Unverified Commit 49a9c9ba authored by Daniel Hiltgen's avatar Daniel Hiltgen Committed by GitHub
Browse files

GGML update to ec98e2002 (#13451)

* Revert "add support for NVIDIA Nemotron 3 Nano"

This reverts commit e7d2ae9d69421012e9a8765c06a3fdf0e45b12f3.

* GGML update to 380b4c984

Remove MaskBatchPadding as GGML_KQ_MASK_PAD is no longer present (no
padding required)

* update to c45f89d55

* ec98e2002

solar pro needed more adjusting - needs verification

* review comments
parent 1c094038
#pragma once
#include "ggml.h"
#include "gguf.h"
#include "clip.h"
......@@ -13,6 +15,8 @@
// Internal header for clip.cpp
#define MTMD_INTERNAL_HEADER
#define KEY_FTYPE "general.file_type"
#define KEY_NAME "general.name"
#define KEY_DESCRIPTION "general.description"
......@@ -64,6 +68,7 @@
#define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
#define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
#define TN_PATCH_BIAS "v.patch_embd.bias"
#define TN_NORM_EMBD "v.norm_embd.%s"
#define TN_ATTN_QKV "%s.blk.%d.attn_qkv.%s"
#define TN_ATTN_K "%s.blk.%d.attn_k.%s"
#define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
......@@ -82,6 +87,10 @@
#define TN_LN_PRE "%s.pre_ln.%s"
#define TN_LN_POST "%s.post_ln.%s"
#define TN_LLAVA_PROJ "mm.%d.%s"
#define TN_MM_UP "mm.up.%s"
#define TN_MM_GATE "mm.gate.%s"
#define TN_MM_DOWN "mm.down.%s"
#define TN_MM_POST_NORM "mm.post_norm.%s"
#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
#define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
......@@ -91,7 +100,7 @@
#define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
#define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
#define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3
#define TN_MM_PATCH_MERGER "mm.patch_merger.weight" // mistral small 3.1
#define TN_MM_PATCH_MERGER "mm.patch_merger.%s" // mistral small 3.1, glm4v
#define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral
#define TN_TOK_GLM_BOI "adapter.boi" // glm-edge (these embeddings are not in text model)
#define TN_TOK_GLM_EOI "adapter.eoi" // glm-edge (these embeddings are not in text model)
......@@ -132,6 +141,10 @@
// align x to upper multiple of n
#define CLIP_ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))
// forward declaration
// TODO: improve this later
struct clip_ctx;
enum projector_type {
PROJECTOR_TYPE_MLP,
PROJECTOR_TYPE_MLP_NORM,
......@@ -149,6 +162,7 @@ enum projector_type {
PROJECTOR_TYPE_INTERNVL,
PROJECTOR_TYPE_LLAMA4,
PROJECTOR_TYPE_QWEN2A,
PROJECTOR_TYPE_GLMA,
PROJECTOR_TYPE_QWEN25O, // will be replaced by QWEN2A or QWEN25VL depending on clip_ctx
PROJECTOR_TYPE_VOXTRAL,
PROJECTOR_TYPE_LFM2,
......@@ -156,6 +170,7 @@ enum projector_type {
PROJECTOR_TYPE_LIGHTONOCR,
PROJECTOR_TYPE_COGVLM,
PROJECTOR_TYPE_JANUS_PRO,
PROJECTOR_TYPE_GLM4V,
PROJECTOR_TYPE_UNKNOWN,
};
......@@ -175,6 +190,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_INTERNVL, "internvl"},
{ PROJECTOR_TYPE_LLAMA4, "llama4"},
{ PROJECTOR_TYPE_QWEN2A, "qwen2a"},
{ PROJECTOR_TYPE_GLMA, "glma"},
{ PROJECTOR_TYPE_QWEN25O, "qwen2.5o"},
{ PROJECTOR_TYPE_VOXTRAL, "voxtral"},
{ PROJECTOR_TYPE_LFM2, "lfm2"},
......@@ -182,6 +198,7 @@ static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
{ PROJECTOR_TYPE_LIGHTONOCR,"lightonocr"},
{ PROJECTOR_TYPE_COGVLM, "cogvlm"},
{ PROJECTOR_TYPE_JANUS_PRO, "janus_pro"},
{ PROJECTOR_TYPE_GLM4V, "glm4v"},
};
static projector_type clip_projector_type_from_string(const std::string & str) {
......@@ -485,6 +502,8 @@ static void print_tensor_data(ggml_tensor * t, uint8_t * data, int64_t n) {
}
}
void clip_debug_encode(clip_ctx * ctx, int h, int w, float fill_value);
//
// API used internally with mtmd
//
......
#pragma once
#include "ggml.h"
#include "clip.h"
#include "clip-impl.h"
#include <vector>
#include <unordered_set>
#include <cstdint>
#include <cmath>
enum ffn_op_type {
FFN_GELU,
FFN_GELU_ERF,
FFN_SILU,
FFN_GELU_QUICK,
};
enum norm_type {
NORM_TYPE_NORMAL,
NORM_TYPE_RMS,
};
enum patch_merge_type {
PATCH_MERGE_FLAT,
PATCH_MERGE_SPATIAL_UNPAD,
};
struct clip_hparams {
int32_t image_size = 0;
int32_t patch_size = 0;
int32_t n_embd = 0;
int32_t n_ff = 0;
int32_t projection_dim = 0;
int32_t n_head = 0;
int32_t n_layer = 0;
// idefics3
int32_t image_longest_edge = 0;
int32_t image_min_pixels = -1;
int32_t image_max_pixels = -1;
int32_t n_merge = 0; // number of patch merges **per-side**
float image_mean[3];
float image_std[3];
// for models using dynamic image size, we need to have a smaller image size to warmup
// otherwise, user will get OOM everytime they load the model
int32_t warmup_image_size = 0;
int32_t warmup_audio_size = 3000;
ffn_op_type ffn_op = FFN_GELU;
patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
float eps = 1e-6;
float rope_theta = 0.0;
std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
int32_t image_crop_resolution;
std::unordered_set<int32_t> vision_feature_layer;
int32_t attn_window_size = 0;
int32_t n_wa_pattern = 0;
// audio
int32_t n_mel_bins = 0; // whisper preprocessor
int32_t proj_stack_factor = 0; // ultravox
// audio-to-mel preprocessor params
int32_t audio_chunk_len = -1; // in seconds
int32_t audio_sample_rate = -1;
int32_t audio_n_fft = -1;
int32_t audio_window_len = -1;
int32_t audio_hop_len = -1;
// legacy
bool has_llava_projector = false;
int minicpmv_version = 0;
int32_t minicpmv_query_num = 0; // MiniCPM-V query number
// custom value provided by user, can be undefined if not set
int32_t custom_image_min_tokens = -1;
int32_t custom_image_max_tokens = -1;
void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
const int cur_merge = n_merge == 0 ? 1 : n_merge;
const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
image_min_pixels = (custom_image_min_tokens > 0 ? custom_image_min_tokens : n_tokens_min) * patch_area;
image_max_pixels = (custom_image_max_tokens > 0 ? custom_image_max_tokens : n_tokens_max) * patch_area;
warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
}
void set_warmup_n_tokens(int n_tokens) {
int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
const int cur_merge = n_merge == 0 ? 1 : n_merge;
warmup_image_size = n_tok_per_side * patch_size * cur_merge;
// TODO: support warmup size for custom token numbers
}
};
struct clip_layer {
// attention
ggml_tensor * k_w = nullptr;
ggml_tensor * k_b = nullptr;
ggml_tensor * q_w = nullptr;
ggml_tensor * q_b = nullptr;
ggml_tensor * v_w = nullptr;
ggml_tensor * v_b = nullptr;
ggml_tensor * qkv_w = nullptr;
ggml_tensor * qkv_b = nullptr;
ggml_tensor * o_w = nullptr;
ggml_tensor * o_b = nullptr;
ggml_tensor * k_norm = nullptr;
ggml_tensor * q_norm = nullptr;
// layernorm 1
ggml_tensor * ln_1_w = nullptr;
ggml_tensor * ln_1_b = nullptr;
ggml_tensor * ff_up_w = nullptr;
ggml_tensor * ff_up_b = nullptr;
ggml_tensor * ff_gate_w = nullptr;
ggml_tensor * ff_gate_b = nullptr;
ggml_tensor * ff_down_w = nullptr;
ggml_tensor * ff_down_b = nullptr;
// layernorm 2
ggml_tensor * ln_2_w = nullptr;
ggml_tensor * ln_2_b = nullptr;
// layer scale (no bias)
ggml_tensor * ls_1_w = nullptr;
ggml_tensor * ls_2_w = nullptr;
// qwen3vl deepstack merger
ggml_tensor * deepstack_norm_w = nullptr;
ggml_tensor * deepstack_norm_b = nullptr;
ggml_tensor * deepstack_fc1_w = nullptr;
ggml_tensor * deepstack_fc1_b = nullptr;
ggml_tensor * deepstack_fc2_w = nullptr;
ggml_tensor * deepstack_fc2_b = nullptr;
bool has_deepstack() const {
return deepstack_fc1_w != nullptr;
}
};
struct clip_model {
clip_modality modality = CLIP_MODALITY_VISION;
projector_type proj_type = PROJECTOR_TYPE_MLP;
clip_hparams hparams;
// embeddings
ggml_tensor * class_embedding = nullptr;
ggml_tensor * patch_embeddings_0 = nullptr;
ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
ggml_tensor * patch_bias = nullptr;
ggml_tensor * position_embeddings = nullptr;
ggml_tensor * norm_embd_w = nullptr;
ggml_tensor * norm_embd_b = nullptr;
ggml_tensor * pre_ln_w = nullptr;
ggml_tensor * pre_ln_b = nullptr;
std::vector<clip_layer> layers;
int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer
ggml_tensor * post_ln_w;
ggml_tensor * post_ln_b;
ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
ggml_tensor * mm_fc_w;
ggml_tensor * mm_fc_b;
ggml_tensor * mm_ffn_up_w = nullptr;
ggml_tensor * mm_ffn_up_b = nullptr;
ggml_tensor * mm_ffn_gate_w = nullptr;
ggml_tensor * mm_ffn_gate_b = nullptr;
ggml_tensor * mm_ffn_down_w = nullptr;
ggml_tensor * mm_ffn_down_b = nullptr;
ggml_tensor * mm_post_norm_w = nullptr;
ggml_tensor * mm_post_norm_b = nullptr;
// LLaVA projection
ggml_tensor * mm_input_norm_w = nullptr;
ggml_tensor * mm_input_norm_b = nullptr;
ggml_tensor * mm_0_w = nullptr;
ggml_tensor * mm_0_b = nullptr;
ggml_tensor * mm_2_w = nullptr;
ggml_tensor * mm_2_b = nullptr;
ggml_tensor * image_newline = nullptr;
// Yi type models with mlp+normalization projection
ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
ggml_tensor * mm_1_b = nullptr;
ggml_tensor * mm_3_w = nullptr;
ggml_tensor * mm_3_b = nullptr;
ggml_tensor * mm_4_w = nullptr;
ggml_tensor * mm_4_b = nullptr;
// GLMV-Edge projection
ggml_tensor * mm_model_adapter_conv_w = nullptr;
ggml_tensor * mm_model_adapter_conv_b = nullptr;
// MobileVLM projection
ggml_tensor * mm_model_mlp_1_w = nullptr;
ggml_tensor * mm_model_mlp_1_b = nullptr;
ggml_tensor * mm_model_mlp_3_w = nullptr;
ggml_tensor * mm_model_mlp_3_b = nullptr;
ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
// MobileVLM_V2 projection
ggml_tensor * mm_model_mlp_0_w = nullptr;
ggml_tensor * mm_model_mlp_0_b = nullptr;
ggml_tensor * mm_model_mlp_2_w = nullptr;
ggml_tensor * mm_model_mlp_2_b = nullptr;
ggml_tensor * mm_model_peg_0_w = nullptr;
ggml_tensor * mm_model_peg_0_b = nullptr;
// MINICPMV projection
ggml_tensor * mm_model_pos_embed_k = nullptr;
ggml_tensor * mm_model_query = nullptr;
ggml_tensor * mm_model_proj = nullptr;
ggml_tensor * mm_model_kv_proj = nullptr;
ggml_tensor * mm_model_attn_q_w = nullptr;
ggml_tensor * mm_model_attn_q_b = nullptr;
ggml_tensor * mm_model_attn_k_w = nullptr;
ggml_tensor * mm_model_attn_k_b = nullptr;
ggml_tensor * mm_model_attn_v_w = nullptr;
ggml_tensor * mm_model_attn_v_b = nullptr;
ggml_tensor * mm_model_attn_o_w = nullptr;
ggml_tensor * mm_model_attn_o_b = nullptr;
ggml_tensor * mm_model_ln_q_w = nullptr;
ggml_tensor * mm_model_ln_q_b = nullptr;
ggml_tensor * mm_model_ln_kv_w = nullptr;
ggml_tensor * mm_model_ln_kv_b = nullptr;
ggml_tensor * mm_model_ln_post_w = nullptr;
ggml_tensor * mm_model_ln_post_b = nullptr;
// gemma3
ggml_tensor * mm_input_proj_w = nullptr;
ggml_tensor * mm_soft_emb_norm_w = nullptr;
// pixtral, glm4v
ggml_tensor * token_embd_img_break = nullptr;
ggml_tensor * mm_patch_merger_w = nullptr;
ggml_tensor * mm_patch_merger_b = nullptr;
// ultravox / whisper encoder
ggml_tensor * conv1d_1_w = nullptr;
ggml_tensor * conv1d_1_b = nullptr;
ggml_tensor * conv1d_2_w = nullptr;
ggml_tensor * conv1d_2_b = nullptr;
ggml_tensor * mm_norm_pre_w = nullptr;
ggml_tensor * mm_norm_pre_b = nullptr;
ggml_tensor * mm_norm_mid_w = nullptr;
// cogvlm
ggml_tensor * mm_post_fc_norm_w = nullptr;
ggml_tensor * mm_post_fc_norm_b = nullptr;
ggml_tensor * mm_h_to_4h_w = nullptr;
ggml_tensor * mm_gate_w = nullptr;
ggml_tensor * mm_4h_to_h_w = nullptr;
ggml_tensor * mm_boi = nullptr;
ggml_tensor * mm_eoi = nullptr;
bool audio_has_avgpool() const {
return proj_type == PROJECTOR_TYPE_QWEN2A
|| proj_type == PROJECTOR_TYPE_VOXTRAL;
}
bool audio_has_stack_frames() const {
return proj_type == PROJECTOR_TYPE_ULTRAVOX
|| proj_type == PROJECTOR_TYPE_VOXTRAL;
}
};
const clip_hparams * clip_get_hparams(const struct clip_ctx * ctx);
This diff is collapsed.
......@@ -7,6 +7,8 @@
// !!! Internal header, to be used by mtmd only !!!
#define MTMD_INTERNAL_HEADER
struct clip_ctx;
struct clip_image_size {
......@@ -102,7 +104,7 @@ bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, const struct
int clip_is_minicpmv(const struct clip_ctx * ctx);
bool clip_is_glm(const struct clip_ctx * ctx);
bool clip_is_qwen2vl(const struct clip_ctx * ctx);
bool clip_is_mrope(const struct clip_ctx * ctx);
bool clip_is_llava(const struct clip_ctx * ctx);
bool clip_is_gemma3(const struct clip_ctx * ctx);
......
#include "models.h"
ggml_cgraph * clip_graph_cogvlm::build() {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
const int n_pos = n_patches + 1; // +1 for [CLS]
// build input and concatenate class embedding
ggml_tensor * inp = build_inp();
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
inp = ggml_add(ctx0, inp, model.position_embeddings);
cb(inp, "inp_pos", -1);
ggml_tensor * inpL = inp;
for (int il = 0; il < n_layer; il++) {
auto & layer = model.layers[il];
ggml_tensor * cur = inpL;
cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
cur = ggml_add(ctx0, cur, layer.qkv_b);
ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
cur->nb[1], 0);
ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
cur->nb[1], n_embd * sizeof(float));
ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
cur->nb[1], 2 * n_embd * sizeof(float));
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(layer.o_w, layer.o_b,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
cb(cur, "attn_post_norm", il);
cur = ggml_add(ctx0, cur, inpL);
inpL = cur;
cur = build_ffn(cur,
layer.ff_up_w, layer.ff_up_b,
layer.ff_gate_w, layer.ff_gate_b,
layer.ff_down_w, layer.ff_down_b,
hparams.ffn_op, il);
cb(cur, "ffn_out", il);
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
cb(cur, "ffn_post_norm", il);
cur = ggml_add(ctx0, cur, inpL);
cb(cur, "layer_out", il);
inpL = cur;
}
// remove CLS token (like build_llama4 does)
ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
n_embd, n_patches,
ggml_row_size(inpL->type, n_embd), 0);
// Multiply with mm_model_proj
cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
// Apply layernorm, weight, bias
cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
// Apply GELU
cur = ggml_gelu_inplace(ctx0, cur);
// Branch 1: multiply with mm_h_to_4h_w
ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
// Branch 2: multiply with mm_gate_w
ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
// Apply silu
gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
// Apply mm_4h_to_h_w
cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
// Concatenate with boi and eoi
cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
#include "models.h"
ggml_cgraph * clip_graph_glm4v::build() {
GGML_ASSERT(model.patch_bias != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
GGML_ASSERT(model.class_embedding == nullptr);
const int batch_size = 1;
norm_type norm_t = NORM_TYPE_RMS;
ggml_tensor * inp_raw = build_inp_raw();
ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches * 4);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
GGML_ASSERT(img.nx % (patch_size * 2) == 0);
GGML_ASSERT(img.ny % (patch_size * 2) == 0);
// second conv dimension
{
auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
inp = ggml_add(ctx0, inp, inp_1);
inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
inp = ggml_cont_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
inp = ggml_reshape_4d(
ctx0, inp,
n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
inp = ggml_cont_3d(
ctx0, inp,
n_embd, n_patches_x * n_patches_y, batch_size);
}
// add patch bias
inp = ggml_add(ctx0, inp, model.patch_bias);
cb(inp, "patch_bias", -1);
// pos-conv norm
inp = build_norm(inp, model.norm_embd_w, model.norm_embd_b, norm_t, eps, -1);
// calculate absolute position embedding and apply
ggml_tensor * learned_pos_embd = resize_position_embeddings(GGML_SCALE_MODE_BICUBIC);
learned_pos_embd = ggml_cont_4d(
ctx0, learned_pos_embd,
n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
learned_pos_embd = ggml_reshape_4d(
ctx0, learned_pos_embd,
n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
learned_pos_embd = ggml_cont_3d(
ctx0, learned_pos_embd,
n_embd, n_patches_x * n_patches_y, batch_size);
cb(learned_pos_embd, "learned_pos_embd", -1);
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
return ggml_rope_multi(
ctx0, cur, positions, nullptr,
d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION,
32768, hparams.rope_theta, 1, 0, 1, 32, 1);
};
ggml_tensor * cur = build_vit(
inp, n_patches,
norm_t,
hparams.ffn_op,
learned_pos_embd,
add_pos);
cb(cur, "vit_out", -1);
// cb(ggml_sum(ctx0, cur), "vit_out_sum", -1);
// GLM4V projector
// ref: https://github.com/huggingface/transformers/blob/40dc11cd3eb4126652aa41ef8272525affd4a636/src/transformers/models/glm4v/modeling_glm4v.py#L116-L130
// patch merger (downsample)
{
int n_merge = hparams.n_merge;
GGML_ASSERT(n_merge > 0);
int n_token_out = n_patches / n_merge / n_merge;
cur = ggml_reshape_4d(ctx0, cur, n_embd, n_merge, n_merge, n_token_out);
cur = ggml_cont(ctx0, ggml_permute(ctx0, cur, 2, 0, 1, 3)); // [n_merge, n_merge, n_embd, n_token_out]
cur = ggml_conv_2d(ctx0, model.mm_patch_merger_w, cur, n_merge, n_merge, 0, 0, 1, 1);
cur = ggml_reshape_2d(ctx0, cur, cur->ne[2], n_token_out); // [n_embd_out, n_token_out]
cur = ggml_add(ctx0, cur, model.mm_patch_merger_b);
}
// FC projector
{
cur = ggml_mul_mat(ctx0, model.projection, cur);
// default LayerNorm (post_projection_norm)
cur = build_norm(cur, model.mm_post_norm_w, model.mm_post_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
cur = ggml_gelu_erf(ctx0, cur);
cb(cur, "after_fc_proj", -1);
}
// FFN projector
{
cur = build_ffn(cur,
model.mm_ffn_up_w, model.mm_ffn_up_b,
model.mm_ffn_gate_w, model.mm_ffn_gate_b,
model.mm_ffn_down_w, model.mm_ffn_down_b,
hparams.ffn_op, -1);
cb(cur, "after_ffn_proj", -1);
// cb(ggml_sum(ctx0, cur), "merged_sum", -1);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
#include "models.h"
ggml_cgraph * clip_graph_internvl::build() {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
const int n_pos = n_patches + 1;
ggml_tensor * inp = build_inp();
// add CLS token
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
// The larger models use a different ViT, which uses RMS norm instead of layer norm
// ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
: NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
ggml_tensor * cur = build_vit(
inp, n_pos,
norm_t,
hparams.ffn_op,
model.position_embeddings,
nullptr);
// remove CLS token
cur = ggml_view_2d(ctx0, cur,
n_embd, n_patches,
ggml_row_size(cur->type, n_embd), 0);
// pixel shuffle
{
const int scale_factor = model.hparams.n_merge;
const int bsz = 1; // batch size, always 1 for now since we don't support batching
const int height = n_patches_y;
const int width = n_patches_x;
GGML_ASSERT(scale_factor > 0);
cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_cont_4d(ctx0, cur,
n_embd * scale_factor * scale_factor,
height / scale_factor,
width / scale_factor,
bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
// flatten to 2D
cur = ggml_cont_2d(ctx0, cur,
n_embd * scale_factor * scale_factor,
cur->ne[1] * cur->ne[2]);
}
// projector (always using GELU activation)
{
// projector LayerNorm uses pytorch's default eps = 1e-5
// ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
cur = build_ffn(cur,
model.mm_1_w, model.mm_1_b,
nullptr, nullptr,
model.mm_3_w, model.mm_3_b,
FFN_GELU,
-1);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
#include "models.h"
ggml_cgraph * clip_graph_kimivl::build() {
// 2D input positions
ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(pos_h, "pos_h");
ggml_set_input(pos_h);
ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(pos_w, "pos_w");
ggml_set_input(pos_w);
ggml_tensor * learned_pos_embd = resize_position_embeddings();
// build ViT with 2D position embeddings
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
// first half is X axis and second half is Y axis
return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
};
ggml_tensor * inp = build_inp();
ggml_tensor * cur = build_vit(
inp, n_patches,
NORM_TYPE_NORMAL,
hparams.ffn_op,
learned_pos_embd,
add_pos);
cb(cur, "vit_out", -1);
{
// patch_merger
const int scale_factor = model.hparams.n_merge;
cur = build_patch_merge_permute(cur, scale_factor);
// projection norm
int proj_inp_dim = cur->ne[0];
cur = ggml_view_2d(ctx0, cur,
n_embd, cur->ne[1] * scale_factor * scale_factor,
ggml_row_size(cur->type, n_embd), 0);
cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
cur = ggml_view_2d(ctx0, cur,
proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
ggml_row_size(cur->type, proj_inp_dim), 0);
cb(cur, "proj_inp_normed", -1);
// projection mlp
cur = build_ffn(cur,
model.mm_1_w, model.mm_1_b,
nullptr, nullptr,
model.mm_2_w, model.mm_2_b,
FFN_GELU,
-1);
cb(cur, "proj_out", -1);
}
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
#include "models.h"
ggml_cgraph * clip_graph_llama4::build() {
GGML_ASSERT(model.class_embedding != nullptr);
GGML_ASSERT(model.position_embeddings != nullptr);
const int n_pos = n_patches + 1; // +1 for [CLS]
// 2D input positions
ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_set_name(pos_h, "pos_h");
ggml_set_input(pos_h);
ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_set_name(pos_w, "pos_w");
ggml_set_input(pos_w);
ggml_tensor * inp = build_inp_raw();
// Llama4UnfoldConvolution
{
ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
patch_size, patch_size, 3, n_embd);
inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
cb(inp, "patch_conv", -1);
}
// add CLS token
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
// build ViT with 2D position embeddings
auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
// first half is X axis and second half is Y axis
// ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
// ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
};
ggml_tensor * cur = build_vit(
inp, n_pos,
NORM_TYPE_NORMAL,
hparams.ffn_op,
model.position_embeddings,
add_pos);
// remove CLS token
cur = ggml_view_2d(ctx0, cur,
n_embd, n_patches,
ggml_row_size(cur->type, n_embd), 0);
// pixel shuffle
// based on Llama4VisionPixelShuffleMLP
// https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
{
const int scale_factor = model.hparams.n_merge;
const int bsz = 1; // batch size, always 1 for now since we don't support batching
GGML_ASSERT(scale_factor > 0);
GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
cur = ggml_reshape_4d(ctx0, cur,
n_embd * scale_factor,
n_patches_x / scale_factor,
n_patches_y,
bsz);
cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
cur = ggml_cont_4d(ctx0, cur,
n_embd * scale_factor * scale_factor,
n_patches_x / scale_factor,
n_patches_y / scale_factor,
bsz);
//cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
// flatten to 2D
cur = ggml_cont_2d(ctx0, cur,
n_embd * scale_factor * scale_factor,
n_patches / scale_factor / scale_factor);
cb(cur, "pixel_shuffle", -1);
}
// based on Llama4VisionMLP2 (always uses GELU activation, no bias)
{
cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
cur = ggml_gelu(ctx0, cur);
cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
cur = ggml_gelu(ctx0, cur);
cb(cur, "adapter_mlp", -1);
}
// Llama4MultiModalProjector
cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
cb(cur, "projected", -1);
// build the graph
ggml_build_forward_expand(gf, cur);
return gf;
}
#include "models.h"
// this graph is used by llava, granite and glm
// due to having embedding_stack (used by granite), we cannot reuse build_vit
ggml_cgraph * clip_graph_llava::build() {
const int batch_size = 1;
const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
// Calculate the deepest feature layer based on hparams and projector type
int max_feature_layer = n_layer;
{
// Get the index of the second to last layer; this is the default for models that have a llava projector
int il_last = hparams.n_layer - 1;
int deepest_feature_layer = -1;
if (proj_type == PROJECTOR_TYPE_MINICPMV || proj_type == PROJECTOR_TYPE_GLM_EDGE) {
il_last += 1;
}
// If we set explicit vision feature layers, only go up to the deepest one
// NOTE: only used by granite-vision models for now
for (const auto & feature_layer : hparams.vision_feature_layer) {
if (feature_layer > deepest_feature_layer) {
deepest_feature_layer = feature_layer;
}
}
max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
}
ggml_tensor * inp = build_inp();
// concat class_embeddings and patch_embeddings
if (model.class_embedding) {
inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
}
ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
ggml_set_name(positions, "positions");
ggml_set_input(positions);
inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
ggml_tensor * inpL = inp;
// pre-layernorm
if (model.pre_ln_w) {
inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
cb(inpL, "pre_ln", -1);
}
std::vector<ggml_tensor *> embedding_stack;
const auto & vision_feature_layer = hparams.vision_feature_layer;
// loop over layers
for (int il = 0; il < max_feature_layer; il++) {
auto & layer = model.layers[il];
ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
// If this is an embedding feature layer, save the output.
// NOTE: 0 index here refers to the input to the encoder.
if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
embedding_stack.push_back(cur);
}
// layernorm1
cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
cb(cur, "layer_inp_normed", il);
// self-attention
{
ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
if (layer.q_b) {
Qcur = ggml_add(ctx0, Qcur, layer.q_b);
}
ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
if (layer.k_b) {
Kcur = ggml_add(ctx0, Kcur, layer.k_b);
}
ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
if (layer.v_b) {
Vcur = ggml_add(ctx0, Vcur, layer.v_b);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
cur = build_attn(layer.o_w, layer.o_b,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
// re-add the layer input, e.g., residual
cur = ggml_add(ctx0, cur, inpL);
inpL = cur; // inpL = residual, cur = hidden_states
cb(cur, "ffn_inp", il);
// layernorm2
cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
cb(cur, "ffn_inp_normed", il);
// ffn
cur = build_ffn(cur,
layer.ff_up_w, layer.ff_up_b,
layer.ff_gate_w, layer.ff_gate_b,
layer.ff_down_w, layer.ff_down_b,
hparams.ffn_op, il);
cb(cur, "ffn_out", il);
// residual 2
cur = ggml_add(ctx0, inpL, cur);
cb(cur, "layer_out", il);
inpL = cur;
}
// post-layernorm
if (model.post_ln_w) {
inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
}
ggml_tensor * embeddings = inpL;
// process vision feature layers (used by granite)
{
// final layer is a vision feature layer
if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
embedding_stack.push_back(inpL);
}
// If feature layers are explicitly set, stack them (if we have multiple)
if (!embedding_stack.empty()) {
embeddings = embedding_stack[0];
for (size_t i = 1; i < embedding_stack.size(); i++) {
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
}
}
}
// llava projector (also used by granite)
if (hparams.has_llava_projector) {
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
ggml_set_name(patches, "patches");
ggml_set_input(patches);
// shape [1, 576, 1024]
// ne is whcn, ne = [1024, 576, 1, 1]
embeddings = ggml_get_rows(ctx0, embeddings, patches);
// print_tensor_info(embeddings, "embeddings");
// llava projector
if (proj_type == PROJECTOR_TYPE_MLP) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
embeddings = ggml_gelu(ctx0, embeddings);
if (model.mm_2_w) {
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
}
}
else if (proj_type == PROJECTOR_TYPE_MLP_NORM) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
// ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
// First LayerNorm
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
model.mm_1_b);
// GELU activation
embeddings = ggml_gelu(ctx0, embeddings);
// Second linear layer
embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
// Second LayerNorm
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
model.mm_4_b);
}
else if (proj_type == PROJECTOR_TYPE_LDP) {
// MobileVLM projector
int n_patch = 24;
ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
mlp_1 = ggml_gelu(ctx0, mlp_1);
ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
// mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
// block 1
ggml_tensor * block_1 = nullptr;
{
// transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
// stride = 1, padding = 1, bias is nullptr
block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
// layer norm
// // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
// hardswish
ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
// pointwise conv
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
block_1 = ggml_relu(ctx0, block_1);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
block_1 = ggml_hardsigmoid(ctx0, block_1);
// block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
int w = block_1->ne[0], h = block_1->ne[1];
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
// block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
// residual
block_1 = ggml_add(ctx0, mlp_3, block_1);
}
// block_2
{
// stride = 2
block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
// layer norm
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
// block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
// hardswish
ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
// not sure the parameters is right for globalAvgPooling
block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
// block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
// pointwise conv
block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
block_1 = ggml_relu(ctx0, block_1);
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
block_1 = ggml_hardsigmoid(ctx0, block_1);
// block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
block_1 = ggml_mul(ctx0, block_1_hw, block_1);
int w = block_1->ne[0], h = block_1->ne[1];
block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
// block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
// block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
block_1 = ggml_norm(ctx0, block_1, eps);
block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
// block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
}
embeddings = block_1;
}
else if (proj_type == PROJECTOR_TYPE_LDPV2)
{
int n_patch = 24;
ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
mlp_0 = ggml_gelu(ctx0, mlp_0);
ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
// mlp_2 ne = [2048, 576, 1, 1]
// // AVG Pool Layer 2*2, strides = 2
mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
// mlp_2 ne = [576, 2048, 1, 1]
mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
// mlp_2 ne [24, 24, 2048, 1]
mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
// weight ne = [3, 3, 2048, 1]
ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
peg_0 = ggml_add(ctx0, peg_0, mlp_2);
peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
embeddings = peg_0;
}
else {
GGML_ABORT("fatal error");
}
}
// glm projector
else if (proj_type == PROJECTOR_TYPE_GLM_EDGE) {
size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
// GLU
{
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
embeddings = ggml_norm(ctx0, embeddings, eps);
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
embeddings = ggml_gelu_inplace(ctx0, embeddings);
ggml_tensor * x = embeddings;
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
embeddings = ggml_swiglu_split(ctx0, embeddings, x);
embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
}
// arrangement of BOI/EOI token embeddings
// note: these embeddings are not present in text model, hence we cannot process them as text tokens
// see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
{
embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
}
}
else {
GGML_ABORT("llava: unknown projector type");
}
// build the graph
ggml_build_forward_expand(gf, embeddings);
return gf;
}
This diff is collapsed.
package models
// #cgo CXXFLAGS: -std=c++17
// #cgo CPPFLAGS: -I${SRCDIR}/../../../include -I${SRCDIR}/../../../common -I${SRCDIR}/../../../vendor
// #cgo CPPFLAGS: -I${SRCDIR}/../../../../../ml/backend/ggml/ggml/include
import "C"
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment