experimentName: example_pix2pix searchSpace: ngf: _type: choice _value: [16, 32, 64, 128] ndf: _type: choice _value: [16, 32, 64, 128] netG: _type: choice _value: ["unet_256", "resnet_9blocks"] netD: _type: choice _value: ["basic", "pixel", "n_layers"] norm: _type: choice _value: ["batch", "instance", "none"] init_type: _type: choice _value: ["xavier", "normal", "kaiming", "orthogonal"] lr: _type: choice _value: [0.0001, 0.0002, 0.0005, 0.001, 0.005, 0.01, 0.1] beta1: _type: uniform _value: [0, 1] lr_policy: _type: choice _value: ["linear", "step", "plateau", "cosine"] gan_mode: _type: choice _value: ["vanilla", "lsgan", "wgangp"] lambda_L1: _type: choice _value: [1, 5, 10, 100, 250, 500] trainingService: platform: local useActiveGpu: true gpuIndices: '0' trialCodeDirectory: . trialCommand: python3 pix2pix.py trialConcurrency: 1 trialGpuNumber: 1 tuner: name: TPE classArgs: optimize_mode: minimize