# Copyright (c) Microsoft Corporation # All rights reserved. # # MIT License # # Permission is hereby granted, free of charge, # to any person obtaining a copy of this software and associated # documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and # to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING # BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import tensorflow as tf from rnn import XGRUCell from util import dropout from graph import LayerType def normalize(inputs, epsilon=1e-8, scope="ln"): '''Applies layer normalization. Args: inputs: A tensor with 2 or more dimensions, where the first dimension has `batch_size`. epsilon: A floating number. A very small number for preventing ZeroDivision Error. scope: Optional scope for `variable_scope`. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: A tensor with the same shape and data dtype as `inputs`. ''' with tf.variable_scope(scope): inputs_shape = inputs.get_shape() params_shape = inputs_shape[-1:] mean, variance = tf.nn.moments(inputs, [-1], keep_dims=True) beta = tf.Variable(tf.zeros(params_shape)) gamma = tf.Variable(tf.ones(params_shape)) normalized = (inputs - mean) / ((variance + epsilon) ** (.5)) outputs = gamma * normalized + beta return outputs def multihead_attention(queries, keys, scope="multihead_attention", num_units=None, num_heads=4, dropout_rate=0, is_training=True, causality=False): '''Applies multihead attention. Args: queries: A 3d tensor with shape of [N, T_q, C_q]. keys: A 3d tensor with shape of [N, T_k, C_k]. num_units: A cdscalar. Attention size. dropout_rate: A floating point number. is_training: Boolean. Controller of mechanism for dropout. causality: Boolean. If true, units that reference the future are masked. num_heads: An int. Number of heads. scope: Optional scope for `variable_scope`. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns A 3d tensor with shape of (N, T_q, C) ''' global look5 with tf.variable_scope(scope): # Set the fall back option for num_units if num_units is None: num_units = queries.get_shape().as_list()[-1] Q_ = [] K_ = [] V_ = [] for _ in range(num_heads): Q = tf.layers.dense(queries, num_units / num_heads, activation=tf.nn.relu) # (N, T_q, C) K = tf.layers.dense(keys, num_units / num_heads, activation=tf.nn.relu) # (N, T_k, C) V = tf.layers.dense(keys, num_units / num_heads, activation=tf.nn.relu) # (N, T_k, C) Q_.append(Q) K_.append(K) V_.append(V) # Split and concat Q_ = tf.concat(Q_, axis=0) # (h*N, T_q, C/h) K_ = tf.concat(K_, axis=0) # (h*N, T_k, C/h) V_ = tf.concat(V_, axis=0) # (h*N, T_k, C/h) # Multiplication outputs = tf.matmul(Q_, tf.transpose(K_, [0, 2, 1])) # (h*N, T_q, T_k) # Scale outputs = outputs / (K_.get_shape().as_list()[-1] ** 0.5) # Key Masking key_masks = tf.sign(tf.abs(tf.reduce_sum(keys, axis=-1))) # (N, T_k) key_masks = tf.tile(key_masks, [num_heads, 1]) # (h*N, T_k) key_masks = tf.tile(tf.expand_dims(key_masks, 1), [1, tf.shape(queries)[1], 1]) # (h*N, T_q, T_k) paddings = tf.ones_like(outputs) * (-2 ** 32 + 1) outputs = tf.where(tf.equal(key_masks, 0), paddings, outputs) # (h*N, T_q, T_k) # Causality = Future blinding if causality: diag_vals = tf.ones_like(outputs[0, :, :]) # (T_q, T_k) tril = tf.contrib.linalg.LinearOperatorTriL( diag_vals).to_dense() # (T_q, T_k) masks = tf.tile(tf.expand_dims(tril, 0), [tf.shape(outputs)[0], 1, 1]) # (h*N, T_q, T_k) paddings = tf.ones_like(masks) * (-2 ** 32 + 1) outputs = tf.where(tf.equal(masks, 0), paddings, outputs) # (h*N, T_q, T_k) # Activation look5 = outputs outputs = tf.nn.softmax(outputs) # (h*N, T_q, T_k) # Query Masking query_masks = tf.sign( tf.abs(tf.reduce_sum(queries, axis=-1))) # (N, T_q) query_masks = tf.tile(query_masks, [num_heads, 1]) # (h*N, T_q) query_masks = tf.tile(tf.expand_dims( query_masks, -1), [1, 1, tf.shape(keys)[1]]) # (h*N, T_q, T_k) outputs *= query_masks # broadcasting. (N, T_q, C) # Dropouts outputs = dropout(outputs, dropout_rate, is_training) # Weighted sum outputs = tf.matmul(outputs, V_) # ( h*N, T_q, C/h) # Restore shape outputs = tf.concat(tf.split(outputs, num_heads, axis=0), axis=2) # (N, T_q, C) # Residual connection if queries.get_shape().as_list()[-1] == num_units: outputs += queries # Normalize outputs = normalize(outputs, scope=scope) # (N, T_q, C) return outputs def positional_encoding(inputs, num_units=None, zero_pad=True, scale=True, scope="positional_encoding", reuse=None): ''' Return positinal embedding. ''' Shape = tf.shape(inputs) N = Shape[0] T = Shape[1] num_units = Shape[2] with tf.variable_scope(scope, reuse=reuse): position_ind = tf.tile(tf.expand_dims(tf.range(T), 0), [N, 1]) # First part of the PE function: sin and cos argument # Second part, apply the cosine to even columns and sin to odds. X = tf.expand_dims(tf.cast(tf.range(T), tf.float32), axis=1) Y = tf.expand_dims( tf.cast(10000 ** -(2 * tf.range(num_units) / num_units), tf.float32), axis=0) h1 = tf.cast((tf.range(num_units) + 1) % 2, tf.float32) h2 = tf.cast((tf.range(num_units) % 2), tf.float32) position_enc = tf.multiply(X, Y) position_enc = tf.sin(position_enc) * tf.multiply(tf.ones_like(X), h1) + \ tf.cos(position_enc) * tf.multiply(tf.ones_like(X), h2) # Convert to a tensor lookup_table = position_enc if zero_pad: lookup_table = tf.concat((tf.zeros(shape=[1, num_units]), lookup_table[1:, :]), 0) outputs = tf.nn.embedding_lookup(lookup_table, position_ind) if scale: outputs = outputs * tf.sqrt(tf.cast(num_units, tf.float32)) return outputs def feedforward(inputs, num_units, scope="multihead_attention"): '''Point-wise feed forward net. Args: inputs: A 3d tensor with shape of [N, T, C]. num_units: A list of two integers. scope: Optional scope for `variable_scope`. reuse: Boolean, whether to reuse the weights of a previous layer by the same name. Returns: A 3d tensor with the same shape and dtype as inputs ''' with tf.variable_scope(scope): # Inner layer params = {"inputs": inputs, "filters": num_units[0], "kernel_size": 1, "activation": tf.nn.relu, "use_bias": True} outputs = tf.layers.conv1d(**params) # Readout layer params = {"inputs": outputs, "filters": num_units[1], "kernel_size": 1, "activation": None, "use_bias": True} outputs = tf.layers.conv1d(**params) # Residual connection outputs += inputs # Normalize outputs = normalize(outputs) return outputs def rnn(input_states, sequence_lengths, dropout_rate, is_training, num_units): layer_cnt = 1 states = [] xs = tf.transpose(input_states, perm=[1, 0, 2]) for i in range(0, layer_cnt): xs = dropout(xs, dropout_rate, is_training) with tf.variable_scope('layer_' + str(i)): cell_fw = XGRUCell(num_units) cell_bw = XGRUCell(num_units) outputs, _ = tf.nn.bidirectional_dynamic_rnn( cell_fw=cell_fw, cell_bw=cell_bw, dtype=tf.float32, sequence_length=sequence_lengths, inputs=xs, time_major=True) y_lr, y_rl = outputs xs = tf.concat([y_lr, y_rl], 2) states.append(xs) return tf.transpose(dropout(tf.concat(states, axis=2), dropout_rate, is_training), perm=[1, 0, 2]) def graph_to_network(input1, input2, input1_lengths, input2_lengths, graph, dropout_rate, is_training, num_heads=1, rnn_units=256): topology = graph.is_topology() layers = dict() layers_sequence_lengths = dict() num_units = input1.get_shape().as_list()[-1] layers[0] = input1*tf.sqrt(tf.cast(num_units, tf.float32)) + \ positional_encoding(input1, scale=False, zero_pad=False) layers[1] = input2*tf.sqrt(tf.cast(num_units, tf.float32)) layers[0] = dropout(layers[0], dropout_rate, is_training) layers[1] = dropout(layers[1], dropout_rate, is_training) layers_sequence_lengths[0] = input1_lengths layers_sequence_lengths[1] = input2_lengths for _, topo_i in enumerate(topology): if topo_i == '|': continue if graph.layers[topo_i].graph_type == LayerType.input.value: continue elif graph.layers[topo_i].graph_type == LayerType.attention.value: with tf.variable_scope('attation_%d' % topo_i): layer = multihead_attention(layers[graph.layers[topo_i].input[0]], layers[graph.layers[topo_i].input[1]], scope="multihead_attention%d" % topo_i, dropout_rate=dropout_rate, is_training=is_training, num_heads=num_heads, num_units=rnn_units * 2) layer = feedforward(layer, scope="feedforward%d" % topo_i, num_units=[rnn_units * 2 * 4, rnn_units * 2]) layers[topo_i] = layer layers_sequence_lengths[topo_i] = layers_sequence_lengths[ graph.layers[topo_i].input[0]] elif graph.layers[topo_i].graph_type == LayerType.self_attention.value: with tf.variable_scope('self-attation_%d' % topo_i): layer = multihead_attention(layers[graph.layers[topo_i].input[0]], layers[graph.layers[topo_i].input[0]], scope="multihead_attention%d" % topo_i, dropout_rate=dropout_rate, is_training=is_training, num_heads=num_heads, num_units=rnn_units * 2) layer = feedforward(layer, scope="feedforward%d" % topo_i, num_units=[rnn_units * 2 * 4, rnn_units * 2]) layers[topo_i] = layer layers_sequence_lengths[topo_i] = layers_sequence_lengths[ graph.layers[topo_i].input[0]] elif graph.layers[topo_i].graph_type == LayerType.rnn.value: with tf.variable_scope('rnn_%d' % topo_i): layer = rnn(layers[graph.layers[topo_i].input[0]], layers_sequence_lengths[graph.layers[topo_i].input[0]], dropout_rate, is_training, rnn_units) layers[topo_i] = layer layers_sequence_lengths[topo_i] = layers_sequence_lengths[ graph.layers[topo_i].input[0]] elif graph.layers[topo_i].graph_type == LayerType.output.value: layers[topo_i] = layers[graph.layers[topo_i].input[0]] if layers[topo_i].get_shape().as_list()[-1] != rnn_units * 1 * 2: with tf.variable_scope('add_dense'): layers[topo_i] = tf.layers.dense( layers[topo_i], units=rnn_units*2) return layers[2], layers[3]