C.ggml_cpy(ctx.(*Context).ctx, t.t, t2.(*Tensor).t),
}
}
func (t *Tensor) Reshape(ctx ml.Context, shape ...int64) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
t: C.ggml_reshape_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0])),
}
case 2:
return &Tensor{
t: C.ggml_reshape_2d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1])),
}
case 3:
return &Tensor{
t: C.ggml_reshape_3d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2])),
}
case 4:
return &Tensor{
t: C.ggml_reshape_4d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.int64_t(shape[1]), C.int64_t(shape[2]), C.int64_t(shape[3])),
}
default:
panic("unsupported number of dimensions")
}
}
func (t *Tensor) Scale(ctx ml.Context, s float64) ml.Tensor {
return &Tensor{
t: C.ggml_scale(ctx.(*Context).ctx, t.t, (C.float)(s)),
}
}
func (t *Tensor) Softmax(ctx ml.Context) ml.Tensor {
return &Tensor{
t: C.ggml_soft_max(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Tanh(ctx ml.Context) ml.Tensor {
return &Tensor{
t: C.ggml_tanh_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Unpad(ctx ml.Context, shape ...int64) ml.Tensor {
if len(shape) != 4 {
panic("expected 4 dimensions")
}
return &Tensor{
t: C.ggml_unpad(ctx.(*Context).ctx, t.t, C.int(shape[0]), C.int(shape[1]), C.int(shape[2]), C.int(shape[3])),
}
}
func (t *Tensor) View(ctx ml.Context, offset int, shape ...int) ml.Tensor {
switch len(shape) {
case 1:
return &Tensor{
t: C.ggml_view_1d(ctx.(*Context).ctx, t.t, C.int64_t(shape[0]), C.size_t(offset)),
}
case 3:
return &Tensor{
t: C.ggml_view_2d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]),
C.size_t(shape[1]),
C.size_t(offset)),
}
case 5:
return &Tensor{
t: C.ggml_view_3d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]),
C.size_t(shape[1]), C.size_t(shape[3]),
C.size_t(offset)),
}
case 7:
return &Tensor{
t: C.ggml_view_4d(ctx.(*Context).ctx, t.t,
C.int64_t(shape[0]), C.int64_t(shape[2]), C.int64_t(shape[4]), C.int64_t(shape[6]),
C.size_t(shape[1]), C.size_t(shape[3]), C.size_t(shape[5]),
C.size_t(offset)),
}
default:
panic("unsupported number of dimensions")
}
}
const (
ropeTypeNorm C.int = iota
)
func (t *Tensor) RoPE(ctx ml.Context, positionIDs, ropeFactors ml.Tensor, ropeDim uint32, ropeBase, ropeScale float32) ml.Tensor {
if ropeFactors == nil {
ropeFactors = &Tensor{}
}
return &Tensor{
t: C.ggml_rope_ext(
ctx.(*Context).ctx, t.t, positionIDs.(*Tensor).t, ropeFactors.(*Tensor).t,
C.int(ropeDim),
131072, // YaRN n_ctx_train
ropeTypeNorm, // ROPE_TYPE_NORM
C.float(ropeBase),
C.float(ropeScale),
0., // YaRN ext_factor
1., // YaRN attn_factor
32., // YaRN beta_fast
1., // YaRN beta_slow
),
}
}
func (t *Tensor) GELU(ctx ml.Context) ml.Tensor {
return &Tensor{
t: C.ggml_gelu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) SILU(ctx ml.Context) ml.Tensor {
return &Tensor{
t: C.ggml_silu_inplace(ctx.(*Context).ctx, t.t),
}
}
func (t *Tensor) Conv2D(ctx ml.Context, t2 ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return &Tensor{
t: C.ggml_conv_2d(ctx.(*Context).ctx, t.t, t2.(*Tensor).t, C.int(s0), C.int(s1), C.int(p0), C.int(p1), C.int(d0), C.int(d1)),
}
}
//go:build debug
package ggml
// #cgo CPPFLAGS: -DOLLAMA_DEBUG
import "C"
package nn
import "github.com/ollama/ollama/ml"
type Conv2D struct {
Weight ml.Tensor `gguf:"weight"`
}
func (m *Conv2D) Forward(ctx ml.Context, t ml.Tensor, s0, s1, p0, p1, d0, d1 int) ml.Tensor {
return m.Weight.Conv2D(ctx, t, s0, s1, p0, p1, d0, d1)
}
package nn
import "github.com/ollama/ollama/ml"
type Embedding struct {
Weight ml.Tensor `gguf:"weight"`
}
func (m *Embedding) Forward(ctx ml.Context, hiddenState ml.Tensor) ml.Tensor {
return m.Weight.Rows(ctx, hiddenState)
}
package nn
import "github.com/ollama/ollama/ml"
type Linear struct {
Weight ml.Tensor `gguf:"weight"`
Bias ml.Tensor `gguf:"bias"`
}
func (m *Linear) Forward(ctx ml.Context, t ml.Tensor) ml.Tensor {
t = m.Weight.Mulmat(ctx, t)
if m.Bias != nil {
t = t.Add(ctx, m.Bias)
}
return t
}
package nn
import (
"github.com/ollama/ollama/ml"
)
type LayerNorm struct {
Weight ml.Tensor `gguf:"weight"`
Bias ml.Tensor `gguf:"bias"`
}
func (m *LayerNorm) Forward(ctx ml.Context, t ml.Tensor, eps float32) ml.Tensor {
return t.LayerNorm(ctx, m.Weight, m.Bias, eps)
}
type RMSNorm struct {
Weight ml.Tensor `gguf:"weight"`
}
func (m *RMSNorm) Forward(ctx ml.Context, t ml.Tensor, eps float32) ml.Tensor {
return t.RMSNorm(ctx, m.Weight, eps)
}
package llama
import (
"math"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
)
type Options struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int64
eps, ropeBase, ropeScale float32
ropeDim uint32
}
type Model struct {
model.Base
model.BytePairEncoding
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Layers []Layer `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output,alt:token_embd"`
*Options
}
func New(c ml.Config) (model.Model, error) {
return &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
},
),
Layers: make([]Layer, c.Uint("block_count")),
Options: &Options{
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
numKVHeads: int64(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
},
}, nil
}
type SelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *SelfAttention) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
q := sa.Query.Forward(ctx, hiddenState)
q = q.Reshape(ctx, headDim, opts.numHeads, batchSize)
q = q.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
k := sa.Key.Forward(ctx, hiddenState)
k = k.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k = k.RoPE(ctx, positionIDs, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
v := sa.Value.Forward(ctx, hiddenState)
v = v.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
k, v = cache.Put(ctx, k, v, cache.Options)
q = q.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
k = k.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
v = v.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
kq := k.Mulmat(ctx, q)
kq = kq.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
kq = kq.Softmax(ctx)
kqv := v.Mulmat(ctx, kq)
kqv = kqv.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
kqv = kqv.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, kqv)
}
type MLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *MLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *Options) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type Layer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *SelfAttention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *MLP
}
func (l *Layer) Forward(ctx ml.Context, hiddenState, positionIDs ml.Tensor, cache model.Cache, opts *Options) ml.Tensor {
residual := hiddenState
hiddenState = l.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.SelfAttention.Forward(ctx, hiddenState, positionIDs, cache, opts)
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = l.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = l.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
if err != nil {
return nil, err
}
hiddenState := m.TokenEmbedding.Forward(ctx, inputs)
for i, layer := range m.Layers {
hiddenState = layer.Forward(ctx, hiddenState, positions, opts.Cache.Sub(i), m.Options)
}
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = m.Output.Forward(ctx, hiddenState)
outputs, err := ctx.FromIntSlice([]int32{int32(len(opts.Positions())) - 1}, 1)
if err != nil {
return nil, err
}
return hiddenState.Rows(ctx, outputs), nil
}
func init() {
model.Register("llama", New)
}
package mllama
import (
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
)
type Model struct {
model.Base
model.BytePairEncoding
*VisionModel `gguf:"v,vision"`
*TextModel
Projector *nn.Linear `gguf:"mm.0"`
ImageProcessor
}
func New(c ml.Config) (model.Model, error) {
return &Model{
BytePairEncoding: model.NewBytePairEncoding(
c.String("tokenizer.ggml.pretokenizer", `(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+`),
&model.Vocabulary{
Values: c.Strings("tokenizer.ggml.tokens"),
Types: c.Uints("tokenizer.ggml.token_type"),
Merges: c.Strings("tokenizer.ggml.merges"),
BOS: c.Uint("tokenizer.ggml.bos_token_id"),
EOS: c.Uint("tokenizer.ggml.eos_token_id"),
},
),
ImageProcessor: newImageProcessor(c),
VisionModel: newVisionModel(c),
TextModel: newTextModel(c),
}, nil
}
func (m *Model) Forward(ctx ml.Context, opts model.Options) (ml.Tensor, error) {
var crossAttentionStates ml.Tensor
if opts.Images != nil {
f32s, aspectRatioID, err := m.ImageProcessor.ProcessImage(opts.Images[0])
if err != nil {
return nil, err
}
pixelValues, err := ctx.FromFloatSlice(f32s,
m.ImageProcessor.imageSize,
m.ImageProcessor.imageSize,
m.ImageProcessor.numChannels,
m.ImageProcessor.maxNumTiles,
)
if err != nil {
return nil, err
}
aspectRatio, err := ctx.FromIntSlice([]int32{int32(aspectRatioID)}, 1)
if err != nil {
return nil, err
}
positions := make([]int32, 1601)
for i := range positions {
positions[i] = int32(i)
}
positionIDs, err := ctx.FromIntSlice(positions, len(positions))
if err != nil {
return nil, err
}
crossAttentionStates = m.VisionModel.Forward(ctx, pixelValues, positionIDs, aspectRatio)
crossAttentionStates = m.Projector.Forward(ctx, crossAttentionStates)
}
inputs, err := ctx.FromIntSlice(opts.Inputs(), len(opts.Inputs()))
if err != nil {
return nil, err
}
positions, err := ctx.FromIntSlice(opts.Positions(), len(opts.Positions()))
if err != nil {
return nil, err
}
// TODO: attention mask, cross attention mask
hiddenState := m.TextModel.Forward(ctx, inputs, positions, nil, crossAttentionStates, nil, opts.Cache)
outputs, err := ctx.FromIntSlice([]int32{int32(len(opts.Positions())) - 1}, 1)
if err != nil {
return nil, err
}
return hiddenState.Rows(ctx, outputs), nil
}
func init() {
model.Register("mllama", New)
}
package mllama
import (
"math"
"slices"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
"github.com/ollama/ollama/model"
)
type TextSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_output"`
}
func (sa *TextSelfAttention) Forward(ctx ml.Context, hiddenState, positions, mask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = query.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
key = key.RoPE(ctx, positions, opts.RopeFactors, opts.ropeDim, opts.ropeBase, opts.ropeScale)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numKVHeads, batchSize)
key, value = cache.Put(ctx, key, value, cache.Options)
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
scores := key.Mulmat(ctx, query)
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
if mask != nil {
scores = scores.Add(ctx, mask)
}
scores = scores.Softmax(ctx)
attention := value.Mulmat(ctx, scores)
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return sa.Output.Forward(ctx, attention)
}
type TextMLP struct {
Up *nn.Linear `gguf:"ffn_up"`
Down *nn.Linear `gguf:"ffn_down"`
Gate *nn.Linear `gguf:"ffn_gate"`
}
func (mlp *TextMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *TextModelOptions) ml.Tensor {
hiddenState = mlp.Gate.Forward(ctx, hiddenState).SILU(ctx).Mul(ctx, mlp.Up.Forward(ctx, hiddenState))
return mlp.Down.Forward(ctx, hiddenState)
}
type TextSelfAttentionDecoderLayer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
SelfAttention *TextSelfAttention
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *TextMLP
}
func (d *TextSelfAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, positions, mask, _, _ ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
residual := hiddenState
hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = d.SelfAttention.Forward(ctx, hiddenState, positions, mask, cache, opts)
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = d.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = d.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
type TextCrossAttention struct {
QueryNorm *nn.RMSNorm `gguf:"cross_attn_q_norm"`
Query *nn.Linear `gguf:"cross_attn_q_proj"`
KeyNorm *nn.RMSNorm `gguf:"cross_attn_k_norm"`
Key *nn.Linear `gguf:"cross_attn_k_proj"`
Value *nn.Linear `gguf:"cross_attn_v_proj"`
Output *nn.Linear `gguf:"cross_attn_o_proj"`
}
func (ca *TextCrossAttention) Forward(ctx ml.Context, hiddenState, crossAttentionStates ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
batchSize := hiddenState.Dim(1)
headDim := opts.hiddenSize / opts.numHeads
numVisionTokens, numTiles := crossAttentionStates.Dim(1), crossAttentionStates.Dim(2)
query := ca.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, batchSize)
query = ca.QueryNorm.Forward(ctx, query, opts.eps)
key := ca.Key.Forward(ctx, crossAttentionStates)
key = key.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
key = ca.KeyNorm.Forward(ctx, key, opts.eps)
value := ca.Value.Forward(ctx, crossAttentionStates)
value = value.Reshape(ctx, headDim, opts.numKVHeads, numVisionTokens*numTiles)
// TODO cache key, value
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
scores := key.Mulmat(ctx, query)
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
scores = scores.Softmax(ctx)
attention := value.Mulmat(ctx, scores)
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, batchSize)
return ca.Output.Forward(ctx, attention)
}
type TextCrossAttentionDecoderLayer struct {
AttentionNorm *nn.RMSNorm `gguf:"attn_norm"`
CrossAttention *TextCrossAttention
AttentionGate ml.Tensor `gguf:"cross_attn_attn_gate"`
MLPNorm *nn.RMSNorm `gguf:"ffn_norm"`
MLP *TextMLP
MLPGate ml.Tensor `gguf:"cross_attn_mlp_gate"`
}
func (d TextCrossAttentionDecoderLayer) Forward(ctx ml.Context, hiddenState, _, _, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
residual := hiddenState
hiddenState = d.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = d.CrossAttention.Forward(ctx, hiddenState, crossAttentionStates, cache, opts)
hiddenState = hiddenState.Mul(ctx, d.AttentionGate.Tanh(ctx))
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
hiddenState = d.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = d.MLP.Forward(ctx, hiddenState, opts)
hiddenState = hiddenState.Mul(ctx, d.MLPGate.Tanh(ctx))
return hiddenState.Add(ctx, residual)
}
type TextDecoderLayer interface {
Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor
}
type TextDecoder struct {
Layers []TextDecoderLayer
}
func (d *TextDecoder) Forward(ctx ml.Context, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache, opts *TextModelOptions) ml.Tensor {
for i, layer := range d.Layers {
if !slices.Contains(opts.crossAttentionLayers, uint32(i)) || crossAttentionStates != nil {
hiddenState = layer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache.Sub(i), opts)
}
}
return hiddenState
}
type TextModelOptions struct {
RopeFactors ml.Tensor `gguf:"rope_freqs.weight"`
hiddenSize, numHeads, numKVHeads int64
eps, ropeBase, ropeScale float32
ropeDim uint32
crossAttentionLayers []uint32
}
type TextModel struct {
TokenEmbedding *nn.Embedding `gguf:"token_embd"`
Transformer *TextDecoder `gguf:"blk"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output"`
*TextModelOptions
}
func (m *TextModel) Forward(ctx ml.Context, inputIDs, positionIDs, mask, crossAttentionStates, crossAttentionMask ml.Tensor, cache model.Cache) ml.Tensor {
hiddenState := m.TokenEmbedding.Forward(ctx, inputIDs)
hiddenState = m.Transformer.Forward(ctx, hiddenState, positionIDs, mask, crossAttentionStates, crossAttentionMask, cache, m.TextModelOptions)
hiddenState = m.OutputNorm.Forward(ctx, hiddenState, m.eps)
return m.Output.Forward(ctx, hiddenState)
}
func newTextModel(c ml.Config) *TextModel {
var decoderLayers []TextDecoderLayer
for i := range c.Uint("block_count") {
var textDecoderLayer TextDecoderLayer
if slices.Contains(c.Uints("attention.cross_attention_layers"), i) {
textDecoderLayer = &TextCrossAttentionDecoderLayer{}
} else {
textDecoderLayer = &TextSelfAttentionDecoderLayer{}
}
decoderLayers = append(decoderLayers, textDecoderLayer)
}
return &TextModel{
Transformer: &TextDecoder{Layers: decoderLayers},
TextModelOptions: &TextModelOptions{
hiddenSize: int64(c.Uint("embedding_length")),
numHeads: int64(c.Uint("attention.head_count")),
numKVHeads: int64(c.Uint("attention.head_count_kv")),
eps: c.Float("attention.layer_norm_rms_epsilon"),
ropeBase: c.Float("rope.freq_base"),
ropeScale: c.Float("rope.freq_scale", 1),
ropeDim: c.Uint("rope.dimension_count"),
crossAttentionLayers: c.Uints("attention.cross_attention_layers"),
},
}
}
package mllama
import (
"math"
"slices"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/nn"
)
var batchSize int64 = 1
type VisionSelfAttention struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_out"`
Gate ml.Tensor `gguf:"attn_gate"`
}
func (sa *VisionSelfAttention) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
headDim := opts.hiddenSize / opts.numHeads
query := sa.Query.Forward(ctx, hiddenState)
query = query.Reshape(ctx, headDim, opts.numHeads, query.Dim(1), batchSize)
query = query.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
key := sa.Key.Forward(ctx, hiddenState)
key = key.Reshape(ctx, headDim, opts.numHeads, key.Dim(1), batchSize)
key = key.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
value := sa.Value.Forward(ctx, hiddenState)
value = value.Reshape(ctx, headDim, opts.numHeads, value.Dim(1), batchSize)
value = value.Permute(ctx, 1, 2, 0, 3).Contiguous(ctx)
scores := key.Mulmat(ctx, query)
scores = scores.Scale(ctx, 1.0/math.Sqrt(float64(headDim)))
scores = scores.Softmax(ctx)
attention := value.Mulmat(ctx, scores)
attention = attention.Reshape(ctx, headDim, attention.Dim(1), opts.numHeads, batchSize)
attention = attention.Permute(ctx, 0, 2, 1, 3).Contiguous(ctx)
attention = attention.Reshape(ctx, opts.hiddenSize, attention.Dim(2), batchSize)
hiddenState = sa.Output.Forward(ctx, attention)
if sa.Gate != nil {
hiddenState = hiddenState.Mul(ctx, sa.Gate)
}
return hiddenState
}
type VisionMLP struct {
Down *nn.Linear `gguf:"ffn_down"`
Up *nn.Linear `gguf:"ffn_up"`
Gate ml.Tensor `gguf:"ffn_gate"`
}
func (mlp *VisionMLP) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
hiddenState = mlp.Down.Forward(ctx, hiddenState).GELU(ctx)
hiddenState = mlp.Up.Forward(ctx, hiddenState)
if mlp.Gate != nil {
hiddenState = hiddenState.Mul(ctx, mlp.Gate)
}
return hiddenState
}
type VisionEncoderLayer struct {
AttentionNorm *nn.LayerNorm `gguf:"ln1"`
SelfAttention *VisionSelfAttention
MLPNorm *nn.LayerNorm `gguf:"ln2"`
MLP *VisionMLP
}
func (e *VisionEncoderLayer) Forward(ctx ml.Context, hiddenState ml.Tensor, opts *VisionModelOptions) ml.Tensor {
residual := hiddenState
// self attention
hiddenState = e.AttentionNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.SelfAttention.Forward(ctx, hiddenState, opts)
hiddenState = hiddenState.Add(ctx, residual)
residual = hiddenState
// feed forward
hiddenState = e.MLPNorm.Forward(ctx, hiddenState, opts.eps)
hiddenState = e.MLP.Forward(ctx, hiddenState, opts)
return hiddenState.Add(ctx, residual)
}
type VisionEncoder struct {
Layers []VisionEncoderLayer
}
func (e *VisionEncoder) Forward(ctx ml.Context, hiddenState ml.Tensor, intermediateLayersIndices []uint32, opts *VisionModelOptions) (ml.Tensor, []ml.Tensor) {
var intermediateHiddenStates []ml.Tensor
for i, layer := range e.Layers {
if slices.Contains(intermediateLayersIndices, uint32(i)) {
intermediateHiddenStates = append(intermediateHiddenStates, hiddenState.Reshape(ctx, append([]int64{1}, hiddenState.Shape()...)...))
}
hiddenState = layer.Forward(ctx, hiddenState, opts)
}
return hiddenState, intermediateHiddenStates
}
type PrecomputedAspectRatioEmbedding struct {
Embedding *nn.Embedding
Gate ml.Tensor `gguf:"gate"`
}
func (e *PrecomputedAspectRatioEmbedding) Forward(ctx ml.Context, hiddenState ml.Tensor, aspectRatioIDs ml.Tensor, opts *VisionModelOptions) ml.Tensor {
embeddings := e.Embedding.Forward(ctx, aspectRatioIDs)
embeddings = embeddings.Reshape(ctx, opts.hiddenSize, 1, opts.numTiles)
if e.Gate != nil {
embeddings = embeddings.Mul(ctx, e.Gate)
}
return hiddenState.Add(ctx, embeddings)
}
type PrecomputedPositionEmbedding struct {
PositionEmbedding *nn.Embedding `gguf:"position_embd"`
PositionEmbeddingGate ml.Tensor `gguf:"position_embd.gate"`
TilePositionEmbedding *nn.Embedding `gguf:"tile_position_embd"`
TilePositionEmbeddingGate ml.Tensor `gguf:"tile_position_embd.gate"`
}
func (e *PrecomputedPositionEmbedding) Forward(ctx ml.Context, hiddenState, positionIDs, aspectRatioIDs ml.Tensor, numPositions int64, opts *VisionModelOptions) ml.Tensor {
positionEmbedding := e.PositionEmbedding.Forward(ctx, positionIDs)
if e.PositionEmbeddingGate != nil {
positionEmbedding = positionEmbedding.Mul(ctx, e.PositionEmbeddingGate)
}
hiddenState = hiddenState.Add(ctx, positionEmbedding)
tilePositionEmbedding := e.TilePositionEmbedding.Forward(ctx, aspectRatioIDs)
tilePositionEmbedding = tilePositionEmbedding.Reshape(ctx, opts.hiddenSize, numPositions, opts.numTiles)
if e.TilePositionEmbeddingGate != nil {
tilePositionEmbedding = tilePositionEmbedding.Mul(ctx, e.TilePositionEmbeddingGate)
}
return hiddenState.Add(ctx, tilePositionEmbedding)
}
type VisionModelOptions struct {
hiddenSize, numHeads, numTiles int64
imageSize, patchSize int
eps float32
intermediateLayersIndices []uint32
}
type VisionModel struct {
PatchEmbeddings *nn.Conv2D `gguf:"patch_embd"`
PreTilePositionEmbedding *PrecomputedAspectRatioEmbedding `gguf:"pre_tile_position_embd"`
PostTilePositionEmbedding *PrecomputedAspectRatioEmbedding `gguf:"post_tile_position_embd"`
PositionEmbedding *PrecomputedPositionEmbedding
PreLayerNorm *nn.LayerNorm `gguf:"pre_ln"`
PostLayerNorm *nn.LayerNorm `gguf:"post_ln"`
ClassEmbedding ml.Tensor `gguf:"class_embd"`
Transformer *VisionEncoder `gguf:"blk"`
GlobalTransformer *VisionEncoder `gguf:"global.blk"`
*VisionModelOptions
}
func (m *VisionModel) Forward(ctx ml.Context, pixelValues, positionIDs, aspectRatioIDs ml.Tensor) ml.Tensor {
numPatches := int64((m.imageSize / m.patchSize) * (m.imageSize / m.patchSize))
numPositions := numPatches
if m.ClassEmbedding != nil {
numPositions++
}
hiddenState := m.PatchEmbeddings.Forward(ctx, pixelValues, m.patchSize, m.patchSize, 0, 0, 1, 1)
hiddenState = hiddenState.Reshape(ctx, numPatches, m.hiddenSize, m.numTiles)
hiddenState = hiddenState.Permute(ctx, 1, 0, 2, 3).Contiguous(ctx)
hiddenState = m.PreTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
hiddenState = m.ClassEmbedding.Stack(ctx, 2, slices.Repeat([]ml.Tensor{m.ClassEmbedding}, int(m.numTiles)-1)...).Concat(ctx, hiddenState, 1)
hiddenState = m.PositionEmbedding.Forward(ctx, hiddenState, positionIDs, aspectRatioIDs, numPositions, m.VisionModelOptions)
hiddenState = m.PreLayerNorm.Forward(ctx, hiddenState, m.eps)
numPaddingPatches := 8 - (hiddenState.Dim(1)%8)%8
hiddenState = hiddenState.Pad(ctx, 0, numPaddingPatches, 0, 0)
hiddenState = hiddenState.Reshape(ctx, hiddenState.Dim(0), hiddenState.Dim(1)*hiddenState.Dim(2), batchSize)
hiddenState, intermediateHiddenStates := m.Transformer.Forward(ctx, hiddenState, m.intermediateLayersIndices, m.VisionModelOptions)
hiddenState = m.PostLayerNorm.Forward(ctx, hiddenState, m.eps)
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
hiddenState = m.PostTilePositionEmbedding.Forward(ctx, hiddenState, aspectRatioIDs, m.VisionModelOptions)
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, m.numTiles*(numPositions+numPaddingPatches), batchSize)
hiddenState, _ = m.GlobalTransformer.Forward(ctx, hiddenState, nil, m.VisionModelOptions)
hiddenStates := intermediateHiddenStates[0].Stack(ctx, 0, intermediateHiddenStates[1:]...)
hiddenStates = hiddenStates.Reshape(ctx, int64(len(intermediateHiddenStates))*m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
hiddenStates = hiddenStates.Unpad(ctx, 0, numPaddingPatches, 0, 0)
hiddenState = hiddenState.Reshape(ctx, m.hiddenSize, numPositions+numPaddingPatches, m.numTiles, batchSize)
hiddenState = hiddenState.Unpad(ctx, 0, numPaddingPatches, 0, 0)
return hiddenState.Concat(ctx, hiddenStates, 0)
}
func newVisionModel(c ml.Config) *VisionModel {
return &VisionModel{
Transformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.block_count"))},
GlobalTransformer: &VisionEncoder{Layers: make([]VisionEncoderLayer, c.Uint("vision.global.block_count"))},
VisionModelOptions: &VisionModelOptions{
hiddenSize: int64(c.Uint("vision.embedding_length")),
numHeads: int64(c.Uint("vision.attention.head_count")),
numTiles: int64(c.Uint("vision.max_num_tiles")),
imageSize: int(c.Uint("vision.image_size")),
patchSize: int(c.Uint("vision.patch_size")),
eps: c.Float("vision.attention.layer_norm_epsilon"),
intermediateLayersIndices: c.Uints("vision.intermediate_layers_indices"),
},
}
}
package mllama
import (
"image"
"image/color"
"math"
"slices"
"golang.org/x/image/draw"
"github.com/ollama/ollama/ml"
)
type ImageProcessor struct {
imageSize, numChannels, maxNumTiles int
}
func newImageProcessor(c ml.Config) ImageProcessor {
return ImageProcessor{
imageSize: int(c.Uint("vision.image_size")),
numChannels: int(c.Uint("vision.num_channels")),
maxNumTiles: int(c.Uint("vision.max_num_tiles")),
}
}
func (p *ImageProcessor) supportedAspectRatios(maxTiles int) []image.Point {
ratios := []image.Point{}
for w := range maxTiles {
for h := range maxTiles {
if (w+1)*(h+1) <= maxTiles {
ratios = append(ratios, image.Point{w + 1, h + 1})
}
}
}
return ratios
}
func (p *ImageProcessor) clip(a, a_min, a_max int) int {
if a < a_min {
return a_min
} else if a > a_max {
return a_max
}
return a
}
func (p *ImageProcessor) fitToCanvas(imageSize, canvasSize image.Point, tileSize int) image.Point {
targetWidth := p.clip(imageSize.X, tileSize, canvasSize.X)
targetHeight := p.clip(imageSize.Y, tileSize, canvasSize.Y)
scaleWidth := float64(targetWidth) / float64(imageSize.X)
scaleHeight := float64(targetHeight) / float64(imageSize.Y)
var w, h int
if scaleWidth < scaleHeight {
w = targetWidth
h = min(int(math.Floor(float64(imageSize.Y)*scaleWidth)), targetHeight)
} else {
w = min(int(math.Floor(float64(imageSize.X)*scaleHeight)), targetWidth)
h = targetHeight
}
return image.Point{w, h}
}
func (p *ImageProcessor) optimalTiledCanvas(imageSize image.Point, maxImageTiles, tileSize int) image.Point {
possibleTileArrangements := p.supportedAspectRatios(maxImageTiles)
possibleCanvasSizes := []image.Point{}
for _, pta := range possibleTileArrangements {
possibleCanvasSizes = append(possibleCanvasSizes, image.Point{pta.X * tileSize, pta.Y * tileSize})
}
scales := []float64{}
for _, pcs := range possibleCanvasSizes {
scaleHeight := float64(pcs.Y) / float64(imageSize.Y)
scaleWidth := float64(pcs.X) / float64(imageSize.X)
if scaleWidth > scaleHeight {
scales = append(scales, scaleHeight)
} else {
scales = append(scales, scaleWidth)
}
}
var minUpscale float64
var maxDownscale float64
var upscale bool
for _, s := range scales {
if s > 1.0 {
upscale = true
if minUpscale == 0 {
minUpscale = s
} else {
minUpscale = math.Min(minUpscale, s)
}
} else {
maxDownscale = math.Max(maxDownscale, s)
}
}
selectedScale := maxDownscale
if upscale {
selectedScale = minUpscale
}
var selectedCanvas image.Point
for n, pcs := range possibleCanvasSizes {
if scales[n] == selectedScale {
// choose the smallest possible canvas
if selectedCanvas.X == 0 && selectedCanvas.Y == 0 {
selectedCanvas = pcs
} else if pcs.X*pcs.Y < selectedCanvas.X*selectedCanvas.Y {
selectedCanvas = pcs
}
}
}
return selectedCanvas
}
func (p *ImageProcessor) splitToTiles(img image.Image, numTilesSize image.Point) []image.Image {
b := img.Bounds()
width := b.Max.X - b.Min.X
height := b.Max.Y - b.Min.Y
tileHeight := height / numTilesSize.Y
tileWidth := width / numTilesSize.X
images := []image.Image{}
for h := range numTilesSize.Y {
for w := range numTilesSize.X {
rect := image.Rect(tileWidth*w, tileHeight*h, tileWidth*(w+1), tileHeight*(h+1))
images = append(images, img.(interface {
SubImage(image.Rectangle) image.Image
}).SubImage(rect))
}
}
return images
}
// remove the "alpha" channel by drawing over a prefilled image
//
// remove the "alpha" channel by drawing over a prefilled image
//
//nolint:unused
func (p *ImageProcessor) compositeImage(img image.Image) image.Image {
dst := image.NewRGBA(img.Bounds())
white := color.RGBA{255, 255, 255, 255}
draw.Draw(dst, dst.Bounds(), &image.Uniform{white}, image.Point{}, draw.Src)
draw.Draw(dst, dst.Bounds(), img, img.Bounds().Min, draw.Over)
return dst
}
func (p *ImageProcessor) resize(img image.Image, outputSize image.Point, maxImageTiles int) (image.Image, image.Point) {
b := img.Bounds()
tileSize := outputSize.Y
canvasSize := p.optimalTiledCanvas(b.Max, maxImageTiles, tileSize)
aspectRatio := image.Point{canvasSize.X / tileSize, canvasSize.Y / tileSize}
newSize := p.fitToCanvas(b.Max, canvasSize, tileSize)
dst := image.NewRGBA(image.Rect(0, 0, newSize.X, newSize.Y))
// scaling choices:
// NearestNeighbor fast, blocky output
// ApproxBiLinear fast, medium quality
// BiLinear slow, high quality
// CatmullRom very slow, very high quality
draw.BiLinear.Scale(dst, dst.Rect, img, b, draw.Over, nil)
return dst, aspectRatio
}
func (p *ImageProcessor) pad(img image.Image, outputSize, aspectRatio image.Point) image.Image {
paddedSize := image.Point{
X: outputSize.X * aspectRatio.X,
Y: outputSize.Y * aspectRatio.Y,
}
dst := image.NewRGBA(image.Rect(0, 0, paddedSize.X, paddedSize.Y))
draw.Draw(dst, img.Bounds(), img, image.Point{0, 0}, draw.Over)
return dst
}
func (p *ImageProcessor) pack(img image.Image, aspectRatio image.Point, mean, std [3]float32) []float32 {
subImages := p.splitToTiles(img, aspectRatio)
var pixelVals []float32
for _, subImg := range subImages {
bounds := subImg.Bounds()
var rVals, gVals, bVals []float32
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
c := subImg.At(x, y)
r, g, b, _ := c.RGBA()
rVal := float32(r>>8) / 255.0
gVal := float32(g>>8) / 255.0
bVal := float32(b>>8) / 255.0
rVal = (rVal - mean[0]) / std[0]
gVal = (gVal - mean[1]) / std[1]
bVal = (bVal - mean[2]) / std[2]
rVals = append(rVals, rVal)
gVals = append(gVals, gVal)
bVals = append(bVals, bVal)
}
}
pixelVals = append(pixelVals, rVals...)
pixelVals = append(pixelVals, gVals...)
pixelVals = append(pixelVals, bVals...)
}
return pixelVals
}
func (p ImageProcessor) ProcessImage(img image.Image) ([]float32, int, error) {
outputSize := image.Point{p.imageSize, p.imageSize}
// clip values
mean := [3]float32{0.48145466, 0.4578275, 0.40821073}
std := [3]float32{0.26862954, 0.26130258, 0.27577711}
newImage, aspectRatio := p.resize(img, outputSize, p.maxNumTiles)
newImage = p.pad(newImage, outputSize, aspectRatio)
data := p.pack(newImage, aspectRatio, mean, std)
aspectRatioIndex := slices.Index(p.supportedAspectRatios(p.maxNumTiles), aspectRatio) + 1
return data, aspectRatioIndex, nil
}
package model
import (
"fmt"
"image"
_ "image/jpeg"
_ "image/png"
"log/slog"
"os"
"reflect"
"strconv"
"strings"
_ "golang.org/x/image/bmp"
_ "golang.org/x/image/tiff"
_ "golang.org/x/image/webp"
"github.com/ollama/ollama/cache"
"github.com/ollama/ollama/ml"
_ "github.com/ollama/ollama/ml/backend"
)
type Cache struct {
cache.Cache
cache.Options
}
func (c Cache) Sub(i int) Cache {
if c.Cache != nil {
return Cache{
Cache: c.Cache.Sub(i),
Options: c.Options,
}
}
return c
}
func (c Cache) Put(ctx ml.Context, key, value ml.Tensor, opts cache.Options) (ml.Tensor, ml.Tensor) {
if c.Cache != nil {
return c.Cache.Put(ctx, key, value, opts)
}
return key, value
}
type Options struct {
inputs []int32
Offset int
Images []image.Image
Cache
}
func (opts Options) Inputs() []int32 {
return opts.inputs[opts.Offset:]
}
func (opts Options) Positions() []int32 {
positions := make([]int32, len(opts.inputs)-opts.Offset)
for i := range positions {
positions[i] = int32(opts.Offset + i)
}
return positions
}
type OptionsFunc func(Model, *Options)
func WithInputIDs(ids []int32) OptionsFunc {
return func(m Model, opts *Options) {
opts.inputs = ids
}
}
func WithOffset(offset int) OptionsFunc {
return func(m Model, opts *Options) {
opts.Offset = offset
opts.Cache.Position = offset
}
}
func WithImage(img image.Image) OptionsFunc {
return func(m Model, opts *Options) {
opts.Images = append(opts.Images, img)
}
}
func WithCache(c cache.Cache) OptionsFunc {
return func(m Model, opts *Options) {
opts.Cache = Cache{
Cache: c,
Options: cache.Options{
Position: opts.Offset,
},
}
}
}
type Base struct {
b ml.Backend
}
func (m *Base) Backend() ml.Backend {
return m.b
}
type Model interface {
Forward(ml.Context, Options) (ml.Tensor, error)
Backend() ml.Backend
}
var models = make(map[string]func(ml.Config) (Model, error))
func Register(name string, f func(ml.Config) (Model, error)) {
if _, ok := models[name]; ok {
panic("model: model already registered")
}
models[name] = f
}
func New(s string) (Model, error) {
r, err := os.Open(s)
if err != nil {
return nil, err
}
defer r.Close()
b, err := ml.NewBackend(r)
if err != nil {
return nil, err
}
arch := b.Config().Architecture()
f, ok := models[arch]
if !ok {
return nil, fmt.Errorf("unsupported model architecture %q", arch)
}
m, err := f(b.Config())
if err != nil {
return nil, err
}
v := reflect.ValueOf(m)
v.Elem().Set(populateFields(b, v))
return m, nil
}
func populateFields(b ml.Backend, v reflect.Value, tags ...Tag) reflect.Value {
t := v.Type()
if t.Kind() == reflect.Pointer {
t, v = t.Elem(), v.Elem()
}
if t.Kind() == reflect.Struct {
allNil := true
for i := range t.NumField() {
tt := t.Field(i).Type
vv := v.Field(i)
if !vv.CanSet() {
continue
}
// make a copy
tagsCopy := tags
if tag := t.Field(i).Tag.Get("gguf"); tag != "" {
tagsCopy = append(tagsCopy, ParseTags(tag))
}
if tt == reflect.TypeOf((*Base)(nil)).Elem() {
vv.Set(reflect.ValueOf(Base{b: b}))
} else if tt == reflect.TypeOf((*ml.Tensor)(nil)).Elem() {
var fn func([]Tag) [][]string
fn = func(tags []Tag) (values [][]string) {
if len(tags) < 1 {
return nil
}
values = [][]string{{tags[0].Name}}
for _, alt := range tags[0].Alternate {
values = append(values, []string{alt})
}
for i, value := range values {
for _, rest := range fn(tags[1:]) {
value = append(value, rest...)
}
values[i] = value
}
return values
}
names := fn(tagsCopy)
for _, name := range names {
if tensor := b.Get(strings.Join(name, ".")); tensor != nil {
slog.Debug("found tensor", "", tensor)
vv.Set(reflect.ValueOf(tensor))
break
}
}
} else if tt.Kind() == reflect.Pointer {
vvv := vv.Elem()
if vv.IsNil() {
vvv = reflect.New(tt.Elem())
}
if f := populateFields(b, vvv, tagsCopy...); f.CanAddr() {
vv.Set(f.Addr())
}
} else if tt.Kind() == reflect.Slice || tt.Kind() == reflect.Array {
for i := range vv.Len() {
vv.Index(i).Set(populateFields(b, vv.Index(i), append(tagsCopy, Tag{Name: strconv.Itoa(i)})...))
}
}
if !canNil(tt) || !vv.IsNil() {
allNil = false
}
}
if allNil {
return reflect.Zero(t)
}
}
return v
}
type Tag struct {
Name string
Alternate []string
}
func ParseTags(s string) (tag Tag) {
parts := strings.Split(s, ",")
if len(parts) > 0 {
tag.Name = parts[0]
for _, part := range parts[1:] {
if value, ok := strings.CutPrefix(part, "alt:"); ok {
tag.Alternate = append(tag.Alternate, value)
}
}
}
return
}
func canNil(t reflect.Type) bool {
return t.Kind() == reflect.Chan ||
t.Kind() == reflect.Func ||
t.Kind() == reflect.Interface ||
t.Kind() == reflect.Map ||
t.Kind() == reflect.Pointer ||
t.Kind() == reflect.Slice
}
func Forward(m Model, optsFuncs ...OptionsFunc) (ml.Tensor, error) {
var opts Options
for _, optsFunc := range optsFuncs {
optsFunc(m, &opts)
}
ctx := m.Backend().NewContext()
t, err := m.Forward(ctx, opts)
if err != nil {
return nil, err
}
defer ctx.Close()
return ctx.Compute(t), nil
}
package model
import (
"reflect"
"slices"
"testing"
"github.com/google/go-cmp/cmp"
"github.com/ollama/ollama/ml"
"github.com/ollama/ollama/ml/backend/ggml"
"github.com/ollama/ollama/ml/nn"
)
func TestParseTags(t *testing.T) {
cases := []struct {
value string
want Tag
}{
{
value: "output",
want: Tag{
Name: "output",
},
},
{
value: "output,alt:token_embd",
want: Tag{
Name: "output",
Alternate: []string{
"token_embd",
},
},
},
}
for _, tt := range cases {
t.Run(tt.value, func(t *testing.T) {
got := ParseTags(tt.value)
if diff := cmp.Diff(tt.want, got); diff != "" {
t.Errorf("ParseTags() returned unexpected values (-want +got):\n%s", diff)
}
})
}
}
type fakeBackend struct {
*ggml.Backend
names []string
}
type fakeTensor struct {
*ggml.Tensor
Name string
}
func (m *fakeBackend) Get(name string) ml.Tensor {
if slices.Contains(m.names, name) {
return &fakeTensor{Name: name}
}
return nil
}
func TestPopulateFields(t *testing.T) {
type fakeLayer struct {
Query *nn.Linear `gguf:"attn_q"`
Key *nn.Linear `gguf:"attn_k"`
Value *nn.Linear `gguf:"attn_v"`
Output *nn.Linear `gguf:"attn_o"`
}
type fakeModel struct {
Input *nn.Embedding `gguf:"input"`
OutputNorm *nn.RMSNorm `gguf:"output_norm"`
Output *nn.Linear `gguf:"output"`
Layers [2]fakeLayer `gguf:"blk"`
}
var m fakeModel
v := reflect.ValueOf(&m)
v.Elem().Set(populateFields(&fakeBackend{
names: []string{
"input.weight",
"blk.0.attn_q.weight",
"blk.0.attn_k.weight",
"blk.0.attn_v.weight",
"blk.1.attn_q.weight",
"blk.1.attn_k.weight",
"blk.1.attn_v.weight",
"output_norm.weight",
"output.weight",
},
}, v))
if diff := cmp.Diff(fakeModel{
Input: &nn.Embedding{Weight: &fakeTensor{Name: "input.weight"}},
OutputNorm: &nn.RMSNorm{Weight: &fakeTensor{Name: "output_norm.weight"}},
Output: &nn.Linear{Weight: &fakeTensor{Name: "output.weight"}},
Layers: [2]fakeLayer{
{
Query: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.attn_q.weight"}},
Key: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.attn_k.weight"}},
Value: &nn.Linear{Weight: &fakeTensor{Name: "blk.0.attn_v.weight"}},
},
{
Query: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.attn_q.weight"}},
Key: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.attn_k.weight"}},
Value: &nn.Linear{Weight: &fakeTensor{Name: "blk.1.attn_v.weight"}},
},
},
}, m); diff != "" {
t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
}
}
func TestPopulateFieldsAlternateName(t *testing.T) {
type fakeModel struct {
Input *nn.Embedding `gguf:"input"`
Output *nn.Linear `gguf:"output,alt:input"`
}
m := fakeModel{}
v := reflect.ValueOf(&m)
v.Elem().Set(populateFields(&fakeBackend{
names: []string{
"input.weight",
},
}, v))
if diff := cmp.Diff(fakeModel{
Input: &nn.Embedding{Weight: &fakeTensor{Name: "input.weight"}},
Output: &nn.Linear{Weight: &fakeTensor{Name: "input.weight"}},
}, m); diff != "" {
t.Errorf("populateFields() set incorrect values (-want +got):\n%s", diff)
}
}
package model
import (
"cmp"
"iter"
"log/slog"
"strings"
"sync"
"github.com/dlclark/regexp2"
heap "github.com/emirpasic/gods/v2/trees/binaryheap"
)
type Special int32
const (
SpecialBOS Special = iota
SpecialEOS
)
type TextProcessor interface {
Encode(string) ([]int32, error)
Decode([]int32) (string, error)
Is(uint32, Special) bool
}
type Vocabulary struct {
Values []string
Types []uint32
Scores []uint32
Merges []string
BOS, EOS uint32
specialOnce sync.Once
special []string
valuesOnce sync.Once
values map[string]int32
mergeOnce sync.Once
merge map[string]int32
}
func (v *Vocabulary) Is(id uint32, special Special) bool {
switch special {
case SpecialBOS:
return id == v.BOS
case SpecialEOS:
return id == v.EOS
default:
return false
}
}
func (v *Vocabulary) Encode(s string) int32 {
v.valuesOnce.Do(func() {
v.values = make(map[string]int32, len(v.Values))
for i, value := range v.Values {
v.values[value] = int32(i)
}
})
if id, ok := v.values[s]; ok {
return id
}
return -1
}
func (v *Vocabulary) Decode(id int32) string {
return v.Values[id]
}
func (v *Vocabulary) SpecialVocabulary() []string {
v.specialOnce.Do(func() {
for i := range v.Values {
if v.Types[i] == 3 {
v.special = append(v.special, v.Values[i])
}
}
})
return v.special
}
func (v *Vocabulary) Merge(left, right string) int {
v.mergeOnce.Do(func() {
v.merge = make(map[string]int32, len(v.Merges))
for i, merge := range v.Merges {
v.merge[merge] = int32(i)
}
})
if id, ok := v.merge[left+" "+right]; ok {
return int(id)
}
return -1
}
type BytePairEncoding struct {
pre *regexp2.Regexp
vocab *Vocabulary
}
func NewBytePairEncoding(pre string, vocab *Vocabulary) BytePairEncoding {
return BytePairEncoding{
pre: regexp2.MustCompile(pre, regexp2.Unicode|regexp2.RE2),
vocab: vocab,
}
}
func (bpe BytePairEncoding) Is(id uint32, special Special) bool {
return bpe.vocab.Is(id, special)
}
func (bpe *BytePairEncoding) split(s string) iter.Seq[string] {
return func(yield func(string) bool) {
for m, _ := bpe.pre.FindStringMatch(s); m != nil; m, _ = bpe.pre.FindNextMatch(m) {
if !yield(m.String()) {
break
}
}
}
}
// fragment is a string fragment and their corresponding token IDs
type fragment struct {
value string
ids []int32
}
// pair is a pair of runes and its rank
type pair struct {
a, b int
rank int
value string
}
type merge struct {
p, n int
runes []rune
}
func (bpe BytePairEncoding) Encode(s string) ([]int32, error) {
fragments := []fragment{{value: s}}
for _, special := range bpe.vocab.SpecialVocabulary() {
// TODO: process special tokens concurrently
id := bpe.vocab.Encode(special)
for i := 0; i < len(fragments); i++ {
frag := fragments[i]
if len(frag.ids) > 0 {
continue
}
var middle []fragment
switch i := strings.Index(frag.value, special); {
case i < 0:
middle = append(middle, frag)
case i > 0:
middle = append(middle, fragment{value: frag.value[:i]})
fallthrough
default:
middle = append(middle, fragment{value: special, ids: []int32{id}})
if rest := frag.value[i+len(special):]; rest != "" {
middle = append(middle, fragment{value: rest})
}
}
fragments = append(fragments[:i], append(middle, fragments[i+1:]...)...)
}
}
var ids []int32
for _, frag := range fragments {
if len(frag.ids) > 0 {
ids = append(ids, frag.ids...)
slog.Debug("encoded", "text", frag.value, "ids", frag.ids, "special", true)
continue
}
for split := range bpe.split(frag.value) {
// TODO: process splits concurrently
var sb strings.Builder
for _, b := range []byte(split) {
r := rune(b)
switch {
case r == 0x00ad:
r = 0x0143
case r <= 0x0020:
r = r + 0x0100
case r >= 0x007e && r <= 0x00a0:
r = r + 0x00a2
}
sb.WriteRune(r)
}
// short circuit if the fragment is in the vocabulary
if id := bpe.vocab.Encode(sb.String()); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", sb.String(), "ids", []int32{id})
continue
}
runes := []rune(sb.String())
merges := make([]merge, len(runes))
for r := range runes {
merges[r] = merge{
p: r - 1,
n: r + 1,
runes: []rune{runes[r]},
}
}
pairwise := func(a, b int) *pair {
if a < 0 || b >= len(runes) {
return nil
}
left, right := string(merges[a].runes), string(merges[b].runes)
rank := bpe.vocab.Merge(left, right)
if rank < 0 {
return nil
}
return &pair{
a: a,
b: b,
rank: rank,
value: left + right,
}
}
pairs := heap.NewWith(func(i, j *pair) int {
return cmp.Compare(i.rank, j.rank)
})
for i := range len(runes) - 1 {
if pair := pairwise(i, i+1); pair != nil {
pairs.Push(pair)
}
}
for !pairs.Empty() {
pair, _ := pairs.Pop()
left, right := merges[pair.a], merges[pair.b]
if len(left.runes) == 0 || len(right.runes) == 0 ||
string(left.runes)+string(right.runes) != pair.value {
continue
}
merges[pair.a].runes = append(left.runes, right.runes...)
merges[pair.b].runes = nil
merges[pair.a].n = right.n
if right.n < len(merges) {
merges[right.n].p = pair.a
}
if pair := pairwise(merges[pair.a].p, pair.a); pair != nil {
pairs.Push(pair)
}
if pair := pairwise(pair.a, merges[pair.a].n); pair != nil {
pairs.Push(pair)
}
}
for _, merge := range merges {
if len(merge.runes) > 0 {
// TODO: handle the edge case where the rune isn't in the vocabulary
if id := bpe.vocab.Encode(string(merge.runes)); id >= 0 {
ids = append(ids, id)
slog.Debug("encoded", "text", string(merge.runes), "ids", []int32{id})
}
}
}
}
}
return ids, nil
}
func (bpe BytePairEncoding) Decode(ids []int32) (string, error) {
var sb strings.Builder
for _, id := range ids {
for _, r := range bpe.vocab.Decode(id) {
switch {
case r == 0x0100:
// this produces 0x00 aka NULL
continue
case r == 0x0143:
r = 0x00ad
case r > 0x0100 && r <= 0x0120:
r = r - 0x0100
case r > 0x0120 && r <= 0x0142:
r = r - 0x00a2
}
// NOTE: not using WriteRune here because it writes the UTF-8
// encoding of the rune which is _not_ what we want
if err := sb.WriteByte(byte(r)); err != nil {
return "", err
}
}
}
slog.Debug("decoded", "ids", ids, "text", sb.String())
return sb.String(), nil
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment