Unverified Commit 55ea963c authored by Jeffrey Morgan's avatar Jeffrey Morgan Committed by GitHub
Browse files

update default model to llama3.2 (#6959)

parent e9e9bdb8
# RAG Hallucination Checker using Bespoke-Minicheck # RAG Hallucination Checker using Bespoke-Minicheck
This example allows the user to ask questions related to a document, which can be specified via an article url. Relevant chunks are retreived from the document and given to `llama3.1` as context to answer the question. Then each sentence in the answer is checked against the retrieved chunks using `bespoke-minicheck` to ensure that the answer does not contain hallucinations. This example allows the user to ask questions related to a document, which can be specified via an article url. Relevant chunks are retreived from the document and given to `llama3.2` as context to answer the question. Then each sentence in the answer is checked against the retrieved chunks using `bespoke-minicheck` to ensure that the answer does not contain hallucinations.
## Running the Example ## Running the Example
1. Ensure `all-minilm` (embedding) `llama3.1` (chat) and `bespoke-minicheck` (check) models installed: 1. Ensure `all-minilm` (embedding) `llama3.2` (chat) and `bespoke-minicheck` (check) models installed:
```bash ```bash
ollama pull all-minilm ollama pull all-minilm
ollama pull llama3.1 ollama pull llama3.2
ollama pull bespoke-minicheck ollama pull bespoke-minicheck
``` ```
......
...@@ -119,7 +119,7 @@ if __name__ == "__main__": ...@@ -119,7 +119,7 @@ if __name__ == "__main__":
system_prompt = f"Only use the following information to answer the question. Do not use anything else: {sourcetext}" system_prompt = f"Only use the following information to answer the question. Do not use anything else: {sourcetext}"
ollama_response = ollama.generate( ollama_response = ollama.generate(
model="llama3.1", model="llama3.2",
prompt=question, prompt=question,
system=system_prompt, system=system_prompt,
options={"stream": False}, options={"stream": False},
......
...@@ -2,7 +2,7 @@ import requests ...@@ -2,7 +2,7 @@ import requests
import json import json
import random import random
model = "llama3.1" model = "llama3.2"
template = { template = {
"firstName": "", "firstName": "",
"lastName": "", "lastName": "",
......
...@@ -12,7 +12,7 @@ countries = [ ...@@ -12,7 +12,7 @@ countries = [
"France", "France",
] ]
country = random.choice(countries) country = random.choice(countries)
model = "llama3.1" model = "llama3.2"
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters." prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."
......
...@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran ...@@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
## Running the Example ## Running the Example
1. Ensure you have the `llama3.1` model installed: 1. Ensure you have the `llama3.2` model installed:
```bash ```bash
ollama pull llama3.1 ollama pull llama3.2
``` ```
2. Install the Python Requirements. 2. Install the Python Requirements.
......
...@@ -2,7 +2,7 @@ import json ...@@ -2,7 +2,7 @@ import json
import requests import requests
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve` # NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
model = "llama3.1" # TODO: update this for whatever model you wish to use model = "llama3.2" # TODO: update this for whatever model you wish to use
def chat(messages): def chat(messages):
......
...@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam ...@@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
## Running the Example ## Running the Example
1. Ensure you have the `llama3.1` model installed: 1. Ensure you have the `llama3.2` model installed:
```bash ```bash
ollama pull llama3.1 ollama pull llama3.2
``` ```
2. Install the Python Requirements. 2. Install the Python Requirements.
......
import * as readline from "readline"; import * as readline from "readline";
const model = "llama3.1"; const model = "llama3.2";
type Message = { type Message = {
role: "assistant" | "user" | "system"; role: "assistant" | "user" | "system";
content: string; content: string;
......
...@@ -19,7 +19,7 @@ export default function () { ...@@ -19,7 +19,7 @@ export default function () {
const [step, setStep] = useState<Step>(Step.WELCOME) const [step, setStep] = useState<Step>(Step.WELCOME)
const [commandCopied, setCommandCopied] = useState<boolean>(false) const [commandCopied, setCommandCopied] = useState<boolean>(false)
const command = 'ollama run llama3.1' const command = 'ollama run llama3.2'
return ( return (
<div className='drag'> <div className='drag'>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment