**Run an Experiment on Azure Machine Learning** === NNI supports running an experiment on [AML](https://azure.microsoft.com/en-us/services/machine-learning/) , called aml mode. ## Setup environment Step 1. Install NNI, follow the install guide [here](../Tutorial/QuickStart.md). Step 2. Create AML account, follow the document [here](https://docs.microsoft.com/en-us/azure/machine-learning/how-to-manage-workspace-cli). Step 3. Get your account information. ![](../../img/aml_account.png) Step4. Install AML package environment. ``` python3 -m pip install azureml --user python3 -m pip install azureml-sdk --user ``` ## Run an experiment Use `examples/trials/mnist-tfv1` as an example. The NNI config YAML file's content is like: ```yaml authorName: default experimentName: example_mnist trialConcurrency: 1 maxExecDuration: 1h maxTrialNum: 10 trainingServicePlatform: aml searchSpacePath: search_space.json #choice: true, false useAnnotation: false tuner: #choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner, GPTuner #SMAC (SMAC should be installed through nnictl) builtinTunerName: TPE classArgs: #choice: maximize, minimize optimize_mode: maximize trial: command: python3 mnist.py codeDir: . computeTarget: ${replace_to_your_computeTarget} image: msranni/nni amlConfig: subscriptionId: ${replace_to_your_subscriptionId} resourceGroup: ${replace_to_your_resourceGroup} workspaceName: ${replace_to_your_workspaceName} ``` Note: You should set `trainingServicePlatform: aml` in NNI config YAML file if you want to start experiment in aml mode. Compared with [LocalMode](LocalMode.md) trial configuration in aml mode have these additional keys: * computeTarget * required key. The computer cluster name you want to use in your AML workspace. * image * required key. The docker image name used in job. amlConfig: * subscriptionId * the subscriptionId of your account * resourceGroup * the resourceGroup of your account * workspaceName * the workspaceName of your account