import math import torch import torch.nn as nn import torch.nn.functional as F defaultcfg = { 11: [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512], 13: [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512], 16: [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512], 19: [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512], } class VGG(nn.Module): def __init__(self, depth=16): super(VGG, self).__init__() cfg = defaultcfg[depth] self.cfg = cfg self.feature = self.make_layers(cfg, True) num_classes = 10 self.classifier = nn.Sequential( nn.Linear(cfg[-1], 512), nn.BatchNorm1d(512), nn.ReLU(inplace=True), nn.Linear(512, num_classes) ) self._initialize_weights() def make_layers(self, cfg, batch_norm=False): layers = [] in_channels = 3 for v in cfg: if v == 'M': layers += [nn.MaxPool2d(kernel_size=2, stride=2)] else: conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1, bias=False) if batch_norm: layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = v return nn.Sequential(*layers) def forward(self, x): x = self.feature(x) x = nn.AvgPool2d(2)(x) x = x.view(x.size(0), -1) y = self.classifier(x) return y def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(0.5) m.bias.data.zero_() elif isinstance(m, nn.Linear): m.weight.data.normal_(0, 0.01) m.bias.data.zero_()