Commit 34b9db5a authored by Daniel Hiltgen's avatar Daniel Hiltgen
Browse files

Request and model concurrency

This change adds support for multiple concurrent requests, as well as
loading multiple models by spawning multiple runners. The default
settings are currently set at 1 concurrent request per model and only 1
loaded model at a time, but these can be adjusted by setting
OLLAMA_NUM_PARALLEL and OLLAMA_MAX_LOADED_MODELS.
parent ee448dea
......@@ -91,6 +91,13 @@ func ClientFromEnvironment() (*Client, error) {
}, nil
}
func NewClient(base *url.URL, http *http.Client) *Client {
return &Client{
base: base,
http: http,
}
}
func (c *Client) do(ctx context.Context, method, path string, reqData, respData any) error {
var reqBody io.Reader
var data []byte
......
......@@ -15,6 +15,7 @@ const (
KibiByte = Byte * 1024
MebiByte = KibiByte * 1024
GibiByte = MebiByte * 1024
)
func HumanBytes(b int64) string {
......
......@@ -7,7 +7,7 @@ import (
"log/slog"
"os"
"path/filepath"
"strconv"
"runtime"
"strings"
)
......@@ -35,22 +35,64 @@ func GetSupportedGFX(libDir string) ([]string, error) {
return ret, nil
}
func amdSetVisibleDevices(ids []int, skip map[int]interface{}) {
// Set the visible devices if not already set
// TODO - does sort order matter?
devices := []string{}
for i := range ids {
if _, skipped := skip[i]; skipped {
func rocmGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "rocm" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("rocmGetVisibleDevicesEnv skipping over non-rocm device", "library", info.Library)
continue
}
devices = append(devices, strconv.Itoa(i))
ids = append(ids, info.ID)
}
return "HIP_VISIBLE_DEVICES", strings.Join(ids, ",")
}
func commonAMDValidateLibDir() (string, error) {
// We try to favor system paths first, so that we can wire up the subprocess to use
// the system version. Only use our bundled version if the system version doesn't work
// This gives users a more recovery options if versions have subtle problems at runtime
// Prefer explicit HIP env var
hipPath := os.Getenv("HIP_PATH")
if hipPath != "" {
hipLibDir := filepath.Join(hipPath, "bin")
if rocmLibUsable(hipLibDir) {
slog.Debug("detected ROCM via HIP_PATH=" + hipPath)
return hipLibDir, nil
}
}
// Scan the LD_LIBRARY_PATH or PATH
pathEnv := "LD_LIBRARY_PATH"
if runtime.GOOS == "windows" {
pathEnv = "PATH"
}
val := strings.Join(devices, ",")
err := os.Setenv("HIP_VISIBLE_DEVICES", val)
paths := os.Getenv(pathEnv)
for _, path := range filepath.SplitList(paths) {
d, err := filepath.Abs(path)
if err != nil {
slog.Warn(fmt.Sprintf("failed to set env: %s", err))
} else {
slog.Info("Setting HIP_VISIBLE_DEVICES=" + val)
continue
}
if rocmLibUsable(d) {
return d, nil
}
}
// Well known location(s)
if rocmLibUsable(RocmStandardLocation) {
return RocmStandardLocation, nil
}
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
}
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
}
......@@ -69,7 +69,7 @@ func NewHipLib() (*HipLib, error) {
func (hl *HipLib) Release() {
err := windows.FreeLibrary(hl.dll)
if err != nil {
slog.Warn(fmt.Sprintf("failed to unload amdhip64.dll: %s", err))
slog.Warn("failed to unload amdhip64.dll", "error", err)
}
hl.dll = 0
}
......@@ -98,7 +98,7 @@ func (hl *HipLib) HipGetDeviceCount() int {
return 0
}
if status != hipSuccess {
slog.Warn(fmt.Sprintf("failed call to hipGetDeviceCount: %d %s", status, err))
slog.Warn("failed call to hipGetDeviceCount", "status", status, "error", err)
}
return count
}
......
......@@ -11,6 +11,8 @@ import (
"slices"
"strconv"
"strings"
"github.com/ollama/ollama/format"
)
// Discovery logic for AMD/ROCm GPUs
......@@ -24,9 +26,6 @@ const (
GPUTotalMemoryFileGlob = "mem_banks/*/properties" // size_in_bytes line
GPUUsedMemoryFileGlob = "mem_banks/*/used_memory"
RocmStandardLocation = "/opt/rocm/lib"
// TODO find a better way to detect iGPU instead of minimum memory
IGPUMemLimit = 1024 * 1024 * 1024 // 512G is what they typically report, so anything less than 1G must be iGPU
)
var (
......@@ -35,14 +34,11 @@ var (
)
// Gather GPU information from the amdgpu driver if any supported GPUs are detected
// HIP_VISIBLE_DEVICES will be set if we detect a mix of unsupported and supported devices
// and the user hasn't already set this variable
func AMDGetGPUInfo(resp *GpuInfo) {
// TODO - DRY this out with windows
func AMDGetGPUInfo() []GpuInfo {
resp := []GpuInfo{}
if !AMDDetected() {
return
return resp
}
skip := map[int]interface{}{}
// Opportunistic logging of driver version to aid in troubleshooting
ver, err := AMDDriverVersion()
......@@ -50,160 +46,117 @@ func AMDGetGPUInfo(resp *GpuInfo) {
slog.Info("AMD Driver: " + ver)
} else {
// TODO - if we see users crash and burn with the upstreamed kernel this can be adjusted to hard-fail rocm support and fallback to CPU
slog.Warn(fmt.Sprintf("ollama recommends running the https://www.amd.com/en/support/linux-drivers: %s", err))
slog.Warn("ollama recommends running the https://www.amd.com/en/support/linux-drivers", "error", err)
}
// Determine if the user has already pre-selected which GPUs to look at, then ignore the others
var visibleDevices []string
hipVD := os.Getenv("HIP_VISIBLE_DEVICES") // zero based index only
rocrVD := os.Getenv("ROCR_VISIBLE_DEVICES") // zero based index or UUID, but consumer cards seem to not support UUID
gpuDO := os.Getenv("GPU_DEVICE_ORDINAL") // zero based index
switch {
// TODO is this priorty order right?
case hipVD != "":
visibleDevices = strings.Split(hipVD, ",")
case rocrVD != "":
visibleDevices = strings.Split(rocrVD, ",")
// TODO - since we don't yet support UUIDs, consider detecting and reporting here
// all our test systems show GPU-XX indicating UUID is not supported
case gpuDO != "":
visibleDevices = strings.Split(gpuDO, ",")
}
// If the user has specified exactly which GPUs to use, look up their memory
visibleDevices := os.Getenv("HIP_VISIBLE_DEVICES")
if visibleDevices != "" {
ids := []int{}
for _, idStr := range strings.Split(visibleDevices, ",") {
id, err := strconv.Atoi(idStr)
if err != nil {
slog.Warn(fmt.Sprintf("malformed HIP_VISIBLE_DEVICES=%s %s", visibleDevices, err))
} else {
ids = append(ids, id)
}
}
amdProcMemLookup(resp, nil, ids)
return
}
gfxOverride := os.Getenv("HSA_OVERRIDE_GFX_VERSION")
var supported []string
libDir := ""
// Gather GFX version information from all detected cards
gfx := AMDGFXVersions()
verStrings := []string{}
for i, v := range gfx {
verStrings = append(verStrings, v.ToGFXString())
if v.Major == 0 {
// Silently skip CPUs
skip[i] = struct{}{}
// The amdgpu driver always exposes the host CPU(s) first, but we have to skip them and subtract
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
cpuCount := 0
for _, match := range matches {
slog.Debug("evaluating amdgpu node " + match)
fp, err := os.Open(match)
if err != nil {
slog.Debug("failed to open sysfs node", "file", match, "error", err)
continue
}
if v.Major < 9 {
// TODO consider this a build-time setting if we can support 8xx family GPUs
slog.Warn(fmt.Sprintf("amdgpu [%d] too old %s", i, v.ToGFXString()))
skip[i] = struct{}{}
}
}
slog.Info(fmt.Sprintf("detected amdgpu versions %v", verStrings))
// Abort if all GPUs are skipped
if len(skip) >= len(gfx) {
slog.Info("all detected amdgpus are skipped, falling back to CPU")
return
}
// If we got this far, then we have at least 1 GPU that's a ROCm candidate, so make sure we have a lib
libDir, err := AMDValidateLibDir()
defer fp.Close()
nodeID, err := strconv.Atoi(filepath.Base(filepath.Dir(match)))
if err != nil {
slog.Warn(fmt.Sprintf("unable to verify rocm library, will use cpu: %s", err))
return
slog.Debug("failed to parse node ID", "error", err)
continue
}
updateLibPath(libDir)
scanner := bufio.NewScanner(fp)
isCPU := false
var major, minor, patch uint64
for scanner.Scan() {
line := strings.TrimSpace(scanner.Text())
// Note: we could also use "cpu_cores_count X" where X is greater than zero to detect CPUs
if strings.HasPrefix(line, "gfx_target_version") {
ver := strings.Fields(line)
gfxOverride := os.Getenv("HSA_OVERRIDE_GFX_VERSION")
if gfxOverride == "" {
supported, err := GetSupportedGFX(libDir)
if err != nil {
slog.Warn(fmt.Sprintf("failed to lookup supported GFX types, falling back to CPU mode: %s", err))
return
// Detect CPUs
if len(ver) == 2 && ver[1] == "0" {
slog.Debug("detected CPU " + match)
isCPU = true
break
}
slog.Debug(fmt.Sprintf("rocm supported GPU types %v", supported))
for i, v := range gfx {
if !slices.Contains[[]string, string](supported, v.ToGFXString()) {
slog.Warn(fmt.Sprintf("amdgpu [%d] %s is not supported by %s %v", i, v.ToGFXString(), libDir, supported))
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage")
skip[i] = struct{}{}
} else {
slog.Info(fmt.Sprintf("amdgpu [%d] %s is supported", i, v.ToGFXString()))
if len(ver) != 2 || len(ver[1]) < 5 {
slog.Warn("malformed "+match, "gfx_target_version", line)
// If this winds up being a CPU, our offsets may be wrong
continue
}
l := len(ver[1])
var err1, err2, err3 error
patch, err1 = strconv.ParseUint(ver[1][l-2:l], 10, 32)
minor, err2 = strconv.ParseUint(ver[1][l-4:l-2], 10, 32)
major, err3 = strconv.ParseUint(ver[1][:l-4], 10, 32)
if err1 != nil || err2 != nil || err3 != nil {
slog.Debug("malformed int " + line)
continue
}
} else {
slog.Debug("skipping rocm gfx compatibility check with HSA_OVERRIDE_GFX_VERSION=" + gfxOverride)
}
if len(skip) >= len(gfx) {
slog.Info("all detected amdgpus are skipped, falling back to CPU")
return
// TODO - any other properties we want to extract and record?
// vendor_id + device_id -> pci lookup for "Name"
// Other metrics that may help us understand relative performance between multiple GPUs
}
ids := make([]int, len(gfx))
i := 0
for k := range gfx {
ids[i] = k
i++
}
amdProcMemLookup(resp, skip, ids)
if resp.memInfo.DeviceCount == 0 {
return
}
if len(skip) > 0 {
amdSetVisibleDevices(ids, skip)
if isCPU {
cpuCount++
continue
}
}
func updateLibPath(libDir string) {
ldPaths := []string{}
if val, ok := os.LookupEnv("LD_LIBRARY_PATH"); ok {
ldPaths = strings.Split(val, ":")
}
for _, d := range ldPaths {
if d == libDir {
return
}
}
val := strings.Join(append(ldPaths, libDir), ":")
slog.Debug("updated lib path", "LD_LIBRARY_PATH", val)
os.Setenv("LD_LIBRARY_PATH", val)
}
// CPUs are always first in the list
gpuID := nodeID - cpuCount
// Walk the sysfs nodes for the available GPUs and gather information from them
// skipping over any devices in the skip map
func amdProcMemLookup(resp *GpuInfo, skip map[int]interface{}, ids []int) {
resp.memInfo.DeviceCount = 0
resp.memInfo.TotalMemory = 0
resp.memInfo.FreeMemory = 0
slog.Debug("discovering VRAM for amdgpu devices")
if len(ids) == 0 {
entries, err := os.ReadDir(AMDNodesSysfsDir)
if err != nil {
slog.Warn(fmt.Sprintf("failed to read amdgpu sysfs %s - %s", AMDNodesSysfsDir, err))
return
}
for _, node := range entries {
if !node.IsDir() {
continue
// Shouldn't happen, but just in case...
if gpuID < 0 {
slog.Error("unexpected amdgpu sysfs data resulted in negative GPU ID, please set OLLAMA_DEBUG=1 and report an issue")
return []GpuInfo{}
}
id, err := strconv.Atoi(node.Name())
if err != nil {
slog.Warn("malformed amdgpu sysfs node id " + node.Name())
continue
}
ids = append(ids, id)
}
}
slog.Debug(fmt.Sprintf("amdgpu devices %v", ids))
for _, id := range ids {
if _, skipped := skip[id]; skipped {
if int(major) < RocmComputeMin {
slog.Warn(fmt.Sprintf("amdgpu too old gfx%d%d%d", major, minor, patch), "gpu", gpuID)
continue
}
// Look up the memory for the current node
totalMemory := uint64(0)
usedMemory := uint64(0)
// Adjust for sysfs vs HIP ids
propGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(id+1), GPUTotalMemoryFileGlob)
propGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(nodeID), GPUTotalMemoryFileGlob)
propFiles, err := filepath.Glob(propGlob)
if err != nil {
slog.Warn(fmt.Sprintf("error looking up total GPU memory: %s %s", propGlob, err))
slog.Warn("error looking up total GPU memory", "glob", propGlob, "error", err)
}
// 1 or more memory banks - sum the values of all of them
for _, propFile := range propFiles {
fp, err := os.Open(propFile)
if err != nil {
slog.Warn(fmt.Sprintf("failed to open sysfs node file %s: %s", propFile, err))
slog.Warn("failed to open sysfs node", "file", propFile, "erroir", err)
continue
}
defer fp.Close()
......@@ -226,49 +179,113 @@ func amdProcMemLookup(resp *GpuInfo, skip map[int]interface{}, ids []int) {
}
}
if totalMemory == 0 {
slog.Warn(fmt.Sprintf("amdgpu [%d] reports zero total memory, skipping", id))
skip[id] = struct{}{}
slog.Warn("amdgpu reports zero total memory", "gpu", gpuID)
continue
}
if totalMemory < IGPUMemLimit {
slog.Info(fmt.Sprintf("amdgpu [%d] appears to be an iGPU with %dM reported total memory, skipping", id, totalMemory/1024/1024))
skip[id] = struct{}{}
continue
}
usedGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(id), GPUUsedMemoryFileGlob)
usedGlob := filepath.Join(AMDNodesSysfsDir, strconv.Itoa(nodeID), GPUUsedMemoryFileGlob)
usedFiles, err := filepath.Glob(usedGlob)
if err != nil {
slog.Warn(fmt.Sprintf("error looking up used GPU memory: %s %s", usedGlob, err))
slog.Warn("error looking up used GPU memory", "glob", usedGlob, "error", err)
continue
}
for _, usedFile := range usedFiles {
fp, err := os.Open(usedFile)
if err != nil {
slog.Warn(fmt.Sprintf("failed to open sysfs node file %s: %s", usedFile, err))
slog.Warn("failed to open sysfs node", "file", usedFile, "error", err)
continue
}
defer fp.Close()
data, err := io.ReadAll(fp)
if err != nil {
slog.Warn(fmt.Sprintf("failed to read sysfs node file %s: %s", usedFile, err))
slog.Warn("failed to read sysfs node", "file", usedFile, "error", err)
continue
}
used, err := strconv.ParseUint(strings.TrimSpace(string(data)), 10, 64)
if err != nil {
slog.Warn(fmt.Sprintf("malformed used memory %s: %s", string(data), err))
slog.Warn("malformed used memory", "data", string(data), "error", err)
continue
}
usedMemory += used
}
slog.Info(fmt.Sprintf("[%d] amdgpu totalMemory %dM", id, totalMemory/1024/1024))
slog.Info(fmt.Sprintf("[%d] amdgpu freeMemory %dM", id, (totalMemory-usedMemory)/1024/1024))
resp.memInfo.DeviceCount++
resp.memInfo.TotalMemory += totalMemory
resp.memInfo.FreeMemory += (totalMemory - usedMemory)
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
continue
}
slog.Info("amdgpu memory", "gpu", gpuID, "total", format.HumanBytes2(totalMemory))
slog.Info("amdgpu memory", "gpu", gpuID, "available", format.HumanBytes2(totalMemory-usedMemory))
gpuInfo := GpuInfo{
Library: "rocm",
memInfo: memInfo{
TotalMemory: totalMemory,
FreeMemory: (totalMemory - usedMemory),
},
ID: fmt.Sprintf("%d", gpuID),
// Name: not exposed in sysfs directly, would require pci device id lookup
Major: int(major),
Minor: int(minor),
Patch: int(patch),
MinimumMemory: rocmMinimumMemory,
}
// If the user wants to filter to a subset of devices, filter out if we aren't a match
if len(visibleDevices) > 0 {
include := false
for _, visible := range visibleDevices {
if visible == gpuInfo.ID {
include = true
break
}
}
if !include {
slog.Info("filtering out device per user request", "id", gpuInfo.ID, "visible_devices", visibleDevices)
continue
}
}
// Final validation is gfx compatibility - load the library if we haven't already loaded it
// even if the user overrides, we still need to validate the library
if libDir == "" {
libDir, err = AMDValidateLibDir()
if err != nil {
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
return []GpuInfo{}
}
}
gpuInfo.DependencyPath = libDir
if gfxOverride == "" {
// Only load supported list once
if len(supported) == 0 {
supported, err = GetSupportedGFX(libDir)
if err != nil {
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
return []GpuInfo{}
}
if resp.memInfo.DeviceCount > 0 {
resp.Library = "rocm"
slog.Debug("rocm supported GPUs", "types", supported)
}
gfx := fmt.Sprintf("gfx%d%d%d", gpuInfo.Major, gpuInfo.Minor, gpuInfo.Patch)
if !slices.Contains[[]string, string](supported, gfx) {
slog.Warn("amdgpu is not supported", "gpu", gpuInfo.ID, "gpu_type", gfx, "library", libDir, "supported_types", supported)
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/gpu.md#overrides for HSA_OVERRIDE_GFX_VERSION usage")
continue
} else {
slog.Info("amdgpu is supported", "gpu", gpuInfo.ID, "gpu_type", gfx)
}
} else {
slog.Debug("skipping rocm gfx compatibility check with HSA_OVERRIDE_GFX_VERSION=" + gfxOverride)
}
// The GPU has passed all the verification steps and is supported
resp = append(resp, gpuInfo)
}
if len(resp) == 0 {
slog.Info("no compatible amdgpu devices detected")
}
return resp
}
// Quick check for AMD driver so we can skip amdgpu discovery if not present
......@@ -280,87 +297,24 @@ func AMDDetected() bool {
slog.Debug("amdgpu driver not detected " + sysfsDir)
return false
} else if err != nil {
slog.Debug(fmt.Sprintf("error looking up amd driver %s %s", sysfsDir, err))
slog.Debug("error looking up amd driver", "path", sysfsDir, "error", err)
return false
}
return true
}
func setupLink(source, target string) error {
if err := os.RemoveAll(target); err != nil {
return fmt.Errorf("failed to remove old rocm directory %s %w", target, err)
}
if err := os.Symlink(source, target); err != nil {
return fmt.Errorf("failed to create link %s => %s %w", source, target, err)
}
slog.Debug(fmt.Sprintf("host rocm linked %s => %s", source, target))
return nil
}
// Ensure the AMD rocm lib dir is wired up
// Prefer to use host installed ROCm, as long as it meets our minimum requirements
// failing that, tell the user how to download it on their own
func AMDValidateLibDir() (string, error) {
// We rely on the rpath compiled into our library to find rocm
// so we establish a symlink to wherever we find it on the system
// to <payloads>/rocm
payloadsDir, err := PayloadsDir()
if err != nil {
return "", err
}
// If we already have a rocm dependency wired, nothing more to do
rocmTargetDir := filepath.Clean(filepath.Join(payloadsDir, "..", "rocm"))
if rocmLibUsable(rocmTargetDir) {
return rocmTargetDir, nil
}
// next to the running binary
exe, err := os.Executable()
libDir, err := commonAMDValidateLibDir()
if err == nil {
peerDir := filepath.Dir(exe)
if rocmLibUsable(peerDir) {
slog.Debug("detected ROCM next to ollama executable " + peerDir)
return rocmTargetDir, setupLink(peerDir, rocmTargetDir)
}
peerDir = filepath.Join(filepath.Dir(exe), "rocm")
if rocmLibUsable(peerDir) {
slog.Debug("detected ROCM next to ollama executable " + peerDir)
return rocmTargetDir, setupLink(peerDir, rocmTargetDir)
}
return libDir, nil
}
// Well known ollama installer path
installedRocmDir := "/usr/share/ollama/lib/rocm"
if rocmLibUsable(installedRocmDir) {
return rocmTargetDir, setupLink(installedRocmDir, rocmTargetDir)
}
// Prefer explicit HIP env var
hipPath := os.Getenv("HIP_PATH")
if hipPath != "" {
hipLibDir := filepath.Join(hipPath, "lib")
if rocmLibUsable(hipLibDir) {
slog.Debug("detected ROCM via HIP_PATH=" + hipPath)
return rocmTargetDir, setupLink(hipLibDir, rocmTargetDir)
}
}
// Scan the library path for potential matches
ldPaths := strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
for _, ldPath := range ldPaths {
d, err := filepath.Abs(ldPath)
if err != nil {
continue
}
if rocmLibUsable(d) {
return rocmTargetDir, setupLink(d, rocmTargetDir)
}
}
// Well known location(s)
if rocmLibUsable("/opt/rocm/lib") {
return rocmTargetDir, setupLink("/opt/rocm/lib", rocmTargetDir)
return installedRocmDir, nil
}
// If we still haven't found a usable rocm, the user will have to install it on their own
......@@ -384,68 +338,3 @@ func AMDDriverVersion() (string, error) {
}
return strings.TrimSpace(string(verString)), nil
}
func AMDGFXVersions() map[int]Version {
// The amdgpu driver always exposes the host CPU as node 0, but we have to skip that and subtract one
// from the other IDs to get alignment with the HIP libraries expectations (zero is the first GPU, not the CPU)
res := map[int]Version{}
matches, _ := filepath.Glob(GPUPropertiesFileGlob)
for _, match := range matches {
fp, err := os.Open(match)
if err != nil {
slog.Debug(fmt.Sprintf("failed to open sysfs node file %s: %s", match, err))
continue
}
defer fp.Close()
i, err := strconv.Atoi(filepath.Base(filepath.Dir(match)))
if err != nil {
slog.Debug(fmt.Sprintf("failed to parse node ID %s", err))
continue
}
if i == 0 {
// Skipping the CPU
continue
}
// Align with HIP IDs (zero is first GPU, not CPU)
i -= 1
scanner := bufio.NewScanner(fp)
for scanner.Scan() {
line := strings.TrimSpace(scanner.Text())
if strings.HasPrefix(line, "gfx_target_version") {
ver := strings.Fields(line)
if len(ver) != 2 || len(ver[1]) < 5 {
if ver[1] != "0" {
slog.Debug("malformed " + line)
}
res[i] = Version{
Major: 0,
Minor: 0,
Patch: 0,
}
continue
}
l := len(ver[1])
patch, err1 := strconv.ParseUint(ver[1][l-2:l], 10, 32)
minor, err2 := strconv.ParseUint(ver[1][l-4:l-2], 10, 32)
major, err3 := strconv.ParseUint(ver[1][:l-4], 10, 32)
if err1 != nil || err2 != nil || err3 != nil {
slog.Debug("malformed int " + line)
continue
}
res[i] = Version{
Major: uint(major),
Minor: uint(minor),
Patch: uint(patch),
}
}
}
}
return res
}
func (v Version) ToGFXString() string {
return fmt.Sprintf("gfx%d%d%d", v.Major, v.Minor, v.Patch)
}
......@@ -7,7 +7,10 @@ import (
"os"
"path/filepath"
"slices"
"strconv"
"strings"
"github.com/ollama/ollama/format"
)
const (
......@@ -22,36 +25,32 @@ var (
ROCmLibGlobs = []string{"hipblas.dll", "rocblas"} // TODO - probably include more coverage of files here...
)
func AMDGetGPUInfo(resp *GpuInfo) {
func AMDGetGPUInfo() []GpuInfo {
resp := []GpuInfo{}
hl, err := NewHipLib()
if err != nil {
slog.Debug(err.Error())
return
return nil
}
defer hl.Release()
skip := map[int]interface{}{}
ids := []int{}
resp.memInfo.DeviceCount = 0
resp.memInfo.TotalMemory = 0
resp.memInfo.FreeMemory = 0
ver, err := hl.AMDDriverVersion()
if err == nil {
slog.Info("AMD Driver: " + ver)
} else {
// For now this is benign, but we may eventually need to fail compatibility checks
slog.Debug(fmt.Sprintf("error looking up amd driver version: %s", err))
slog.Debug("error looking up amd driver version", "error", err)
}
// Note: the HIP library automatically handles HIP_VISIBLE_DEVICES
// Note: the HIP library automatically handles subsetting to any HIP_VISIBLE_DEVICES the user specified
count := hl.HipGetDeviceCount()
if count == 0 {
return
return nil
}
libDir, err := AMDValidateLibDir()
if err != nil {
slog.Warn(fmt.Sprintf("unable to verify rocm library, will use cpu: %s", err))
return
slog.Warn("unable to verify rocm library, will use cpu", "error", err)
return nil
}
var supported []string
......@@ -59,95 +58,117 @@ func AMDGetGPUInfo(resp *GpuInfo) {
if gfxOverride == "" {
supported, err = GetSupportedGFX(libDir)
if err != nil {
slog.Warn(fmt.Sprintf("failed to lookup supported GFX types, falling back to CPU mode: %s", err))
return
slog.Warn("failed to lookup supported GFX types, falling back to CPU mode", "error", err)
return nil
}
} else {
slog.Debug("skipping rocm gfx compatibility check with HSA_OVERRIDE_GFX_VERSION=" + gfxOverride)
}
slog.Info(fmt.Sprintf("detected %d hip devices", count))
slog.Info("detected hip devices", "count", count)
// TODO how to determine the underlying device ID when visible devices is causing this to subset?
for i := 0; i < count; i++ {
ids = append(ids, i)
err = hl.HipSetDevice(i)
if err != nil {
slog.Warn(fmt.Sprintf("[%d] %s", i, err))
skip[i] = struct{}{}
slog.Warn("set device", "id", i, "error", err)
continue
}
props, err := hl.HipGetDeviceProperties(i)
if err != nil {
slog.Warn(fmt.Sprintf("[%d] %s", i, err))
skip[i] = struct{}{}
slog.Warn("get properties", "id", i, "error", err)
continue
}
n := bytes.IndexByte(props.Name[:], 0)
name := string(props.Name[:n])
slog.Info(fmt.Sprintf("[%d] Name: %s", i, name))
// TODO is UUID actually populated on windows?
// Can luid be used on windows for setting visible devices (and is it actually set?)
n = bytes.IndexByte(props.GcnArchName[:], 0)
gfx := string(props.GcnArchName[:n])
slog.Info(fmt.Sprintf("[%d] GcnArchName: %s", i, gfx))
slog.Info("hip device", "id", i, "name", name, "gfx", gfx)
var major, minor, patch string
switch len(gfx) {
case 6:
major, minor, patch = gfx[3:4], gfx[4:5], gfx[5:]
case 7:
major, minor, patch = gfx[3:5], gfx[5:6], gfx[6:]
}
//slog.Info(fmt.Sprintf("[%d] Integrated: %d", i, props.iGPU)) // DOESN'T REPORT CORRECTLY! Always 0
// TODO Why isn't props.iGPU accurate!?
if strings.EqualFold(name, iGPUName) {
slog.Info(fmt.Sprintf("iGPU detected [%d] skipping", i))
skip[i] = struct{}{}
slog.Info("iGPU detected skipping", "id", i)
continue
}
if gfxOverride == "" {
if !slices.Contains[[]string, string](supported, gfx) {
slog.Warn(fmt.Sprintf("amdgpu [%d] %s is not supported by %s %v", i, gfx, libDir, supported))
slog.Warn("amdgpu is not supported", "gpu", i, "gpu_type", gfx, "library", libDir, "supported_types", supported)
// TODO - consider discrete markdown just for ROCM troubleshooting?
slog.Warn("See https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for HSA_OVERRIDE_GFX_VERSION usage")
skip[i] = struct{}{}
continue
} else {
slog.Info(fmt.Sprintf("amdgpu [%d] %s is supported", i, gfx))
slog.Info("amdgpu is supported", "gpu", i, "gpu_type", gfx)
}
}
totalMemory, freeMemory, err := hl.HipMemGetInfo()
freeMemory, totalMemory, err := hl.HipMemGetInfo()
if err != nil {
slog.Warn(fmt.Sprintf("[%d] %s", i, err))
slog.Warn("get mem info", "id", i, "error", err)
continue
}
// iGPU detection, remove this check once we can support an iGPU variant of the rocm library
if totalMemory < IGPUMemLimit {
slog.Info("amdgpu appears to be an iGPU, skipping", "gpu", i, "total", format.HumanBytes2(totalMemory))
continue
}
// TODO according to docs, freeMem may lie on windows!
slog.Info(fmt.Sprintf("[%d] Total Mem: %d", i, totalMemory))
slog.Info(fmt.Sprintf("[%d] Free Mem: %d", i, freeMemory))
resp.memInfo.DeviceCount++
resp.memInfo.TotalMemory += totalMemory
resp.memInfo.FreeMemory += freeMemory
// TODO revisit this once ROCm v6 is available on windows.
// v5.7 only reports VRAM used by this process, so it's completely wrong and unusable
slog.Info("amdgpu memory", "gpu", i, "total", format.HumanBytes2(totalMemory))
slog.Info("amdgpu memory", "gpu", i, "available", format.HumanBytes2(freeMemory))
gpuInfo := GpuInfo{
Library: "rocm",
memInfo: memInfo{
TotalMemory: totalMemory,
FreeMemory: freeMemory,
},
ID: fmt.Sprintf("%d", i), // TODO this is probably wrong if we specify visible devices
DependencyPath: libDir,
MinimumMemory: rocmMinimumMemory,
}
if major != "" {
gpuInfo.Major, err = strconv.Atoi(major)
if err != nil {
slog.Info("failed to parse version", "version", gfx, "error", err)
}
}
if minor != "" {
gpuInfo.Minor, err = strconv.Atoi(minor)
if err != nil {
slog.Info("failed to parse version", "version", gfx, "error", err)
}
}
if patch != "" {
gpuInfo.Patch, err = strconv.Atoi(patch)
if err != nil {
slog.Info("failed to parse version", "version", gfx, "error", err)
}
if resp.memInfo.DeviceCount > 0 {
resp.Library = "rocm"
}
// Abort if all GPUs are skipped
if len(skip) >= count {
slog.Info("all detected amdgpus are skipped, falling back to CPU")
return
if gpuInfo.Major < RocmComputeMin {
slog.Warn(fmt.Sprintf("amdgpu [%s] too old gfx%d%d%d", gpuInfo.ID, gpuInfo.Major, gpuInfo.Minor, gpuInfo.Patch))
continue
}
if len(skip) > 0 {
amdSetVisibleDevices(ids, skip)
resp = append(resp, gpuInfo)
}
UpdatePath(libDir)
return resp
}
func AMDValidateLibDir() (string, error) {
// On windows non-admins typically can't create links
// so instead of trying to rely on rpath and a link in
// $LibDir/rocm, we instead rely on setting PATH to point
// to the location of the ROCm library
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
libDir, err := commonAMDValidateLibDir()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil
}
return libDir, nil
}
// Installer payload (if we're running from some other location)
......@@ -159,21 +180,6 @@ func AMDValidateLibDir() (string, error) {
return rocmTargetDir, nil
}
// Prefer explicit HIP env var
hipPath := os.Getenv("HIP_PATH")
if hipPath != "" {
hipLibDir := filepath.Join(hipPath, "bin")
if rocmLibUsable(hipLibDir) {
slog.Debug("detected ROCM via HIP_PATH=" + hipPath)
return hipLibDir, nil
}
}
// Well known location(s)
if rocmLibUsable(RocmStandardLocation) {
return RocmStandardLocation, nil
}
// Should not happen on windows since we include it in the installer, but stand-alone binary might hit this
slog.Warn("amdgpu detected, but no compatible rocm library found. Please install ROCm")
return "", fmt.Errorf("no suitable rocm found, falling back to CPU")
......
......@@ -80,7 +80,7 @@ func cleanupTmpDirs() {
}
err = os.RemoveAll(d)
if err != nil {
slog.Debug(fmt.Sprintf("unable to cleanup stale tmpdir %s: %s", d, err))
slog.Debug("unable to cleanup stale tmpdir", "path", d, "error", err)
}
}
}
......@@ -120,7 +120,7 @@ func UpdatePath(dir string) {
}
}
newPath := strings.Join(append([]string{dir}, pathComponents...), ";")
slog.Info(fmt.Sprintf("Updating PATH to %s", newPath))
slog.Info("updating", "PATH", newPath)
os.Setenv("PATH", newPath)
}
// linux and darwin rely on rpath
......
//go:build linux || windows
package gpu
import (
"log/slog"
"strings"
)
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
if info.Library != "cuda" {
// TODO shouldn't happen if things are wired correctly...
slog.Debug("cudaGetVisibleDevicesEnv skipping over non-cuda device", "library", info.Library)
continue
}
ids = append(ids, info.ID)
}
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
}
......@@ -16,7 +16,6 @@ import (
"os"
"path/filepath"
"runtime"
"strconv"
"strings"
"sync"
"unsafe"
......@@ -25,7 +24,7 @@ import (
)
type handles struct {
nvml *C.nvml_handle_t
deviceCount int
cudart *C.cudart_handle_t
}
......@@ -39,26 +38,10 @@ var gpuMutex sync.Mutex
// With our current CUDA compile flags, older than 5.0 will not work properly
var CudaComputeMin = [2]C.int{5, 0}
// Possible locations for the nvidia-ml library
var NvmlLinuxGlobs = []string{
"/usr/local/cuda/lib64/libnvidia-ml.so*",
"/usr/lib/x86_64-linux-gnu/nvidia/current/libnvidia-ml.so*",
"/usr/lib/x86_64-linux-gnu/libnvidia-ml.so*",
"/usr/lib/wsl/lib/libnvidia-ml.so*",
"/usr/lib/wsl/drivers/*/libnvidia-ml.so*",
"/opt/cuda/lib64/libnvidia-ml.so*",
"/usr/lib*/libnvidia-ml.so*",
"/usr/lib/aarch64-linux-gnu/nvidia/current/libnvidia-ml.so*",
"/usr/lib/aarch64-linux-gnu/libnvidia-ml.so*",
"/usr/local/lib*/libnvidia-ml.so*",
// TODO: are these stubs ever valid?
"/opt/cuda/targets/x86_64-linux/lib/stubs/libnvidia-ml.so*",
}
var RocmComputeMin = 9
var NvmlWindowsGlobs = []string{
"c:\\Windows\\System32\\nvml.dll",
}
// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
var CudartLinuxGlobs = []string{
"/usr/local/cuda/lib64/libcudart.so*",
......@@ -88,26 +71,18 @@ func initGPUHandles() *handles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
gpuHandles := &handles{nil, nil}
var nvmlMgmtName string
var nvmlMgmtPatterns []string
gpuHandles := &handles{}
var cudartMgmtName string
var cudartMgmtPatterns []string
tmpDir, _ := PayloadsDir()
switch runtime.GOOS {
case "windows":
nvmlMgmtName = "nvml.dll"
nvmlMgmtPatterns = make([]string, len(NvmlWindowsGlobs))
copy(nvmlMgmtPatterns, NvmlWindowsGlobs)
cudartMgmtName = "cudart64_*.dll"
localAppData := os.Getenv("LOCALAPPDATA")
cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)}
cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...)
case "linux":
nvmlMgmtName = "libnvidia-ml.so"
nvmlMgmtPatterns = make([]string, len(NvmlLinuxGlobs))
copy(nvmlMgmtPatterns, NvmlLinuxGlobs)
cudartMgmtName = "libcudart.so*"
if tmpDir != "" {
// TODO - add "payloads" for subprocess
......@@ -118,31 +93,21 @@ func initGPUHandles() *handles {
return gpuHandles
}
slog.Info("Detecting GPU type")
slog.Info("Detecting GPUs")
cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns)
if len(cudartLibPaths) > 0 {
cudart := LoadCUDARTMgmt(cudartLibPaths)
deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
if cudart != nil {
slog.Info("Nvidia GPU detected via cudart")
slog.Info("detected GPUs", "library", libPath, "count", deviceCount)
gpuHandles.cudart = cudart
return gpuHandles
}
}
// TODO once we build confidence, remove this and the gpu_info_nvml.[ch] files
nvmlLibPaths := FindGPULibs(nvmlMgmtName, nvmlMgmtPatterns)
if len(nvmlLibPaths) > 0 {
nvml := LoadNVMLMgmt(nvmlLibPaths)
if nvml != nil {
slog.Info("Nvidia GPU detected via nvidia-ml")
gpuHandles.nvml = nvml
gpuHandles.deviceCount = deviceCount
return gpuHandles
}
}
return gpuHandles
}
func GetGPUInfo() GpuInfo {
func GetGPUInfo() GpuInfoList {
// TODO - consider exploring lspci (and equivalent on windows) to check for
// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
gpuMutex.Lock()
......@@ -150,9 +115,6 @@ func GetGPUInfo() GpuInfo {
gpuHandles := initGPUHandles()
defer func() {
if gpuHandles.nvml != nil {
C.nvml_release(*gpuHandles.nvml)
}
if gpuHandles.cudart != nil {
C.cudart_release(*gpuHandles.cudart)
}
......@@ -165,72 +127,63 @@ func GetGPUInfo() GpuInfo {
}
var memInfo C.mem_info_t
resp := GpuInfo{}
if gpuHandles.nvml != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") {
C.nvml_check_vram(*gpuHandles.nvml, &memInfo)
if memInfo.err != nil {
slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU memory: %s", C.GoString(memInfo.err)))
C.free(unsafe.Pointer(memInfo.err))
} else if memInfo.count > 0 {
// Verify minimum compute capability
var cc C.nvml_compute_capability_t
C.nvml_compute_capability(*gpuHandles.nvml, &cc)
if cc.err != nil {
slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU compute capability: %s", C.GoString(cc.err)))
C.free(unsafe.Pointer(cc.err))
} else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
slog.Info(fmt.Sprintf("[nvidia-ml] NVML CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
resp.Library = "cuda"
resp.MinimumMemory = cudaMinimumMemory
} else {
slog.Info(fmt.Sprintf("[nvidia-ml] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
resp := []GpuInfo{}
// NVIDIA first
for i := 0; i < gpuHandles.deviceCount; i++ {
// TODO once we support CPU compilation variants of GPU libraries refine this...
if cpuVariant == "" && runtime.GOARCH == "amd64" {
continue
}
gpuInfo := GpuInfo{
Library: "cuda",
}
} else if gpuHandles.cudart != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") {
C.cudart_check_vram(*gpuHandles.cudart, &memInfo)
C.cudart_check_vram(*gpuHandles.cudart, C.int(i), &memInfo)
if memInfo.err != nil {
slog.Info(fmt.Sprintf("[cudart] error looking up CUDART GPU memory: %s", C.GoString(memInfo.err)))
slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
} else if memInfo.count > 0 {
// Verify minimum compute capability
var cc C.cudart_compute_capability_t
C.cudart_compute_capability(*gpuHandles.cudart, &cc)
if cc.err != nil {
slog.Info(fmt.Sprintf("[cudart] error looking up CUDA compute capability: %s", C.GoString(cc.err)))
C.free(unsafe.Pointer(cc.err))
} else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) {
slog.Info(fmt.Sprintf("[cudart] CUDART CUDA Compute Capability detected: %d.%d", cc.major, cc.minor))
resp.Library = "cuda"
resp.MinimumMemory = cudaMinimumMemory
} else {
slog.Info(fmt.Sprintf("[cudart] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor))
}
continue
}
} else {
AMDGetGPUInfo(&resp)
if resp.Library != "" {
resp.MinimumMemory = rocmMinimumMemory
return resp
if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
continue
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Major = int(memInfo.major)
gpuInfo.Minor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
resp = append(resp, gpuInfo)
}
if resp.Library == "" {
// Then AMD
resp = append(resp, AMDGetGPUInfo()...)
if len(resp) == 0 {
C.cpu_check_ram(&memInfo)
resp.Library = "cpu"
resp.Variant = cpuVariant
}
if memInfo.err != nil {
slog.Info(fmt.Sprintf("error looking up CPU memory: %s", C.GoString(memInfo.err)))
slog.Info("error looking up CPU memory", "error", C.GoString(memInfo.err))
C.free(unsafe.Pointer(memInfo.err))
return resp
}
gpuInfo := GpuInfo{
Library: "cpu",
Variant: cpuVariant,
}
gpuInfo.TotalMemory = uint64(memInfo.total)
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
resp = append(resp, gpuInfo)
}
resp.DeviceCount = uint32(memInfo.count)
resp.FreeMemory = uint64(memInfo.free)
resp.TotalMemory = uint64(memInfo.total)
return resp
}
func getCPUMem() (memInfo, error) {
func GetCPUMem() (memInfo, error) {
var ret memInfo
var info C.mem_info_t
C.cpu_check_ram(&info)
......@@ -243,29 +196,11 @@ func getCPUMem() (memInfo, error) {
return ret, nil
}
func CheckVRAM() (uint64, error) {
userLimit := os.Getenv("OLLAMA_MAX_VRAM")
if userLimit != "" {
avail, err := strconv.ParseInt(userLimit, 10, 64)
if err != nil {
return 0, fmt.Errorf("Invalid OLLAMA_MAX_VRAM setting %s: %s", userLimit, err)
}
slog.Info(fmt.Sprintf("user override OLLAMA_MAX_VRAM=%d", avail))
return uint64(avail), nil
}
gpuInfo := GetGPUInfo()
if gpuInfo.FreeMemory > 0 && (gpuInfo.Library == "cuda" || gpuInfo.Library == "rocm") {
return gpuInfo.FreeMemory, nil
}
return 0, fmt.Errorf("no GPU detected") // TODO - better handling of CPU based memory determiniation
}
func FindGPULibs(baseLibName string, patterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string
gpuLibPaths := []string{}
slog.Info(fmt.Sprintf("Searching for GPU management library %s", baseLibName))
slog.Debug("Searching for GPU library", "name", baseLibName)
switch runtime.GOOS {
case "windows":
......@@ -283,7 +218,7 @@ func FindGPULibs(baseLibName string, patterns []string) []string {
}
patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
}
slog.Debug(fmt.Sprintf("gpu management search paths: %v", patterns))
slog.Debug("gpu library search", "globs", patterns)
for _, pattern := range patterns {
// Ignore glob discovery errors
matches, _ := filepath.Glob(pattern)
......@@ -311,28 +246,11 @@ func FindGPULibs(baseLibName string, patterns []string) []string {
}
}
}
slog.Info(fmt.Sprintf("Discovered GPU libraries: %v", gpuLibPaths))
slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
return gpuLibPaths
}
func LoadNVMLMgmt(nvmlLibPaths []string) *C.nvml_handle_t {
var resp C.nvml_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range nvmlLibPaths {
lib := C.CString(libPath)
defer C.free(unsafe.Pointer(lib))
C.nvml_init(lib, &resp)
if resp.err != nil {
slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
C.free(unsafe.Pointer(resp.err))
} else {
return &resp.ch
}
}
return nil
}
func LoadCUDARTMgmt(cudartLibPaths []string) *C.cudart_handle_t {
func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
var resp C.cudart_init_resp_t
resp.ch.verbose = getVerboseState()
for _, libPath := range cudartLibPaths {
......@@ -340,13 +258,13 @@ func LoadCUDARTMgmt(cudartLibPaths []string) *C.cudart_handle_t {
defer C.free(unsafe.Pointer(lib))
C.cudart_init(lib, &resp)
if resp.err != nil {
slog.Info(fmt.Sprintf("Unable to load cudart CUDA management library %s: %s", libPath, C.GoString(resp.err)))
slog.Debug("Unable to load cudart", "library", libPath, "error", C.GoString(resp.err))
C.free(unsafe.Pointer(resp.err))
} else {
return &resp.ch
return int(resp.num_devices), &resp.ch, libPath
}
}
return nil
return 0, nil, ""
}
func getVerboseState() C.uint16_t {
......@@ -355,3 +273,22 @@ func getVerboseState() C.uint16_t {
}
return C.uint16_t(0)
}
// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
if len(l) == 0 {
return "", ""
}
switch l[0].Library {
case "cuda":
return cudaGetVisibleDevicesEnv(l)
case "rocm":
return rocmGetVisibleDevicesEnv(l)
default:
slog.Debug("no filter required for library " + l[0].Library)
return "", ""
}
}
......@@ -9,52 +9,41 @@ package gpu
*/
import "C"
import (
"fmt"
"log/slog"
"os"
"runtime"
"strconv"
)
// CheckVRAM returns the free VRAM in bytes on Linux machines with NVIDIA GPUs
func CheckVRAM() (uint64, error) {
userLimit := os.Getenv("OLLAMA_MAX_VRAM")
if userLimit != "" {
avail, err := strconv.ParseInt(userLimit, 10, 64)
if err != nil {
return 0, fmt.Errorf("Invalid OLLAMA_MAX_VRAM setting %s: %s", userLimit, err)
}
slog.Info(fmt.Sprintf("user override OLLAMA_MAX_VRAM=%d", avail))
return uint64(avail), nil
}
func GetGPUInfo() GpuInfoList {
mem, _ := GetCPUMem()
if runtime.GOARCH == "amd64" {
// gpu not supported, this may not be metal
return 0, nil
}
return uint64(C.getRecommendedMaxVRAM()), nil
}
func GetGPUInfo() GpuInfo {
mem, _ := getCPUMem()
if runtime.GOARCH == "amd64" {
return GpuInfo{
return []GpuInfo{
{
Library: "cpu",
Variant: GetCPUVariant(),
memInfo: mem,
},
}
}
return GpuInfo{
info := GpuInfo{
Library: "metal",
memInfo: mem,
ID: "0",
}
info.TotalMemory = uint64(C.getRecommendedMaxVRAM())
// TODO is there a way to gather actual allocated video memory? (currentAllocatedSize doesn't work)
info.FreeMemory = info.TotalMemory
info.MinimumMemory = 0
return []GpuInfo{info}
}
func getCPUMem() (memInfo, error) {
func GetCPUMem() (memInfo, error) {
return memInfo{
TotalMemory: uint64(C.getPhysicalMemory()),
FreeMemory: 0,
DeviceCount: 1,
}, nil
}
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
// No-op on darwin
return "", ""
}
......@@ -38,12 +38,17 @@
extern "C" {
#endif
#define GPU_ID_LEN 64
typedef struct mem_info {
char *err; // If non-nill, caller responsible for freeing
char gpu_id[GPU_ID_LEN];
uint64_t total;
uint64_t free;
unsigned int count;
int igpu_index; // If >= 0, we detected an integrated GPU to ignore
char *err; // If non-nill, caller responsible for freeing
// Compute Capability
int major;
int minor;
} mem_info_t;
void cpu_check_ram(mem_info_t *resp);
......@@ -52,7 +57,6 @@ void cpu_check_ram(mem_info_t *resp);
}
#endif
#include "gpu_info_nvml.h"
#include "gpu_info_cudart.h"
#endif // __GPU_INFO_H__
......
......@@ -8,9 +8,11 @@ void cpu_check_ram(mem_info_t *resp) {
MEMORYSTATUSEX info;
info.dwLength = sizeof(info);
if (GlobalMemoryStatusEx(&info) != 0) {
resp->count = 1;
resp->total = info.ullTotalPhys;
resp->free = info.ullAvailPhys;
resp->major = 0;
resp->minor = 0;
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "0");
} else {
resp->err = LOAD_ERR();
}
......@@ -27,9 +29,11 @@ void cpu_check_ram(mem_info_t *resp) {
if (sysinfo(&info) != 0) {
resp->err = strdup(strerror(errno));
} else {
resp->count = 1;
resp->total = info.totalram * info.mem_unit;
resp->free = info.freeram * info.mem_unit;
resp->major = 0;
resp->minor = 0;
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "0");
}
return;
}
......
......@@ -6,6 +6,7 @@
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
cudartReturn_t ret;
resp->err = NULL;
resp->num_devices = 0;
const int buflen = 256;
char buf[buflen + 1];
int i;
......@@ -21,6 +22,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
{"cudaGetDeviceCount", (void *)&resp->ch.cudaGetDeviceCount},
{"cudaDeviceGetAttribute", (void *)&resp->ch.cudaDeviceGetAttribute},
{"cudaDriverGetVersion", (void *)&resp->ch.cudaDriverGetVersion},
{"cudaGetDeviceProperties", (void *)&resp->ch.cudaGetDeviceProperties},
{NULL, NULL},
};
......@@ -36,13 +38,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
return;
}
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->ch.verbose, "wiring cudart library functions in %s\n", cudart_lib_path);
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!l[i].p) {
char *msg = LOAD_ERR();
......@@ -63,7 +59,7 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
if (ret == CUDA_ERROR_INSUFFICIENT_DRIVER) {
resp->err = strdup("your nvidia driver is too old or missing, please upgrade to run ollama");
resp->err = strdup("your nvidia driver is too old or missing. If you have a CUDA GPU please upgrade to run ollama");
return;
}
snprintf(buf, buflen, "cudart init failure: %d", ret);
......@@ -85,82 +81,31 @@ void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp) {
driverVersion.minor = (version - (driverVersion.major * 1000)) / 10;
LOG(resp->ch.verbose, "CUDA driver version: %d-%d\n", driverVersion.major, driverVersion.minor);
}
}
void cudart_check_vram(cudart_handle_t h, mem_info_t *resp) {
resp->err = NULL;
cudartMemory_t memInfo = {0,0,0};
cudartReturn_t ret;
const int buflen = 256;
char buf[buflen + 1];
int i;
if (h.handle == NULL) {
resp->err = strdup("cudart handle isn't initialized");
return;
}
// cudaGetDeviceCount takes int type, resp-> count is uint
int deviceCount;
ret = (*h.cudaGetDeviceCount)(&deviceCount);
ret = (*resp->ch.cudaGetDeviceCount)(&resp->num_devices);
if (ret != CUDART_SUCCESS) {
LOG(resp->ch.verbose, "cudaGetDeviceCount err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
return;
} else {
resp->count = (unsigned int)deviceCount;
}
resp->total = 0;
resp->free = 0;
for (i = 0; i < resp-> count; i++) {
ret = (*h.cudaSetDevice)(i);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device failed to initialize");
resp->err = strdup(buf);
return;
}
ret = (*h.cudaMemGetInfo)(&memInfo.free, &memInfo.total);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device memory info lookup failure %d", ret);
resp->err = strdup(buf);
return;
}
LOG(h.verbose, "[%d] CUDA totalMem %lu\n", i, memInfo.total);
LOG(h.verbose, "[%d] CUDA freeMem %lu\n", i, memInfo.free);
resp->total += memInfo.total;
resp->free += memInfo.free;
}
}
void cudart_compute_capability(cudart_handle_t h, cudart_compute_capability_t *resp) {
void cudart_check_vram(cudart_handle_t h, int i, mem_info_t *resp) {
resp->err = NULL;
resp->major = 0;
resp->minor = 0;
int major = 0;
int minor = 0;
cudartMemory_t memInfo = {0,0,0};
cudartReturn_t ret;
const int buflen = 256;
char buf[buflen + 1];
int i;
if (h.handle == NULL) {
resp->err = strdup("cudart handle not initialized");
return;
}
int devices;
ret = (*h.cudaGetDeviceCount)(&devices);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "unable to get cudart device count: %d", ret);
resp->err = strdup(buf);
resp->err = strdup("cudart handle isn't initialized");
return;
}
for (i = 0; i < devices; i++) {
ret = (*h.cudaSetDevice)(i);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "cudart device failed to initialize");
......@@ -168,27 +113,63 @@ void cudart_compute_capability(cudart_handle_t h, cudart_compute_capability_t *r
return;
}
ret = (*h.cudaDeviceGetAttribute)(&major, cudartDevAttrComputeCapabilityMajor, i);
cudaDeviceProp_t props;
ret = (*h.cudaGetDeviceProperties)(&props, i);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "device compute capability lookup failure %d: %d", i, ret);
resp->err = strdup(buf);
return;
LOG(h.verbose, "[%d] device properties lookup failure: %d\n", i, ret);
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
resp->major = 0;
resp->minor = 0;
} else {
int allNull = 1;
for (int j = 0; j < 16; j++) {
if (props.uuid.bytes[j] != 0) {
allNull = 0;
break;
}
}
ret = (*h.cudaDeviceGetAttribute)(&minor, cudartDevAttrComputeCapabilityMinor, i);
if (allNull != 0) {
snprintf(&resp->gpu_id[0], GPU_ID_LEN, "%d", i);
} else {
// GPU-d110a105-ac29-1d54-7b49-9c90440f215b
snprintf(&resp->gpu_id[0], GPU_ID_LEN,
"GPU-%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x",
props.uuid.bytes[0],
props.uuid.bytes[1],
props.uuid.bytes[2],
props.uuid.bytes[3],
props.uuid.bytes[4],
props.uuid.bytes[5],
props.uuid.bytes[6],
props.uuid.bytes[7],
props.uuid.bytes[8],
props.uuid.bytes[9],
props.uuid.bytes[10],
props.uuid.bytes[11],
props.uuid.bytes[12],
props.uuid.bytes[13],
props.uuid.bytes[14],
props.uuid.bytes[15]
);
}
resp->major = props.major;
resp->minor = props.minor;
// TODO add other useful properties from props
}
ret = (*h.cudaMemGetInfo)(&memInfo.free, &memInfo.total);
if (ret != CUDART_SUCCESS) {
snprintf(buf, buflen, "device compute capability lookup failure %d: %d", i, ret);
snprintf(buf, buflen, "cudart device memory info lookup failure %d", ret);
resp->err = strdup(buf);
return;
}
// Report the lowest major.minor we detect as that limits our compatibility
if (resp->major == 0 || resp->major > major ) {
resp->major = major;
resp->minor = minor;
} else if ( resp->major == major && resp->minor > minor ) {
resp->minor = minor;
}
}
resp->total = memInfo.total;
resp->free = memInfo.free;
LOG(h.verbose, "[%s] CUDA totalMem %lu\n", resp->gpu_id, resp->total);
LOG(h.verbose, "[%s] CUDA freeMem %lu\n", resp->gpu_id, resp->free);
LOG(h.verbose, "[%s] Compute Capability %d.%d\n", resp->gpu_id, resp->major, resp->minor);
}
void cudart_release(cudart_handle_t h) {
......
......@@ -6,7 +6,8 @@
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum cudartReturn_enum {
CUDART_SUCCESS = 0,
CUDART_UNSUPPORTED = 1,
CUDA_ERROR_INVALID_VALUE = 1,
CUDA_ERROR_MEMORY_ALLOCATION = 2,
CUDA_ERROR_INSUFFICIENT_DRIVER = 35,
// Other values omitted for now...
} cudartReturn_t;
......@@ -14,6 +15,11 @@ typedef enum cudartReturn_enum {
typedef enum cudartDeviceAttr_enum {
cudartDevAttrComputeCapabilityMajor = 75,
cudartDevAttrComputeCapabilityMinor = 76,
// TODO - not yet wired up but may be useful for Jetson or other
// integrated GPU scenarios with shared memory
cudaDevAttrIntegrated = 18
} cudartDeviceAttr_t;
typedef void *cudartDevice_t; // Opaque is sufficient
......@@ -28,6 +34,92 @@ typedef struct cudartDriverVersion {
int minor;
} cudartDriverVersion_t;
typedef struct cudaUUID {
unsigned char bytes[16];
} cudaUUID_t;
typedef struct cudaDeviceProp {
char name[256]; /**< ASCII string identifying device */
cudaUUID_t uuid; /**< 16-byte unique identifier */
char luid[8]; /**< 8-byte locally unique identifier. Value is undefined on TCC and non-Windows platforms */
unsigned int luidDeviceNodeMask; /**< LUID device node mask. Value is undefined on TCC and non-Windows platforms */
size_t totalGlobalMem; /**< Global memory available on device in bytes */
size_t sharedMemPerBlock; /**< Shared memory available per block in bytes */
int regsPerBlock; /**< 32-bit registers available per block */
int warpSize; /**< Warp size in threads */
size_t memPitch; /**< Maximum pitch in bytes allowed by memory copies */
int maxThreadsPerBlock; /**< Maximum number of threads per block */
int maxThreadsDim[3]; /**< Maximum size of each dimension of a block */
int maxGridSize[3]; /**< Maximum size of each dimension of a grid */
int clockRate; /**< Clock frequency in kilohertz */
size_t totalConstMem; /**< Constant memory available on device in bytes */
int major; /**< Major compute capability */
int minor; /**< Minor compute capability */
size_t textureAlignment; /**< Alignment requirement for textures */
size_t texturePitchAlignment; /**< Pitch alignment requirement for texture references bound to pitched memory */
int deviceOverlap; /**< Device can concurrently copy memory and execute a kernel. Deprecated. Use instead asyncEngineCount. */
int multiProcessorCount; /**< Number of multiprocessors on device */
int kernelExecTimeoutEnabled; /**< Specified whether there is a run time limit on kernels */
int integrated; /**< Device is integrated as opposed to discrete */
int canMapHostMemory; /**< Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer */
int computeMode; /**< Compute mode (See ::cudaComputeMode) */
int maxTexture1D; /**< Maximum 1D texture size */
int maxTexture1DMipmap; /**< Maximum 1D mipmapped texture size */
int maxTexture1DLinear; /**< Deprecated, do not use. Use cudaDeviceGetTexture1DLinearMaxWidth() or cuDeviceGetTexture1DLinearMaxWidth() instead. */
int maxTexture2D[2]; /**< Maximum 2D texture dimensions */
int maxTexture2DMipmap[2]; /**< Maximum 2D mipmapped texture dimensions */
int maxTexture2DLinear[3]; /**< Maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory */
int maxTexture2DGather[2]; /**< Maximum 2D texture dimensions if texture gather operations have to be performed */
int maxTexture3D[3]; /**< Maximum 3D texture dimensions */
int maxTexture3DAlt[3]; /**< Maximum alternate 3D texture dimensions */
int maxTextureCubemap; /**< Maximum Cubemap texture dimensions */
int maxTexture1DLayered[2]; /**< Maximum 1D layered texture dimensions */
int maxTexture2DLayered[3]; /**< Maximum 2D layered texture dimensions */
int maxTextureCubemapLayered[2];/**< Maximum Cubemap layered texture dimensions */
int maxSurface1D; /**< Maximum 1D surface size */
int maxSurface2D[2]; /**< Maximum 2D surface dimensions */
int maxSurface3D[3]; /**< Maximum 3D surface dimensions */
int maxSurface1DLayered[2]; /**< Maximum 1D layered surface dimensions */
int maxSurface2DLayered[3]; /**< Maximum 2D layered surface dimensions */
int maxSurfaceCubemap; /**< Maximum Cubemap surface dimensions */
int maxSurfaceCubemapLayered[2];/**< Maximum Cubemap layered surface dimensions */
size_t surfaceAlignment; /**< Alignment requirements for surfaces */
int concurrentKernels; /**< Device can possibly execute multiple kernels concurrently */
int ECCEnabled; /**< Device has ECC support enabled */
int pciBusID; /**< PCI bus ID of the device */
int pciDeviceID; /**< PCI device ID of the device */
int pciDomainID; /**< PCI domain ID of the device */
int tccDriver; /**< 1 if device is a Tesla device using TCC driver, 0 otherwise */
int asyncEngineCount; /**< Number of asynchronous engines */
int unifiedAddressing; /**< Device shares a unified address space with the host */
int memoryClockRate; /**< Peak memory clock frequency in kilohertz */
int memoryBusWidth; /**< Global memory bus width in bits */
int l2CacheSize; /**< Size of L2 cache in bytes */
int persistingL2CacheMaxSize; /**< Device's maximum l2 persisting lines capacity setting in bytes */
int maxThreadsPerMultiProcessor;/**< Maximum resident threads per multiprocessor */
int streamPrioritiesSupported; /**< Device supports stream priorities */
int globalL1CacheSupported; /**< Device supports caching globals in L1 */
int localL1CacheSupported; /**< Device supports caching locals in L1 */
size_t sharedMemPerMultiprocessor; /**< Shared memory available per multiprocessor in bytes */
int regsPerMultiprocessor; /**< 32-bit registers available per multiprocessor */
int managedMemory; /**< Device supports allocating managed memory on this system */
int isMultiGpuBoard; /**< Device is on a multi-GPU board */
int multiGpuBoardGroupID; /**< Unique identifier for a group of devices on the same multi-GPU board */
int hostNativeAtomicSupported; /**< Link between the device and the host supports native atomic operations */
int singleToDoublePrecisionPerfRatio; /**< Ratio of single precision performance (in floating-point operations per second) to double precision performance */
int pageableMemoryAccess; /**< Device supports coherently accessing pageable memory without calling cudaHostRegister on it */
int concurrentManagedAccess; /**< Device can coherently access managed memory concurrently with the CPU */
int computePreemptionSupported; /**< Device supports Compute Preemption */
int canUseHostPointerForRegisteredMem; /**< Device can access host registered memory at the same virtual address as the CPU */
int cooperativeLaunch; /**< Device supports launching cooperative kernels via ::cudaLaunchCooperativeKernel */
int cooperativeMultiDeviceLaunch; /**< Deprecated, cudaLaunchCooperativeKernelMultiDevice is deprecated. */
size_t sharedMemPerBlockOptin; /**< Per device maximum shared memory per block usable by special opt in */
int pageableMemoryAccessUsesHostPageTables; /**< Device accesses pageable memory via the host's page tables */
int directManagedMemAccessFromHost; /**< Host can directly access managed memory on the device without migration. */
int maxBlocksPerMultiProcessor; /**< Maximum number of resident blocks per multiprocessor */
int accessPolicyMaxWindowSize; /**< The maximum value of ::cudaAccessPolicyWindow::num_bytes. */
size_t reservedSharedMemPerBlock; /**< Shared memory reserved by CUDA driver per block in bytes */
} cudaDeviceProp_t;
typedef struct cudart_handle {
void *handle;
uint16_t verbose;
......@@ -38,23 +130,17 @@ typedef struct cudart_handle {
cudartReturn_t (*cudaGetDeviceCount)(int *);
cudartReturn_t (*cudaDeviceGetAttribute)(int* value, cudartDeviceAttr_t attr, int device);
cudartReturn_t (*cudaDriverGetVersion) (int *driverVersion);
cudartReturn_t (*cudaGetDeviceProperties) (cudaDeviceProp_t* prop, int device);
} cudart_handle_t;
typedef struct cudart_init_resp {
char *err; // If err is non-null handle is invalid
cudart_handle_t ch;
int num_devices;
} cudart_init_resp_t;
typedef struct cudart_compute_capability {
char *err;
int major;
int minor;
} cudart_compute_capability_t;
void cudart_init(char *cudart_lib_path, cudart_init_resp_t *resp);
void cudart_check_vram(cudart_handle_t ch, mem_info_t *resp);
void cudart_compute_capability(cudart_handle_t th, cudart_compute_capability_t *cc);
void cudart_check_vram(cudart_handle_t ch, int device_id, mem_info_t *resp);
void cudart_release(cudart_handle_t ch);
#endif // __GPU_INFO_CUDART_H__
......
#ifndef __APPLE__ // TODO - maybe consider nvidia support on intel macs?
#include <string.h>
#include "gpu_info_nvml.h"
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp) {
nvmlReturn_t ret;
resp->err = NULL;
const int buflen = 256;
char buf[buflen + 1];
int i;
struct lookup {
char *s;
void **p;
} l[] = {
{"nvmlInit_v2", (void *)&resp->ch.nvmlInit_v2},
{"nvmlShutdown", (void *)&resp->ch.nvmlShutdown},
{"nvmlDeviceGetHandleByIndex", (void *)&resp->ch.nvmlDeviceGetHandleByIndex},
{"nvmlDeviceGetMemoryInfo", (void *)&resp->ch.nvmlDeviceGetMemoryInfo},
{"nvmlDeviceGetCount_v2", (void *)&resp->ch.nvmlDeviceGetCount_v2},
{"nvmlDeviceGetCudaComputeCapability", (void *)&resp->ch.nvmlDeviceGetCudaComputeCapability},
{"nvmlSystemGetDriverVersion", (void *)&resp->ch.nvmlSystemGetDriverVersion},
{"nvmlDeviceGetName", (void *)&resp->ch.nvmlDeviceGetName},
{"nvmlDeviceGetSerial", (void *)&resp->ch.nvmlDeviceGetSerial},
{"nvmlDeviceGetVbiosVersion", (void *)&resp->ch.nvmlDeviceGetVbiosVersion},
{"nvmlDeviceGetBoardPartNumber", (void *)&resp->ch.nvmlDeviceGetBoardPartNumber},
{"nvmlDeviceGetBrand", (void *)&resp->ch.nvmlDeviceGetBrand},
{NULL, NULL},
};
resp->ch.handle = LOAD_LIBRARY(nvml_lib_path, RTLD_LAZY);
if (!resp->ch.handle) {
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "library %s load err: %s\n", nvml_lib_path, msg);
snprintf(buf, buflen,
"Unable to load %s library to query for Nvidia GPUs: %s",
nvml_lib_path, msg);
free(msg);
resp->err = strdup(buf);
return;
}
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->ch.verbose, "wiring nvidia management library functions in %s\n", nvml_lib_path);
for (i = 0; l[i].s != NULL; i++) {
// TODO once we've squashed the remaining corner cases remove this log
LOG(resp->ch.verbose, "dlsym: %s\n", l[i].s);
*l[i].p = LOAD_SYMBOL(resp->ch.handle, l[i].s);
if (!l[i].p) {
resp->ch.handle = NULL;
char *msg = LOAD_ERR();
LOG(resp->ch.verbose, "dlerr: %s\n", msg);
UNLOAD_LIBRARY(resp->ch.handle);
snprintf(buf, buflen, "symbol lookup for %s failed: %s", l[i].s,
msg);
free(msg);
resp->err = strdup(buf);
return;
}
}
ret = (*resp->ch.nvmlInit_v2)();
if (ret != NVML_SUCCESS) {
LOG(resp->ch.verbose, "nvmlInit_v2 err: %d\n", ret);
UNLOAD_LIBRARY(resp->ch.handle);
resp->ch.handle = NULL;
snprintf(buf, buflen, "nvml vram init failure: %d", ret);
resp->err = strdup(buf);
return;
}
// Report driver version if we're in verbose mode, ignore errors
ret = (*resp->ch.nvmlSystemGetDriverVersion)(buf, buflen);
if (ret != NVML_SUCCESS) {
LOG(resp->ch.verbose, "nvmlSystemGetDriverVersion failed: %d\n", ret);
} else {
LOG(resp->ch.verbose, "CUDA driver version: %s\n", buf);
}
}
void nvml_check_vram(nvml_handle_t h, mem_info_t *resp) {
resp->err = NULL;
nvmlDevice_t device;
nvmlMemory_t memInfo = {0};
nvmlReturn_t ret;
const int buflen = 256;
char buf[buflen + 1];
int i;
if (h.handle == NULL) {
resp->err = strdup("nvml handle isn't initialized");
return;
}
ret = (*h.nvmlDeviceGetCount_v2)(&resp->count);
if (ret != NVML_SUCCESS) {
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
return;
}
resp->total = 0;
resp->free = 0;
for (i = 0; i < resp->count; i++) {
ret = (*h.nvmlDeviceGetHandleByIndex)(i, &device);
if (ret != NVML_SUCCESS) {
snprintf(buf, buflen, "unable to get device handle %d: %d", i, ret);
resp->err = strdup(buf);
return;
}
ret = (*h.nvmlDeviceGetMemoryInfo)(device, &memInfo);
if (ret != NVML_SUCCESS) {
snprintf(buf, buflen, "device memory info lookup failure %d: %d", i, ret);
resp->err = strdup(buf);
return;
}
if (h.verbose) {
nvmlBrandType_t brand = 0;
// When in verbose mode, report more information about
// the card we discover, but don't fail on error
ret = (*h.nvmlDeviceGetName)(device, buf, buflen);
if (ret != NVML_SUCCESS) {
LOG(h.verbose, "nvmlDeviceGetName failed: %d\n", ret);
} else {
LOG(h.verbose, "[%d] CUDA device name: %s\n", i, buf);
}
ret = (*h.nvmlDeviceGetBoardPartNumber)(device, buf, buflen);
if (ret != NVML_SUCCESS) {
LOG(h.verbose, "nvmlDeviceGetBoardPartNumber failed: %d\n", ret);
} else {
LOG(h.verbose, "[%d] CUDA part number: %s\n", i, buf);
}
ret = (*h.nvmlDeviceGetSerial)(device, buf, buflen);
if (ret != NVML_SUCCESS) {
LOG(h.verbose, "nvmlDeviceGetSerial failed: %d\n", ret);
} else {
LOG(h.verbose, "[%d] CUDA S/N: %s\n", i, buf);
}
ret = (*h.nvmlDeviceGetVbiosVersion)(device, buf, buflen);
if (ret != NVML_SUCCESS) {
LOG(h.verbose, "nvmlDeviceGetVbiosVersion failed: %d\n", ret);
} else {
LOG(h.verbose, "[%d] CUDA vbios version: %s\n", i, buf);
}
ret = (*h.nvmlDeviceGetBrand)(device, &brand);
if (ret != NVML_SUCCESS) {
LOG(h.verbose, "nvmlDeviceGetBrand failed: %d\n", ret);
} else {
LOG(h.verbose, "[%d] CUDA brand: %d\n", i, brand);
}
}
LOG(h.verbose, "[%d] CUDA totalMem %ld\n", i, memInfo.total);
LOG(h.verbose, "[%d] CUDA freeMem %ld\n", i, memInfo.free);
resp->total += memInfo.total;
resp->free += memInfo.free;
}
}
void nvml_compute_capability(nvml_handle_t h, nvml_compute_capability_t *resp) {
resp->err = NULL;
resp->major = 0;
resp->minor = 0;
nvmlDevice_t device;
int major = 0;
int minor = 0;
nvmlReturn_t ret;
const int buflen = 256;
char buf[buflen + 1];
int i;
if (h.handle == NULL) {
resp->err = strdup("nvml handle not initialized");
return;
}
unsigned int devices;
ret = (*h.nvmlDeviceGetCount_v2)(&devices);
if (ret != NVML_SUCCESS) {
snprintf(buf, buflen, "unable to get device count: %d", ret);
resp->err = strdup(buf);
return;
}
for (i = 0; i < devices; i++) {
ret = (*h.nvmlDeviceGetHandleByIndex)(i, &device);
if (ret != NVML_SUCCESS) {
snprintf(buf, buflen, "unable to get device handle %d: %d", i, ret);
resp->err = strdup(buf);
return;
}
ret = (*h.nvmlDeviceGetCudaComputeCapability)(device, &major, &minor);
if (ret != NVML_SUCCESS) {
snprintf(buf, buflen, "device compute capability lookup failure %d: %d", i, ret);
resp->err = strdup(buf);
return;
}
// Report the lowest major.minor we detect as that limits our compatibility
if (resp->major == 0 || resp->major > major ) {
resp->major = major;
resp->minor = minor;
} else if ( resp->major == major && resp->minor > minor ) {
resp->minor = minor;
}
}
}
void nvml_release(nvml_handle_t h) {
LOG(h.verbose, "releasing nvml library\n");
UNLOAD_LIBRARY(h.handle);
h.handle = NULL;
}
#endif // __APPLE__
\ No newline at end of file
#ifndef __APPLE__
#ifndef __GPU_INFO_NVML_H__
#define __GPU_INFO_NVML_H__
#include "gpu_info.h"
// Just enough typedef's to dlopen/dlsym for memory information
typedef enum nvmlReturn_enum {
NVML_SUCCESS = 0,
// Other values omitted for now...
} nvmlReturn_t;
typedef void *nvmlDevice_t; // Opaque is sufficient
typedef struct nvmlMemory_st {
unsigned long long total;
unsigned long long free;
unsigned long long used;
} nvmlMemory_t;
typedef enum nvmlBrandType_enum
{
NVML_BRAND_UNKNOWN = 0,
} nvmlBrandType_t;
typedef struct nvml_handle {
void *handle;
uint16_t verbose;
nvmlReturn_t (*nvmlInit_v2)(void);
nvmlReturn_t (*nvmlShutdown)(void);
nvmlReturn_t (*nvmlDeviceGetHandleByIndex)(unsigned int, nvmlDevice_t *);
nvmlReturn_t (*nvmlDeviceGetMemoryInfo)(nvmlDevice_t, nvmlMemory_t *);
nvmlReturn_t (*nvmlDeviceGetCount_v2)(unsigned int *);
nvmlReturn_t (*nvmlDeviceGetCudaComputeCapability)(nvmlDevice_t, int* major, int* minor);
nvmlReturn_t (*nvmlSystemGetDriverVersion) (char* version, unsigned int length);
nvmlReturn_t (*nvmlDeviceGetName) (nvmlDevice_t device, char* name, unsigned int length);
nvmlReturn_t (*nvmlDeviceGetSerial) (nvmlDevice_t device, char* serial, unsigned int length);
nvmlReturn_t (*nvmlDeviceGetVbiosVersion) (nvmlDevice_t device, char* version, unsigned int length);
nvmlReturn_t (*nvmlDeviceGetBoardPartNumber) (nvmlDevice_t device, char* partNumber, unsigned int length);
nvmlReturn_t (*nvmlDeviceGetBrand) (nvmlDevice_t device, nvmlBrandType_t* type);
} nvml_handle_t;
typedef struct nvml_init_resp {
char *err; // If err is non-null handle is invalid
nvml_handle_t ch;
} nvml_init_resp_t;
typedef struct nvml_compute_capability {
char *err;
int major;
int minor;
} nvml_compute_capability_t;
void nvml_init(char *nvml_lib_path, nvml_init_resp_t *resp);
void nvml_check_vram(nvml_handle_t ch, mem_info_t *resp);
void nvml_compute_capability(nvml_handle_t ch, nvml_compute_capability_t *cc);
void nvml_release(nvml_handle_t ch);
#endif // __GPU_INFO_NVML_H__
#endif // __APPLE__
\ No newline at end of file
......@@ -9,23 +9,16 @@ import (
func TestBasicGetGPUInfo(t *testing.T) {
info := GetGPUInfo()
assert.Contains(t, "cuda rocm cpu metal", info.Library)
switch runtime.GOOS {
case "darwin":
// TODO - remove this once MacOS returns some size for CPU
return
case "linux", "windows":
assert.Greater(t, info.TotalMemory, uint64(0))
assert.Greater(t, info.FreeMemory, uint64(0))
assert.Greater(t, info.DeviceCount, uint32(0))
default:
return
assert.Greater(t, len(info), 0)
assert.Contains(t, "cuda rocm cpu metal", info[0].Library)
if info[0].Library != "cpu" {
assert.Greater(t, info[0].TotalMemory, uint64(0))
assert.Greater(t, info[0].FreeMemory, uint64(0))
}
}
func TestCPUMemInfo(t *testing.T) {
info, err := getCPUMem()
info, err := GetCPUMem()
assert.NoError(t, err)
switch runtime.GOOS {
case "darwin":
......
......@@ -3,7 +3,6 @@ package gpu
type memInfo struct {
TotalMemory uint64 `json:"total_memory,omitempty"`
FreeMemory uint64 `json:"free_memory,omitempty"`
DeviceCount uint32 `json:"device_count,omitempty"`
}
// Beginning of an `ollama info` command
......@@ -17,11 +16,49 @@ type GpuInfo struct {
// MinimumMemory represents the minimum memory required to use the GPU
MinimumMemory uint64 `json:"-"`
// TODO add other useful attributes about the card here for discovery information
// Any extra PATH/LD_LIBRARY_PATH dependencies required for the Library to operate properly
DependencyPath string `json:"lib_path,omitempty"`
// GPU information
ID string `json:"gpu_id"` // string to use for selection of this specific GPU
Name string `json:"name"` // user friendly name if available
Major int `json:"major,omitempty"` // Major compatibility version (CC or gfx)
Minor int `json:"minor,omitempty"` // Minor compatibility version (CC or gfx)
Patch int `json:"patch,omitempty"` // Patch compatibility only matters on AMD
// TODO other performance capability info to help in scheduling decisions
}
type Version struct {
Major uint
Minor uint
Patch uint
type GpuInfoList []GpuInfo
// Split up the set of gpu info's by Library and variant
func (l GpuInfoList) ByLibrary() []GpuInfoList {
resp := []GpuInfoList{}
libs := []string{}
for _, info := range l {
found := false
requested := info.Library
if info.Variant != "" {
requested += "_" + info.Variant
}
for i, lib := range libs {
if lib == requested {
resp[i] = append(resp[i], info)
found = true
break
}
}
if !found {
libs = append(libs, info.Library)
resp = append(resp, []GpuInfo{info})
}
}
return resp
}
// Sort by Free Space
type ByFreeMemory []GpuInfo
func (a ByFreeMemory) Len() int { return len(a) }
func (a ByFreeMemory) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func (a ByFreeMemory) Less(i, j int) bool { return a[i].FreeMemory < a[j].FreeMemory }
......@@ -4,7 +4,6 @@ package integration
import (
"context"
"net/http"
"testing"
"time"
......@@ -24,5 +23,5 @@ func TestOrcaMiniBlueSky(t *testing.T) {
"seed": 123,
},
}
GenerateTestHelper(ctx, t, &http.Client{}, req, []string{"rayleigh", "scattering"})
GenerateTestHelper(ctx, t, req, []string{"rayleigh", "scattering"})
}
//go:build integration
package integration
import (
"context"
"log/slog"
"os"
"strconv"
"sync"
"testing"
"time"
"github.com/ollama/ollama/api"
"github.com/stretchr/testify/require"
)
func TestMultiModelConcurrency(t *testing.T) {
var (
req = [2]api.GenerateRequest{
{
Model: "orca-mini",
Prompt: "why is the ocean blue?",
Stream: &stream,
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
}, {
Model: "tinydolphin",
Prompt: "what is the origin of the us thanksgiving holiday?",
Stream: &stream,
Options: map[string]interface{}{
"seed": 42,
"temperature": 0.0,
},
},
}
resp = [2][]string{
[]string{"sunlight"},
[]string{"england", "english", "massachusetts", "pilgrims"},
}
)
var wg sync.WaitGroup
wg.Add(len(req))
ctx, cancel := context.WithTimeout(context.Background(), time.Second*120)
defer cancel()
for i := 0; i < len(req); i++ {
go func(i int) {
defer wg.Done()
GenerateTestHelper(ctx, t, req[i], resp[i])
}(i)
}
wg.Wait()
}
func TestIntegrationConcurrentPredictOrcaMini(t *testing.T) {
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Minute) // GTX 750 2G card takes ~9 minutes
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
req, resp := GenerateRequests()
// Get the server running (if applicable) warm the model up with a single initial request
DoGenerate(ctx, t, client, req[0], resp[0], 60*time.Second, 5*time.Second)
var wg sync.WaitGroup
wg.Add(len(req))
for i := 0; i < len(req); i++ {
go func(i int) {
defer wg.Done()
for j := 0; j < 5; j++ {
slog.Info("Starting", "req", i, "iter", j)
// On slower GPUs it can take a while to process the 4 concurrent requests
// so we allow a much longer initial timeout
DoGenerate(ctx, t, client, req[i], resp[i], 90*time.Second, 5*time.Second)
}
}(i)
}
wg.Wait()
}
// Stress the system if we know how much VRAM it has, and attempt to load more models than will fit
func TestMultiModelStress(t *testing.T) {
vram := os.Getenv("OLLAMA_MAX_VRAM")
if vram == "" {
t.Skip("OLLAMA_MAX_VRAM not specified, can't pick the right models for the stress test")
}
max, err := strconv.ParseUint(vram, 10, 64)
require.NoError(t, err)
const MB = uint64(1024 * 1024)
type model struct {
name string
size uint64 // Approximate amount of VRAM they typically use when fully loaded in VRAM
}
smallModels := []model{
{
name: "orca-mini",
size: 2992 * MB,
},
{
name: "phi",
size: 2616 * MB,
},
{
name: "gemma:2b",
size: 2364 * MB,
},
{
name: "stable-code:3b",
size: 2608 * MB,
},
{
name: "starcoder2:3b",
size: 2166 * MB,
},
}
mediumModels := []model{
{
name: "llama2",
size: 5118 * MB,
},
{
name: "mistral",
size: 4620 * MB,
},
{
name: "orca-mini:7b",
size: 5118 * MB,
},
{
name: "dolphin-mistral",
size: 4620 * MB,
},
{
name: "gemma:7b",
size: 5000 * MB,
},
// TODO - uncomment this once #3565 is merged and this is rebased on it
// {
// name: "codellama:7b",
// size: 5118 * MB,
// },
}
// These seem to be too slow to be useful...
// largeModels := []model{
// {
// name: "llama2:13b",
// size: 7400 * MB,
// },
// {
// name: "codellama:13b",
// size: 7400 * MB,
// },
// {
// name: "orca-mini:13b",
// size: 7400 * MB,
// },
// {
// name: "gemma:7b",
// size: 5000 * MB,
// },
// {
// name: "starcoder2:15b",
// size: 9100 * MB,
// },
// }
var chosenModels []model
switch {
case max < 10000*MB:
slog.Info("selecting small models")
chosenModels = smallModels
// case max < 30000*MB:
default:
slog.Info("selecting medium models")
chosenModels = mediumModels
// default:
// slog.Info("selecting large models")
// chosenModels = largModels
}
req, resp := GenerateRequests()
for i := range req {
if i > len(chosenModels) {
break
}
req[i].Model = chosenModels[i].name
}
ctx, cancel := context.WithTimeout(context.Background(), 15*time.Minute) // TODO baseline -- 10m too short
defer cancel()
client, _, cleanup := InitServerConnection(ctx, t)
defer cleanup()
// Make sure all the models are pulled before we get started
for _, r := range req {
require.NoError(t, PullIfMissing(ctx, client, r.Model))
}
var wg sync.WaitGroup
consumed := uint64(256 * MB) // Assume some baseline usage
for i := 0; i < len(req); i++ {
// Always get at least 2 models, but dont' overshoot VRAM too much or we'll take too long
if i > 1 && consumed > max {
slog.Info("achieved target vram exhaustion", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
break
}
consumed += chosenModels[i].size
slog.Info("target vram", "count", i, "vramMB", max/1024/1024, "modelsMB", consumed/1024/1024)
wg.Add(1)
go func(i int) {
defer wg.Done()
for j := 0; j < 3; j++ {
slog.Info("Starting", "req", i, "iter", j, "model", req[i].Model)
DoGenerate(ctx, t, client, req[i], resp[i], 90*time.Second, 5*time.Second)
}
}(i)
}
wg.Wait()
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment